Как найти ускорение в математике производная

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Связь производной со скоростью и ускорением тела

Если (x=x(t)) – уравнение, задающее движение точки, зависящее от времени, то:

(blacktriangleright) производная (x'(t)) задает скорость в момент времени (t);

(blacktriangleright) вторая производная (производная от производной) (x»(t)) задает ускорение в момент времени (t).


Задание
1

#740

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 7t^2 — 12t), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 1) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 14t — 12), тогда в момент (t = 1) с:

(x'(1) = 14cdot 1 — 12 = 2) м/с.

Ответ: 2


Задание
2

#741

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 2t^2 — 8t), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 2) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 4t — 8) , тогда в момент (t = 2) с:

(x'(2) = 4cdot 2 — 8 = 0) м/с.

Ответ: 0


Задание
3

#742

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = t^2 + 2t + 3), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 1) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 2t + 2), тогда в момент (t = 1) с:

(x'(1) = 2cdot 1 + 2 = 4) м/с.

Ответ: 4


Задание
4

#743

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 2t^3 — t^2 + 2t + 3), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 2) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 6t^2 — 2t + 2), тогда в момент (t = 2) с:

(x'(2) = 6cdot 2^2 — 2cdot 2 + 2 = 22) м/с.

Ответ: 22


Задание
5

#744

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 7t^4 + 6t^3 + 5t^2 + 4t + 2016), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 0,5) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 28t^3 + 18t^2 + 10t + 4), тогда в момент (t = 0,5) с:

(x'(0,5) = 28cdot dfrac{1}{8} + 18cdot dfrac{1}{4} + 10cdot dfrac{1}{2} + 4 = 3,5 + 4,5 + 5 + 4 = 17) м/с.

Ответ: 17


Задание
6

#745

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 3t^2 + 6t + 2), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. В какой момент времени её скорость составляла (15) м/с? Ответ дайте в секундах.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 6t + 6), тогда для момента (t), когда скорость материальной точки была равна (15) м/с, выполнено (6t + 6 = 15), откуда (t = 1,5) с.

Ответ: 1,5


Задание
7

#746

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = t^2 + 3t — 1), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. В какой момент времени её скорость составляла (11) м/с? Ответ дайте в секундах.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 2t + 3), тогда для момента (t), когда скорость материальной точки была равна (11) м/с, выполнено (2t + 3 = 11), откуда (t = 4) с.

Ответ: 4

УСТАЛ? Просто отдохни

15 мая 2014

Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:

[v={S}’={x}’left( t right)]

Точно так же мы можем посчитать и ускорение:

[a={v}’={{S}’}’={{x}’}’left( t right)]

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

[xleft( t right)=-frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

[v={S}’={x}’left( 2 right)]

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

[{x}’left( t right)=-frac{1}{5}cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

[{x}’left( t right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

Нам требуется найти производную в точке 2. Давайте подставим:

[{x}’left( 2 right)=-{{2}^{4}}+4cdot {{2}^{3}}-3cdot {{2}^{2}}+5=]

[=-16+32-12+5=9]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

[xleft( t right)=frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

[{x}’left( t right)=frac{1}{3}cdot 3{{t}^{2}}-4cdot 2t+19]

[{x}’left( t right)={{t}^{2}}-8t+19]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

[{{t}^{2}}-8t+19=3]

[{{t}^{2}}-8t+16=0]

[{{left( t-4 right)}^{2}}=0]

[t-4=0]

[t=4]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Смотрите также:

  1. Не допускайте таких ошибок, когда видите график производной в задаче 6 из ЕГЭ по математике!
  2. ЕГЭ 2022, задание 6. Касательная и квадратичная функция с параметром
  3. Схема Бернулли. Примеры решения задач
  4. Комбинаторика в задаче B6: средний тест
  5. Как решать задачи про летающие камни?
  6. B4: счетчики на электричество

Алгебра и начала математического анализа, 11 класс

Урок №19. Решение задач с помощью производной.

Перечень вопросов, рассматриваемых в теме

  1. механический смысл первой производной;
  2. механический смысл второй производных;
  3. скорость и ускорение.

Глоссарий по теме

Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S’(t).

Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.

Производная от производной называется второй производной или производной второго порядка и обозначается fили

Производная от второй производной называется производной третьего порядка и обозначается или f»’(x). Производную n-го порядка обозначают f(n) (x) или y(n).

Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть

Первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Давайте вспомним механический смысл производной:

Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S'(t).

Пример 1. Точка движется прямолинейно по закону   (S выражается в метрах, t – в секундах). Найти скорость движения через 3 секунды после начала движения.

Решение: 

скорость прямолинейного движения равна производной пути по времени, то есть .

Подставив в уравнение скорости t=3 с, получим v(3)=32+4∙3-1= 20 (м/с).

Ответ: 20 м/c.

Пример 2. Маховик, задерживаемый тормозом, поворачивается за t с на угол

Найдите:

а) угловую скорость вращения маховика в момент t = 6 с;

б) в какой момент времени маховик остановится?

Решение: а) Угловая скорость вращения маховика определяется по формуле ω=φ’. Тогда ω=(4t-0,2t2)=4-0,4t.

Подставляя t = 6 с, получим ω=4-0,4∙6=1,6 (рад/с). 

б) В тот момент, когда маховик остановится, его скорость будет равна нулю (ω=0) . Поэтому 4-0,4t=0.. Отсюда t=10 c.

Ответ: угловая скорость маховика равна (рад/с); t=10 c.

Пример 3. Тело массой 6 кг движется прямолинейно по закону S=3t2+2t-5. Найти кинетическую энергию тела через 3 с после начала движения.

Решение: найдём скорость движения тела в любой момент времени t.

v= S’=(3t2+2t-5)’=6t+2

Вычислим скорость тела в момент времени t=3. v(3)=6∙3+2=20 (м/с)..

Определим кинетическую энергию тела в момент времени t=3. 

Ответ: Е=1200 Дж

Производная второго порядка. Производная n-го порядка.

Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.

Производная от производной называется второй производной или производной второго порядка и обозначается .

Производная от второй производной называется производной третьего порядка и обозначается y»’ или f»'(x) Производную n-го порядка обозначают f(n) (x) или y(n).

Примеры. Найдем производные четвёртого порядка для заданных функций:

1) f(x)= sin 2x

f'(x)=cos 2x∙(2x)’= 2cos 2x

f (x)=-2sin2x∙(2x)’=-4sin 2x

f»'(x)= -4 cos 2x∙(2x)= -8 cos 2x

f(4)(x)= 8 sin2x∙(2x)’= 16 sin 2x

2) f(x)=23x

f’(x)=3∙ 23x ∙ln2

f (x)= 9∙ 23x ∙ln22

f»'(x)= 27∙ 23x ∙ln32

f(4)(x)= 81∙ 23x ∙ln42

Механический смысл второй производной.

Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть 

Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)

Пример 4. Точка движется прямолинейно по закону S(t)= 3t2-3t+8. Найти скорость и ускорение точки в момент t=4 c.

Решение:

найдём скорость точки в любой момент времени t.

v=S’=(3t2-3t+8)’=6t-3.

Вычислим скорость в момент времени t=4 c.

v(4)=6∙4-3=21(м/с)

Найдём ускорение точки в любой момент времени t.

a= v’= (6t-3)’=6 и a(4)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.

Ответ: v=21(м/с); a= v’= 6 (м/с2).

Пример 5. Тело массой 3 кг движется прямолинейно по закону S(t)=t3-3t2+5. Найти силу, действующую на тело в момент времени t=4 c.

Решение: сила, действующая на тело, находится по формуле F=ma. 

Найдём скорость движения точки в любой момент времени t.

v=S’=(t3-3t2+5)’=3t2-6t.

Тогда v(4)=3∙42-6∙4=24 (м/с). 

Найдём ускорение: a(t)=v’=(3t2-6t)’=6t-6.

Тогда a(4)= 6∙4-6= 18 (м/с2).

F=ma=3∙18= 54 Н

Ответ: F= 54 Н

Разбор решения заданий тренировочного модуля

№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Напишите производную третьего порядка для функции:

f(x)= 3cos4x-5x3+3x2-8

_____________________

Решим данную задачу:

f’’’(x)=( 3cos4x-5x3+3x2-8)’’’=(((3cos4x-5x3+3x2-8)’)’)’=((-12sin4x-15x2+6x)’)’=(-48cos4x-30x)’=192sin4x-30.

Ответ: 192sin4x-30

№ 2. Тип задания: выделение цветом

Точка движется прямолинейно по закону S(t)= 3t2+2t-7. Найти скорость и ускорение точки в момент t=6 c.

  1. v=38 м/с; a=6 м/с2
  2. v=38 м/с; a=5 м/с2
  3. v=32 м/с; a=6 м/с2
  4. v=32 м/с; a=5 м/с2

Решим данную задачу:

Воспользуемся механическим смыслом второй производной:

v= S’(t)=( 3t2+2t-7)’=6t+2.

Вычислим скорость в момент времени t=6 c.

v(6)=6∙6+2=38 (м/с)

Найдём ускорение точки в любой момент времени t.

a= v’= (6t+2)’=6 и a(6)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.

Ответ: v=38(м/с); a= v’= 6 (м/с2).

Верный ответ:

  1. v=38 м/с; a=6 м/с2
  2. v=38 м/с; a=5 м/с2
  3. v=32 м/с; a=6 м/с2
  4. v=32 м/с; a=5 м/с2

На этой странице вы узнаете

  • Почему функции похожи на американские горки? 
  • Как с помощью производной оценить рост популярности видео в соцсети?
  • Какие фокусы творят тригонометрия и геометрия вместе?

Она спешит на помощь быстрее, чем Чип и Дейл. Она наш спасательный круг в океане математики. Давайте посмотрим, как производная способна на такие чудеса.

Производная

Функции достаточно часто встречаются при решении задач. Они могут быть как составными частями какого-то задания, так и отдельным номером. Разумеется, встречаются не только простые функции. Если открыть банк заданий, то мы удивимся, насколько сложными они бывают. Так что делать с такими сложными и непонятными функциями? 

Производная — одно из самых важных понятий математического анализа. С ее помощью можно описать поведение любой функции. 

Почему функции похожи на американские горки? 

Предположим, мы хотим прокатиться на американских горках. Представим их вид сбоку: это череда подъемов и резких спусков. Мы можем с легкостью описать их: на каких участках будет подъем, а на каких спуск, насколько крутыми они будут, сколько раз вагончик преодолеет границу между подъемом и спуском или спуском или подъемом. Мы даже можем предположить, на каких участках вагончик разгоняется сильнее. Точно так же можно описать и любую функцию.

Представим наши американские горки в виде функции. 

Функция будет на некоторых участках возрастать, а на некоторых убывать. Скорость ее изменения на разных участках будет разной. 

Скорость изменения функции показывает, насколько сильно будет изменяться значение функции (то есть значение у) при небольшом изменении переменной функции (то есть значения х). 

Отложим на нашем графике две точки: х и х1 и поднимем из них прямые, которые пересекут график в точках А и В. Тогда точка А будет иметь координаты (х;у), а точка В — (х11). 

Представим, что наш вагончик проехал из точки А в точку В. Расстояние, которое он проехал по горизонтали, будет равно х1 — х, а поднялся он на высоту у1 — у. Для удобства дальнейших рассуждений примем эти расстояния за х и у. 

Знак Δ “дельта” — означает изменение величины, то есть разность между тем, что было в точке А и стало в точке В.

Теперь мы можем ввести определение приращения. 

Приращение функции — это разность между двумя значениями функции, то есть у.

Приращение аргумента — это разность между двумя значениями аргумента, то есть х.

Скорость изменения функции будет равна отношению приращения функции к приращению аргумента. При этом чем меньше будет приращение аргумента, тем точнее мы приблизимся к верному значению. 

Отсюда мы получаем определение производной функции. 

Производная функции — это понятие дифференциального исчисления, характеризующее скорость изменения функции. 

Производную функции обозначают как f'(x). 

(f'(x) = frac{Delta y}{Delta x}: при: Delta x rightarrow 0)

Если мы применим одинаковое приращение аргумента к разным участкам функции, то заметим, что приращение функции также будет разное. Где-то значение у изменится больше, где-то меньше. Именно так изменяется скорость функции на разных ее участках. 

Нахождение производной называется дифференцированием. 

Как с помощью производной оценить рост популярности видео в соцсети?

Допустим, мы выложили видео в соцсеть. Сначала было совсем невесело: за первый час всего один просмотр. За второй час ситуация сильно не изменилась — добавилось лишь 3 просмотра. Мы скинули ссылку на видео в чат друзей, и за третий час количество просмотров дошло до 9, а за четвертый час — до шестнадцати. 

Возможно, ситуация не очень похожа на правду, и мы бы сразу попали в топ. Но пусть будет так для удобства цифр. 

В результате мы имеем функцию, которая показывает, как количество просмотров менялось во времени. 

Теперь зададимся вопросом: как быстро росла популярность у нашего ролика?

Чтобы это выяснить, мы возьмем две соседние точки на графике и посчитаем:
1) как изменилось количество просмотров между этими точкам (Δ количества просмотров);
2) как изменилось время между этими точками (Δ времени);
3) затем разделим Δ просмотров на Δ времени.

Получается, что “производительность” нашего видео была 5 просмотров в час. 

Таким нехитрым образом, мы нашли производную от функции, показывающую рост популярности нашего ролика в сети за определенный промежуток времени:
(f'(x) = frac{Delta y}{Delta x} = frac{5}{1} = 5)(просмотров в час)

Геометрический смысл производной

Достроим прямоугольный треугольник АВС. Заметим, что отношение (frac{Delta x}{Delta y} = tg(BAC)), то есть равняется отношению противолежащего катета к прилежащему катету. Иначе это отношение можно записать как (tg(BAC) = frac{BC}{AC}). 

Поскольку в этом примере мы взяли достаточно большое расстояние между значениями х, то АВ — секущая. Если мы будем сокращать расстояние между значениями аргумента, то две точки на графике будут ближе друг к другу, а секущая будет стремиться к касательной. 

Следовательно, мы можем описать скорость изменения функции через тангенс угла наклона касательной, проведенной к графику функции в некоторой точке. 

Из этих рассуждений мы можем вывести геометрический смысл производной:

Если провести касательную к функции в некоторой точке, то производная в этой точке будет равна тангенсу угла ее наклона. 

Рассмотрим касательную отдельно. Это прямая, которая имеет уравнение y = kx+b, где к — коэффициент наклона. 

Тогда мы получаем следующее уравнение:

f'(x) = k = tg(a) 

Какие фокусы творят тригонометрия и геометрия вместе?

Геометрический смысл производной — главный совместный номер. Производная равняется тангенсу угла наклона касательной, проведенной к функции в определенной точке. 

Знак производной 

Построим графики двух прямых с разным углом наклона. Пусть в первом случае k = 1, а во втором k = -1. Тогда получаем графики функций у = х и у = -х. 

Заметим, что тангенс угла наклона имеет разные значения в этих случаях: tg(a) = -1 и tg(a) = 1. 

Теперь достроим к касательным графики функций. В первом случае точка, к которой проведена касательная, будет лежать на участке функции, на котором она убывает. Во втором случае точка касания будет лежать на возрастающем участке функции. 

Чтобы определить, убывает или возрастает функция, нужно посмотреть на ее наклон на участке. 

Вспомним американские горки: пусть по функции будет слева направо ехать вагончик. В участках, где вагончик будет подниматься на гору, функция возрастает, а где вагончик съезжает с горки — функция убывает. 

Из этих рассуждений мы можем вывести зависимость знака функции и знака производной. 

1. Функция возрастает в точке тогда и только тогда, когда производная в данной точке положительна. 

В этом случае касательная к функции также будет возрастать. 

f'(x) = tg(a). Если tg(a) > 0, то и f'(x) > 0. 

2. Функция убывает в точке тогда и только тогда, когда производная в данной точке отрицательна. 

В этом случае касательная к функции будет убывать. 

 f'(x) = tg(a). Если tg(a) < 0, то и f'(x) < 0. 

3. Если касательная к функции параллельна оси абсцисс, то производная в этой точке равна 0. 

Поскольку прямая будет параллельна оси абсцисс, то у нее не будет угла наклона, а следовательно: k = tg(a) = 0 = f'(x).

Такие точки называются стационарными, это точки экстремума или седловые точки. 

Подведем итог.
Знак производной определяется по изначальной функции: 

  • если функция возрастает, то производная положительна; 
  • если функция убывает, то производная отрицательна; 
  • в точках, где функция не возрастает и не убывает (стационарные точки), производная равна 0. 

Точки экстремума

Как уже было сказано ранее, производная функции может равняться 0. Она принимает такое значение в точках экстремума.

Экстремум — это точка, в которой достигается максимальное или минимальное значение функции на заданном отрезке. 

Точки экстремума — точки, в которых достигается экстремум. 

На рисунке видно, что точки А и В являются экстремумами. Например, до точки А функция будет возрастать, а после нее уже убывать, то есть наибольшее значение эта функция достигнет именно в точке экстремума. 

Если вспомнить наш вагончик, то в точке А он достигнет наибольшую высоту над землей. 

Во втором случае аналогичные рассуждения, но функция достигает уже наименьшее значение в точке В. 

В теме производной есть такие термины, как “точка минимума” и “точка максимума”. 

Точка минимума — это точка, в которой достигается минимальное значение функции.

В этой точке знак функции меняется с отрицательного на положительный (то есть сначала функция убывала, а потом начала возрастать). Это точка В. 

Точка максимума — это точка, в которой достигается максимальное значение функции на отрезке. 

В этой точке знак функции меняется с положительного на отрицательный (то есть сначала функция возрастала, а потом стала убывать). Это точка А. 

Также с точками экстремума связаны наибольшее и наименьшее значение функции. 

Важно!
Следует вспомнить, что когда мы говорим о значении функции, то имеем в виду значение ординаты, то есть у (или f(x)).

Наибольшее значение функции — точка на оси ординат, в которой достигается наибольшее значение функции на заданном отрезке. 

Например, в точке А будет достигаться наибольшее значение функции. 

Наименьшее значение функции — точка на оси ординат, в которой достигается наименьшее значение функции на заданном отрезке. 

В точке В будет достигаться наименьшее значение функции. 

Физический смысл производной

Предположим, что некоторая точка движется прямолинейно, и ее путь можно описать по закону  х(t). То есть за определенное время t точка пройдет расстояние х. 

А теперь вспомним формулу скорости: (v = frac{x}{t}). 

Чтобы найти среднюю скорость на каком-то участке пути точки, нужно разделить весь путь на все время, или (v_{ср.} = frac{Delta x}{Delta t}). Таким образом, мы пришли к определению производной. 

Физический (механический) смысл производной состоит в том, что производная от функции равняется скорости движения некоторого тела по траектории x(t) в момент времени t. x'(t) = v

Также вспомним, что скорость тела зависит от его ускорения. Тогда, применяя аналогичные рассуждения, получаем:

v'(t) = a 

Производную можно брать несколько раз. Например, если мы дважды возьмем производную от x(t), то получим ускорение точки:

(x^{primeprime} (t) = v'(t) = a).

Как найти скорость и ускорение точки с помощью производной? 

Для этого необходимо воспользоваться физическим смыслом производной: производная от функции равна скорости движения некоторого тела. Производная от скорости равна ускорению тела.

Фактчек

  • Производная функции — это понятие дифференциального исчисления, характеризующее скорость изменения функции. Скорость изменения функции равняется отношению приращения функции к приращению аргумента. Нахождение производной называется дифференцированием. 
  • Если провести касательную к функции в некоторой функции, то производная в этой точке будет равна тангенсу угла ее наклона. Это геометрический смысл производной. 
  • Производная будет положительна на участках возрастания функции и отрицательна на участках убывания. В стационарных точках (точки экстремума и седловые точки) производная будет равна 0. 
  • Точка минимума — точка, в которой достигается минимальное значение на заданном отрезке, точка максимума — точка, в которой достигается максимальное значение. 
  • Физический (механический) смысл производной состоит в том, что производная от функции равняется скорости движения некоторого тела по траектории x(t) в момент времени t. 

Термины

Абсцисса — координата определенной точки на оси Х. 

Ордината — координата определенной точки на оси У. 

Проверь себя

Задание 1. 
Что такое приращение функции? 

  1. Разность между значениями у;
  2. Разность между значениями х;
  3. Сумма значений у;
  4. Сумма значений х. 

Задание 2. 
Чему равна производная?

  1. Котангенсу угла наклона касательной;
  2. Тангенсу угла наклона касательной;
  3. Синусу угла наклона касательной;
  4. Косинусу угла наклона касательной. 

Задание 3. 
Как меняется знак производной в точке максимума? 

  1. Знак производной не меняется;
  2. Производная всегда равна 0 и не имеет знака;
  3. Знак меняется с положительного на отрицательный;
  4. Знак меняется с отрицательного на положительный.

Задание 4. 
В каком случае функция будет возрастать? 

  1. Если производная положительна;
  2. Если производная отрицательна;
  3. Если производная равна 0;
  4. Ни один из вышеперечисленных случаев. 

Задание 5. 
Какая величина получится, если дважды взять производную у функции? 

  1. Скорость;
  2. Ускорение;
  3. Путь;
  4. Время

Ответы: 1. — 1 2. — 2 3. — 3 4. — 1 5. — 1

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Рисунок траектории движения материальной точки

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Радиус-вектор пример траектории

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

решение примера построения траектории

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

Решение задачи

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

формула вектора скорости

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

закон движения материальной точки

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Нахождение вектора скорости точки

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Формула вектора ускорения точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Пример решения задачи как найти вектор ускорения точки

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Как найти модуль вектора скорости

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Пример нахождения вектора ускорения

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Решение задач

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как найти площадь дуги окружности формула
  • Как найти приложение госуслуги культура
  • Сталкер чистое небо как найти свд
  • Как найти информационный объем сообщения формула
  • Как найти протечку крыши гаража