Как найти ускорение тела при падении

Определение

Свободное падение — это движение тела только под действием силы тяжести.

В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.

Внимание!

В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!

Ускорение свободного падения

Ускорение свободного падения — векторная физическая величина. Вектор ускорения свободного падения всегда направлен вниз к центру Земли. Обозначается как g.

Единица измерения ускорения свободного падения — 1 м/с2.

Модуль ускорения свободного падения — скалярная величина. Обозначается как g. Численно равна 9,8 м/с2. При решении задач это значение округляется до целых: g = 10 м/с2.

Свободное падение

Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:

Скорость

v = gt

v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело

Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.

Подставляем данные в формулу и вычисляем:

v = gt = 10∙3 = 30 (м/с).

Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.

Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.

Высота падения

Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.

Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:

Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:

Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.

Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:

Формула определения перемещения тела в n-ную секунду свободного падения:

s(n) — перемещение за секунду n.

Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх, описывается в два этапа

Два этапа движения тела, брошенного вертикально вверхЭтап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях (v↑↓g).

Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону (v↑↑g).
Формулы для расчета параметров движения тела, брошенного вертикально вверхПеремещение тела, брошенного вертикально вверх, определяется по формуле:

Если известна скорость в момент времени t, для определения перемещения используется следующая формула:

Если время движения неизвестно, для определения перемещения используется следующая формула:

Формула определения скорости:

Какой знак выбрать — «+» или «–» — вам помогут правила:

  • Если движение равнозамедленное (тело поднимается вверх), перед ускорением свободного падения в формуле нужно ставить знак «–», так как векторы скорости и ускорения противоположно направлены.
  • Если движение равноускоренное (тело падает вниз), перед ускорением свободного падения в формуле нужно ставить знак «+», так как векторы скорости и ускорения сонаправлены.

Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).

Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.

Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:

Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).

Уравнение координаты и скорости при свободном падении

Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид:

Уравнение скорости при свободном падении:

vy = v0y + gyt

Полезные факты

  • В момент падения тела на землю y = 0.
  • В момент броска тела от земли y0 = 0.
  • Когда тело падает без начальной скорости (свободно) v0 = 0.
  • Когда тело достигает наибольшей высоты v = 0.

Построение чертежа

Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.

План построения чертежа

  • Чертится ось ОУ. Начало координат должно совпадать с уровнем земли или с самой нижней точки траектории.
  • Отмечаются начальная и конечная координаты тела (y и y0).
  • Указываются направления векторов. Нужно указать направление ускорения свободного падения, начальной и конечной скоростей.

Свободное падение на землю с некоторой высоты

Чертеж:

Уравнение скорости:

–v = v0 – gtпад

Уравнение координаты:

Тело подбросили от земли и поймали на некоторой высоте

Чертеж:

Уравнение скорости:

–v = v0 – gt

Уравнение координаты:

Тело подбросили от земли, на одной и той же высоте оно побывало дважды

Чертеж:

Интервал времени между моментами прохождения высоты h:

∆t = t2 – t1

Уравнение координаты для первого прохождения h:

Уравнение координаты для второго прохождения h:

Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.

Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Из условия задачи начальная скорость равна 0, а начальная координата — 50.

Поэтому:

Через 3 с после падения тело окажется на высоте 5 м.

Задание EF17519

С аэростата, зависшего над Землёй, упал груз. Через 10 с он достиг поверхности Земли. На какой высоте находился аэростат? Сопротивление воздуха пренебрежимо мало.


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения искомой величины в векторном виде.
  4. Записать формулу для определения искомой величины в векторном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 0 м/с.
  • Время падения t = 10 c.

Делаем чертеж:

Перемещение (высота) свободно падающего тела, определяется по формуле:

В скалярном виде эта формула примет вид:

Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:

Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:

Вычисляем высоту, подставив известные данные:

Ответ: 500

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17483

Тело брошено вертикально вверх с начальной скоростью 10 м/с. Если сопротивление воздуха пренебрежимо мало, то через одну секунду после броска скорость тела будет равна…


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения скорости тела в векторном виде.
  4. Записать формулу для определения скорости тела в скалярном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 10 м/с.
  • Время движения t = 1 c.

Делаем чертеж:

Записываем формулу для определения скорости тела в векторном виде:

v = v0 + gt

Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:

v = v0 – gt

Подставим известные данные и вычислим скорость:

v = 10 –10∙1 = 0 (м/с)

Ответ: 0

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.8k

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8) 

мс2

.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле 

g=Fm

, которая получается из формулы 

F=m⋅g

, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

(F) — сила тяжести, Н;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);

m1 и 

m2

 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу 

g=G⋅mR2

, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2

, где

(g) — ускорение свободного падения;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832) 

мс2

), чем на экваторе ((9,78) 

мс2

), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8) 

мс2

.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))

SolSys_IAU06.jpg

Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное

тело

Ускорение

свободного

падения, мс2

Диаметр,

км 

Расстояние

до Солнца,

миллионы км

Масса,

кг

Соотношение

 с массой

Земли

Меркурий

(3,7)

(4878)

(58)

(3,3*)

1023

(0,055)

Венера

(8,87)

(12103)

(108)

(4,9*)

1024

(0,82)

Земля

(9,8)

(12756,28)

(150)

(6,0*)

1024

(1)

Марс

(3,7)

(6794)

(228)

(6,4*)

1023

(0,11)

Юпитер

(24,8)

(142984)

(778)

(1,9*)

1027

(317,8)

Сатурн

(10,4)

(120536)

(1427)

(5,7*)

1026

(95,0)

Уран

(8,87)

(51118)

(2871)

(8,7*)

1025

(14,4)

Нептун

(10,15)

(49532)

(4498)

(1,02*)

1026

(17,1)

Плутон

(0,66)

(2390)

(5906)

(1,3*)

1022

(0,0022)

Луна

(1,62)

(3473,8)

(0,3844 )

(до Земли)

(7,35*)

1022

(0,0123)

Солнце

(274,0)

(1391000)

(2,0*)

1030

(332900)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 

2⋅1012 мс2

. Значение ускорения свободного падения для нейтронной звезды может достигать значения 

7⋅1012 мс2

.

Свободное падение

Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести.
Для этого движения справедливы формулы:

Если:
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота с которой падает тело,
t — время, в течение которого продолжалось падение,
То, свободное падение описывается следующими формулами:

Расстояние, пройденное телом за время падения, зная конечную скорость

[ h = frac{ut}{2} ]

Расстояние, пройденное телом за время падения, зная ускорение свободного падения

[ h = frac{gt^2}{2} ]

Скорость тела, в конце падения, зная ускорение свободного падения и время

[ u = gt ]

Скорость тела, в конце падения, зная ускорение свободного падения и высоту

[ u = sqrt{2gh} ]

Примечание к статье: Свободное падение

Свободное падение

стр. 408

Формула скорости свободного падения в физике

Формула скорости свободного падения

Ускорение и скорость при свободном падении

Движение тела около поверхности Земли под воздействием силы тяжести называют свободным падением. При исследовании свободного падения тела, обычно силы сопротивления воздуха не учитывают.

Напомним, что величина ускорения свободного падения около поверхности Земли вычисляется как:

[g=gamma frac{M}{({R+h)}^2}left(1right),]

где $gamma =6,67cdot {10}^{-11}frac{Нcdot м^2}{{кг}^2}$- гравитационная постоянная; $M$ — масса Земли; $R$ — радиус Земли.

Если расстояние, с которого падает тело много меньше, чем радиус Земли ($ hll R$), то ускорение свободного падения считают постоянной величиной, равной:

[g=gamma frac{M}{R^2}approx 9,8 (frac{м}{с^2})left(2right).]

Кинематическое уравнение скорости при свободном падении

Свободное падение происходит с постоянным ускорением, что было установлено еще Галилеем, поэтому скорость в кинематике определяет уравнение для равнопеременного движения:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(3right).]

Уравнение (3) показывает изменение вектора скорости $overline{v}left(tright),$ где ${overline{v}}_0$ — начальная скорость движения тела.

Используя это уравнение, и зная начальные условия движения тела можно найти скорость тела относительно избранной системы отсчета для любого момента времени.

Скорость тела, брошенного под углом к горизонту

Допустим, что тело бросили под углом $alpha $ к горизонту. Ось X системы координат направим горизонтально, ось Y перпендикулярно горизонту вверх, тогда начальные условия движения для скорости данного тела запишем как:

[left{ begin{array}{c}
v_xleft(t=0 right)=v_0{cos alpha , } \
v_yleft(t=0 right)=v_0{sin alpha } end{array}
right.left(4right).]

Это означает, что тело бросили под углом $alpha $ к горизонту с начальной скоростью ${overline{v}}_0$. При этом проекции уравнения (3) дадут нам систему уравнений:

[left{ begin{array}{c}
v_xleft(tright)=v_0{cos alpha , } \
v_yleft(tright)=v_0{sin alpha -gt } end{array}
right.left(5right).]

Формула скорости при свободном падении тела из состояния покоя

Формула скорости свободного падения, рисунок 1

Начальные условия для скорости движения для тела, которое падает из состояния покоя, запишем так:

[left{ begin{array}{c}
v_xleft(t=0 right)=0, \
v_yleft(t=0 right)=0 end{array}
right.left(6right).]

В таком случае выражение (3) в проекции на ось Y, которую выберем вдоль направления движения (рис.1), тела будет выглядеть как:

[left{ begin{array}{c}
v_y=-gt end{array}
right.left(7right).]

В момент падения скорость тела при свободном его падении с высоты $h$ равна:

[v_{pad}=-sqrt{2gh}left(8right).]

Знак минус в формуле (8) означает, что скорость падения направлена против нашей оси Y.

Отметим, что тело, брошенное вертикально вверх движется до максимальной высоты подъема столько же времени, сколько оно потом падает с этой высоты до точки бросания.

Примеры задач с решением

Пример 1

Задание. Тело бросили вертикально вверх. Оно вернулось в точку бросания через $t’$ секунд. Какова начальная скорость тела?textit{}

Решение. Сделаем рисунок.

Формула скорости свободного падения, пример 1

Запишем уравнение для скорости движения тела в векторном виде:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(1.1right).]

Найдем проекцию этого уравнения на ось Y:

[v=v_0-gt left(1.2right).]

В точке максимального подъема скорость тела равна нулю, следовательно:

[0=v_0-g{t }_{pod}to v_0=g{t }_{pod}left(1.3right).]

Принимая во внимание, что время подъема равно времени спуска при отсутствии сил трения, имеем:

[{t }_{pod}=frac{t’}{2}left(1.4right).]

Подставим (1.4) в (1.3), имеем:

[v_0=gfrac{t’}{2}.]

Ответ. $v_0=gfrac{t’}{2}$

Пример 2

Задание. Одно тело бросили вертикально вверх с начальной скоростью равной $v_0.$ В этот же момент времени вертикально вниз с начальной скоростью $v_0$ бросили второе тело. Высота, с которой бросили это тело равно высоте максимального подъема первого тела. Какова скорость первого и второго тел в момент встречи этих двух тел? Тела считайте материальными точками, сопротивление воздуха не учитывать.

Решение. Сделаем рисунок.

Формула скорости свободного падения, пример 2

За основу решения задачи примем уравнение для скорости движения тела в поле тяжести Земли:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(2.1right).]

Для первого тела уравнение (2.1) в проекции на ось Y будет иметь вид:

[v_1=v_0-gt left(2.2right).]

Уравнение скорости второго тела при его падении выглядит как:

[{-v}_2=-v_0-gt left(2.3right).]

Для решения задачи будем использовать кинематическое уравнение для перемещения тела с постоянным ускорением:

[overline{s}left(tright)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(2.4right).]

В проекции на ось Y это уравнение для первого тела, поднимающегося вверх, даст выражение:

[y_1=v_0t-frac{gt^2}{2}left(2.5right).]

Для второго тела при его падении в проекции на ось Y (2.4) запишется как:

[y_2=h-v_0t-frac{gt^2}{2}left(2.6right).]

Найдем время встречи тел ($t’$) из системы уравнений (2.5) и (2.6), учитывая, что при встрече тел $y_1=y_2$:

[v_0t’-frac{g{t’}^2}{2}=h-v_0t’-frac{g{t’}^2}{2}to 0=h-2v_0t’to t’=frac{h}{2v_0}left(2.7right).]

Подставим время $t’$ в уравнение (2.2) получим скорость первого тела в момент встречи:

[v_1=v_0-gfrac{h}{2v_0}left(2.8right).]

Найдем высоту $h$, на которую способно подняться первое тело. Для этого найдем время подъема тела, зная, что в точке максимального подъема скорость тела равна нулю:

[v_1=v_0-gt=0to t_{pod}=frac{v_0}{g}left(2.9right).]

Высота подъема, она же высота с которой бросили второе тело найдётся из уравнения (2.5), если в него подставить $t_{pod}$:

[y_1=h=v_0t-frac{g{t_{pod}}^2}{2}=v_0frac{v_0}{g}-frac{g}{2}frac{v^2_0}{g^2}=frac{v^2_0}{2g}left(2.10right).]

Подставляя вместо $h$ правую часть уравнения (2.10) в формулу (2.8) получим скорость движения первого тела в его момент встречи со вторым телом:

[v_1=v_0-gfrac{v^2_0}{2g}frac{1}{2v_0}=frac{3}{4}v_0.]

Используя уравнение (2.3), подставляя в нее время встречи тел ($t’$) из (2.7), учитывая (2.10) получим скорость движения второго тела в момент встречи:

[v_2=v_0+gt=v_0+gfrac{1}{2v_0}frac{v^2_0}{2g}=v_0+frac{v_0}{4}=frac{5}{4}v_0.]

Ответ. $v_1=frac{3}{4}v_0,$ $v_2=frac{5}{4}v_0$

Читать дальше: формула ускорения свободного падения.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Как найти угол под которым пересекаются прямые
  • Как найти все каналы на телевизоре дексп
  • Как найти электроемкость воздушного конденсатора
  • Как найти работы после окончания института
  • Как найти петара в готике 3