Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8)
мс2
.
Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.
Ускорение свободного падения в упрощённом виде можно рассчитать по формуле
g=Fm
, которая получается из формулы
F=m⋅g
, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.
Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.
(F) — сила тяжести, Н;
(G) — гравитационная постоянная,
G=6,6720⋅10−11Н⋅м2кг2
;
(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);
m1 и
m2
— масса планеты и притягиваемого тела, выраженные в кг.
Обрати внимание!
Если мы объединим обе формулы, тогда получим формулу
g=G⋅mR2
, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.
Пример:
ускорение свободного падения у поверхности Земли вычисляют таким образом:
, где
(g) — ускорение свободного падения;
(G) — гравитационная постоянная,
G=6,6720⋅10−11Н⋅м2кг2
;
Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832)
мс2
), чем на экваторе ((9,78)
мс2
), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8)
мс2
.
Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.
При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.
Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))
Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет
Небесное тело |
Ускорение свободного падения, мс2 |
Диаметр, км |
Расстояние до Солнца, миллионы км |
Масса, кг |
Соотношение с массой Земли |
Меркурий |
(3,7) |
(4878) |
(58) |
(3,3*) 1023 |
(0,055) |
Венера |
(8,87) |
(12103) |
(108) |
(4,9*) 1024 |
(0,82) |
Земля |
(9,8) |
(12756,28) |
(150) |
(6,0*) 1024 |
(1) |
Марс |
(3,7) |
(6794) |
(228) |
(6,4*) 1023 |
(0,11) |
Юпитер |
(24,8) |
(142984) |
(778) |
(1,9*) 1027 |
(317,8) |
Сатурн |
(10,4) |
(120536) |
(1427) |
(5,7*) 1026 |
(95,0) |
Уран |
(8,87) |
(51118) |
(2871) |
(8,7*) 1025 |
(14,4) |
Нептун |
(10,15) |
(49532) |
(4498) |
(1,02*) 1026 |
(17,1) |
Плутон |
(0,66) |
(2390) |
(5906) |
(1,3*) 1022 |
(0,0022) |
Луна |
(1,62) |
(3473,8) |
(0,3844 ) (до Земли) |
(7,35*) 1022 |
(0,0123) |
Солнце |
(274,0) |
(1391000) |
— |
(2,0*) 1030 |
(332900) |
Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.
Пример:
если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.
Его величина приблизительно равна
2⋅1012 мс2
. Значение ускорения свободного падения для нейтронной звезды может достигать значения
7⋅1012 мс2
.
Ускорение свободного падения
Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².
На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:
- Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
- центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.
В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.
Таблица ускорения свободного падения небесных тел
Небесное тело | g (в м/с²) |
---|---|
Луна | 1,62 |
Солнце | 274 |
Меркурий | 3,72 |
Венера | 8,87 |
Земля | 9,81 |
Марс | 3,711 |
Юпитер | 24,79 |
Сатурн | 10,44 |
Уран | 8,87 |
Нептун | 11,15 |
От чего зависит ускорение свободного падения?
Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).
Возможно для будущих вычислений нужны будут эти данные:
- Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
- Радиус Земли = 6 371 км = 6,37×(10^6) м.
Как найти ускорение свободного падения?
Формула ускорения свободного падения
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты
Гравитационная постоянная («G», не путайте с «g») — это фундаментальная физическая константа, которая примерно равна
и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:
Пример расчёта ускорения свободного падения (для Земли):
Вспомним формулу:
G — гравитационная постоянная
M — масса планеты
R — радиус планеты
Как узнать время падения тела?
Формула времени свободного падения (когда тело падает вертикально):
t = V / g = √(2h/g)
Где:
- t — время
- V — скорость тела
- g — ускорение ≈ 9,8 м/с²
- h — расстояние
Пример:
Высота (h) = 20 м
Нужно найти скорость и время падения.
Решение:
Формула скорости:
V0 = 0
g ≈ 9,8 м/с²
h = 20 м
V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с
Зная скорость, применяем эту формулу:
t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с
Либо используя только высоту и ускорение:
t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с
Где нужны знания о свободном падении?
Они могут понадобиться:
- в авиации,
- в космонавтике,
- при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
- при разработке новых лыжных трамплинов и полос приземления,
- при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).
Узнайте также про Закон сохранения энергии, Силу Архимеда, Законы Ньютона и Космологию.
Ускорение свободного падения, теория и онлайн калькуляторы
Ускорение свободного падения
Определение ускорения свободного падения
Определение
Ускорением свободного падения называют ускорение, которое телу придает сила тяжести, если другие силы на рассматриваемое тело не действуют или их
действие взаимно компенсируется.
Ускорение свободного падения обозначают буквой $g$. На поверхности Земли оно изменяется пределах от $9,78 frac{м}{с^2}$ до $9,832 frac{м}{с^2}$. На полюсах Земли ускорение свободного падения максимально, на экваторе минимально. Средним (стандартным или нормальным) значением ускорения свободного падения на Земле принято считать его величину, равную $g=9,80665 frac{м}{с^2} $. В задачах величину ускорения свободного падения считают равной $g=9,81frac{м}{с^2}$ или часто даже полагают $g=10frac{м}{с^2}$, если расчеты приблизительные.
В соответствии с обобщенным законом Галилея все тела, находящиеся в одном и том же поле тяготения падают с одинаковыми ускорениями. Это означает, что в данной точке Земли ускорение свободного падения одинаково для всех тел. Изменение величины ускорения свободного падения около поверхности Земли в зависимости от широты связано с суточным вращением нашей планеты вокруг своей оси и тем, что форма Земли отличается от формы шара (Земля сплюснута).
Зависимость ускорения свободного падения от высоты над уровнем Земли
Если суточным вращением Земли пренебречь, то сила тяжести ($P=mg$) равна по величине силе тяготения (F):
[P=mg=F=gamma frac{mM}{R^2}left(1right),]
где $M$ — масса Земли; $R$ — расстояние от центра Земли, до рассматриваемого тела; $gamma $- гравитационная постоянная. Формула (1) справедлива, если тело находится около поверхности Земли, тогда ускорение свободного падения равно:
[g=gamma frac{M}{R^2}left(2right).]
Ускорение, вычисляемое при помощи формулы (2) называют ускорением свободного падения на уровне моря.
Допустим, что тело находится на высоте $h$ над уровнем Земли, тогда сила тяжести, действующая на тело равна:
[P=gamma frac{mM}{{left(R_Z+hright)}^2}left(3right),]
где $R_Z$ — радиус Земли. В таком случае ускорение свободного падения зависит от высоты, на которой находится рассматриваемое тело:
[g=gamma frac{M}{{left(R_Z+hright)}^2}left(4right).]
Изменениями ускорения свободного падения на высотах, которые много меньше, чем радиус Земли обычно пренебрегают. При этом считают, что ускорение свободного падения постоянная величина.
Влияние вращения Земли на ускорение свободного падения
Как уже отмечалось, на ускорение свободного падения оказывает влияние вращение нашей планеты вокруг своей оси. Допустим, что тело массой $m$ находится в точке с географической широтой $varphi $. Вместе в планетой тело движется и при этом траекторией его движения является окружность радиуса $r$, равного:
[r=R_Z{cos varphi left(5right), }]
где $R_Z$ — радиус Земли. Центростремительное ускорение ($a_n$) нашего тела при этом будет составлять величину:
[a_n=frac{v^2}{r}=frac{4{pi }^2R_Z{cos varphi }}{T^2} left(6right),]
где $T$ — период вращения Земли. Силу тяготения ($F$) можно разложить на две составляющие: центростремительную силу ($F_n$) и силу тяжести ($P$). Сила тяжести везде кроме полюсов, меньше силы тяготения. Везде, кроме экватора и полюсов, сила тяжести направлена не точно в центр Земли, а немного в сторону от него.
За счет вращения Земли сила тяжести на полюсах больше, чем у экватора, наша планета сплюснута.
Ускорение свободного падения на полюсе ($g_p$) максимально. Так как центростремительное ускорение равно нулю, полярный радиус ($R_p$) минимален:
[g_p=frac{gamma M}{R^2_p}left(7right).]
Ускорение свободного падения ($g_e$) на экваторе равно разности:
[g_e=frac{gamma M}{R^2_e}-a^e_n=frac{gamma M}{R^2_e}-frac{4{pi }^2R_e}{T^2}left(8right),]
где $R_e$ — экваториальный радиус Земли. Величину $frac{gamma M}{R^2_e}$ называют напряженностью гравитационного поля Земли.
Примеры задач с решением
Пример 1
Задание. Радиус некоторой планеты равен R, ее средняя плотность составляет $rho $, считая, что масса планеты распределена равномерно, определите ускорение свободного падения около поверхности этой планеты.
Решение. Ускорение свободного падения около поверхности планеты можно найти как:
[g=gamma frac{M}{R^2}left(1.1right),]
где $R$ — радиус планеты; $M$ — масса планеты. Массу планеты найдем, считая ее шаром:
[M=frac{4}{3}pi R^3rho left(1.2right).]
Тогда ускорение свободного падения около поверхности этой планеты равно:
[g=gamma frac{frac{4}{3}pi R^3rho }{R^2}=frac{4}{3}gamma pi rho R.]
Ответ. $g=frac{4}{3}gamma pi rho R.$
Пример 2
Задание. Какова зависимость ускорения свободного падения от расстояния от центра планеты$ ( r)$, если планета — однородный шар, плотность которого равна $rho ?$ Радиус планеты R. Изобразите график $gleft(rright).$
Решение. Рассмотрим случай, когда расстояние от центра планеты меньше ее радиуса ($r$ меньше $R$) (рис.1 (а)).
Расположим тело массы $m$ на расстоянии $r$ от центра планеты (в точке А). Тогда тело притягивается к планете с силой:
[mg=frac{gamma M’m}{r^2}left(2.1right),]
где $M’=frac{4}{3}pi r^3rho $ — масса планеты, которая ограничена сферической поверхностью радиуса $r$. При этом, ускорение свободного падения равно:
[g_1(r)=frac{gamma frac{4}{3}pi r^3rho }{r^2}=frac{4}{3}pi gamma rho r.]
Расположим материальную точку массы $m$ в точке А за пределами планеты (рис.1 (б)), тогда по закону всемирного тяготения на точечную массу действует сила, равная:
[mg=gamma frac{mM’}{r^2} left(2.2right),]
где $M’=frac{4}{3}pi R^3rho $, в этом случае ускорение свободного падения равно:
[g_2(r)=gamma frac{4}{3}pi R^3frac{rho }{r^2}.]
В результате получаем:
[left{ begin{array}{c}
g_1left(rright)=frac{4}{3}pi gamma rho r при rle R \
g_2left(rright)=gamma frac{4}{3}pi R^3frac{rho }{r^2}при rge R. end{array}
right. ]
Читать дальше: центростремительное ускорение.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Выберем тело, например, камень. Расположим его не некотором расстоянии от поверхности земли. Расстояние от центра Земли до камня равно ( R = left( r + h right) ), как представлено на рисунке 1.
Рис. 1. Камень (черная точка), притягивается к планете (центральная окружность).
Пусть на камень действует только сила, с которой Земля притягивает его, а других сил нет (нет, например, силы сопротивления воздуха).
Свободное падение – это движение тела под действием только одной силы — силы притяжения.
Из законов Ньютона известно: если на тело действует сила, то тело получает ускорение.
Ускорение свободного падения – это ускорение, с которым движется тело, когда на него действует только сила тяжести.
Формула для расчета ускорения свободного падения
Ускорение свободного падения можно посчитать по формуле:
[ large boxed { g = G cdot frac{M}{left( r + h right)^{2}} }]
( g left( frac{text{м}}{c^{2}} right) ) (метры, деленные на секунду в квадрате) – ускорение свободного падения
( M left( text{кг} right) ) (килограммы) — масса планеты, которая притягивает
( r left( text{м} right) ) (метры) – радиус планеты
( h left( text{м} right) ) (метры) — расстояние от поверхности планеты до тела
(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная
Интересные факты
У разных планет ускорение свободного падения различается.
- чем больше масса планеты (или звезды), тем больше будет ускорение свободного падения рядом с такой планетой (или звездой);
- чем дальше от планеты, тем меньше ускорение свободного падения;
- на полюсах ускорение свободного падения больше, чем на экваторе планеты;
Важно!
Все тела под действием силы тяжести падают с одинаковым ускорением! Это ускорение не зависит от массы тела.
Из житейского опыта мы знаем: чем больше площадь тела, тем больше времени ему нужно, чтобы упасть с какой-либо высоты. При своем падении тело опирается на воздух, поэтому, к примеру, лист бумаги будет падать дольше, чем шарик из пластилина, или гирька.
В безвоздушном пространстве опираться не на что. Поэтому гирька, лист бумаги, птичье перо и пластилиновый шарик, стартовав с одной и той же высоты одновременно, упадут на поверхность планеты тоже одновременно.
Ускорение свободного падения у поверхности некоторых небесных тел
- у поверхности Земли ( g = 9{,}8 left( frac{text{м}}{c^{2}} right) )
- у поверхности Луны ( g = 1{,}68 left( frac{text{м}}{c^{2}} right) )
- у поверхности Марса ( g = 3{,}86 left( frac{text{м}}{c^{2}} right) )
- у поверхности Солнца ( g = 273{,}1 left( frac{text{м}}{c^{2}} right) )
- у поверхности Юпитера ( g = 23{,}95 left( frac{text{м}}{c^{2}} right) )
Как вывести формулу ускорения свободного падения
Рассмотрим камень, находящийся на некотором расстоянии от Земли.
Земля и камень притягиваются, запишем закон притяжения между планетой и камнем
[ F = G cdot frac{mcdot M}{left( r + h right)^{2}} ]
С другой стороны, у камня есть вес, так как на него действует сила тяжести.
[ F_{text{тяж}} = m cdot g ]
Мы можем записать эти уравнения в виде системы.
[ begin{cases} displaystyle F = G cdot frac{mcdot M}{( r + h)^{2}} \ displaystyle F_{text{тяж}} = m cdot g end{cases} ]
Земля и камень притягиваются, благодаря этому на камень действует сила тяжести. На языке математики это запишется так:
[ F = F_{text{тяж}} ]
А если равны левые части уравнений, то будут равны и правые:
[ G cdot frac{mcdot M}{left( r + h right)^{2}} = m cdot g ]
Масса ( m ) камня встречается в обеих частях уравнения. Поделим обе части уравнения на массу камня.
[ G cdot frac{M}{ left( r + h right)^{2}} = g ]
Все)
Вам будет интересно почитать:
Закон всемирного тяготения
Законы Ньютона
Первая космическая скорость
Вторая космическая скорость
Свободное падение — это движение тела под действием силы тяжести. В упрощенном виде расчет производится без учета сопротивления воздуха.
На поверхности Земли ускорение свободного падения имеет величину от 9,78 м/с2 на экваторе до 9,82 м/с2 на полюсах.
Кроме того, на планете существуют места с экстремальными значениями, которые не вписываются в математическую модель. Минимум составляет
9,76 м/с2, максимум — 9,83 м/с2. Для расчетов в физике используется усредненная величина — 9,8 м/с2
Формула ускорения свободного падения:
Ускорение свободного падения вычисляется по следующей формуле:
где
G — гравитационная постоянная (постоянная Ньютона), равная 6,6743015·10-11 м3/(кг*с2), или Н*м2/кг2
R — расстояние, на котором находится тело от центра планеты
M — масса планеты
Как видно из вышеприведенной формулы, значение ускорения свободного падения обратно пропорционально квадрату расстояния от центра планеты,
т.е. зависит не только от радиуса самой планеты, но от того, на какой высоте над ее поверхностью находится тело.
Поэтому для расчёта величины «g» на определенной высоте формулу можно скорректировать вот таким образом:
где
G — гравитационная постоянная
R — радиус планеты
h — высота над поверхностью планеты, на которой находится тело
M — масса планеты
Для расчёта можно воспользоваться калькулятором, который приведен ниже.