Как найти утечку вакуума в оборудовании

В нынешнем обществе вакуумная аппаратура захватывает не только лишь индустриальные компании и различные лаборатории, но и благополучно применяется коммунальщиками и в домашних делах. В связи с масштабами использования этого оснащения появляется резкая потребность в применении так именуемого течеискателя. Его основным назначением представляется сканирование, местоположение и анализ утечки с воздухонепроницаемых объемов. В зависимости от рода газов, а кроме того, конструктивных специфик вакуумной концепции имеется огромное число видов устройств с целью поиска течи.

Производители подобного семейства оснащения принимают во внимание факт использования не только лишь индустриальных аппаратов, но и формирование маленьких модификаций, с целью небольших компаний либо домашних потребностей.

Разные типы течеискателей

Течеискатель – это

Этот вид устройств представляется идентификаторами утечки, для ликвидации ее зоны возникновения, а кроме того, обладают функцией снятия численного показателя размера течи.

Существуют различные принципы деятельности течеискателей, что разнятся альтернативами влияния непосредственного либо косвенного считывания. С целью того, чтобы наиболее досконально сориентироваться в том, как функционирует течеискатель, в главную очередность следует установить, чем является сама течь.

Это феномен предполагает собой умение различного рода покрытия или пленки, лимитирующая замкнутую область пропускать через себя газы, влагу, или в воздушное пространство. Потеря может осуществляться как в середине трудового объема, при невысоком давлении, так и снаружи резервуара, в случае если внутри большой уровень давления. Основанием происхождения такого рода утечки может становиться обыкновенная ржавчина, механический дефект плоскости вакуумного объема, хим. разрушения структуры материала с которого выполнен замкнутый объем и прочее.

Если существует пропуск какого-либо вещества через материал, следовательно, присутствует такое явление как течеискание, что означает определенный способ поиска подобных утечек, для их устранения, считывание количество пропускаемого вещества за определенный отрезок времени и прочего.

Для того, чтобы прибор мог считать требуемые показатели и точно определить локализацию утечки, в большинстве случаев применяется запуск тестового газа в проверяемый объем вакуума. Если рассмотреть самый дешевый и простой способ течеискания, то можно воспользоваться простой водой, наполнив ею герметичный резервуар и определив визуально место пробоя. Но все гораздо сложнее, когда конструкция более усложненная. Так, к примеру, в холодильном оборудовании в качестве тестового газа используется фреон, который, по сути, и является рабочей жидкостью данного устройства, что исключает дополнительные расходы на запуск другого рода газа. Сам же течеискатель настроен на улавливание именно фреонового газа.

Что касается взрывоопасных веществ, таких как природный газ, пропан, бутан и прочие смеси, то в них до того, как запустить в герметичный объем добавляют специальную примесь, имеющую резкий запах либо издающую яркое свечение при воздействии ультрафиолетовой лампы.

В дополнение, течеискатели на основе фреона также используются для тестирования летучих соединений спирта, фтора, углерода и подобных соединений.

Как и в любой другой технике течеискатели бывают универсальными, для чего используется специальный газообразный гелий, способные взаимодействовать с очень большим количеством разновидностей других веществ и газовых сред. Его химический состав позволяет быть легким, летучим, высоко проницаемым и главное, легко детектируемым масс-спектрометрическим оборудованием для точного выявления концентрации утечки.

Немаловажной характеристикой течеискателей является время отклика. Временной отрезок, который необходим для преобразования подаваемой тестовой среды в показатели на шкале приборов. Стоит отметить, что есть и еще одна особенность в виде скорости ликвидации тестового вещества из проверяемого вакуумного объема, до уровня нормализации химического состава внутри вакуумной системы прежнего состояния. Такой процесс именуется релаксацией течеискателя.

Течеискатель галогенный ГТИ-8

Принцип работы течеискателя

Определить точный принцип работы такого устройства достаточно сложно, так как бывают разные типы детектирования тестового газа. Но в целом, прибор имеет камеру нагнетания, куда через щуп поступает тестируемый газ, оттуда он переходит в рабочую камеру, где происходят физические процессы по разделению, умножению, прочим действиям с молекулами считываемого вещества, способ работы с которыми варьируется от типа течеискателя. После того, как газ обработается, специальные уловители высчитают нужные показатели и преобразуют их в числовые значения для удобного понимания человеком.

Принцип работы гелиевого течеискателя

Разновидности течеискателей

В зависимости от разновидности течеискателя разница и сам способ поиска утечки. Самым простым является визуальный осмотр, но он имеет больше недостатков, чем преимуществ, так как многие вакуумные системы имеют огромное количество узлов и не дают воспользоваться тестовым материалом, в виде воды. Безусловно, можно воспользоваться обмыливанием, но таким образом удается лишь локализовать утечку без понятия о глубине щели и объеме утечки.

Чтобы производить ревизию с максимальной точностью, скоростью и нужными показателями были созданы течеискатели, которые способны реагировать на испытательный газ. Эти приборы можно поделить на такие типы как:

  • Масс-спектрометрический гелиевый течеискатель;
  • Ультразвуковое устройство;
  • Фреоновый течеискатель;
  • Ультрафиолетовый детектор;
  • Аэродверь и датчик загазованности;
  • Фиксатор утечки жидкости;
  • Шумовой индикатор;
  • Масс-спектрометр.

Масс-спектрометрический течеискатель гелиевый

Его можно использовать только при условии, что в датчике устройства присутствует вакуум. Существуют два вида гелиевых течеискателей:

  • Оборудование для применения в вакуумных системах. Это разновидность устройств является более дорогой, если сравнивать с шнифферами, но существуют специальные насадки для предохранения входа, которые превращают вакуумный прибор в устройства, работающие в режиме шниффера;
  • Нюхающий течеискатель. Это и есть те самые шнифферы, которые ищут утечку снаружи замкнутого пространства. Их стоимость ниже предыдущей разновидности, так как они имеют более низкую чувствительность к нахождению тестового газа, а также неспособны за один раз охватывать большую площадь поверхности проверяемого резервуара.

Течеискатель гелиевый со встроенным компьютером ТИ1-30

Ультразвуковой тип течеискателя

Этот тип прибора состоит из трех элементов:

  1. Генератор ультразвука для передачи звуковых волн на рабочий щуп;
  2. Контактный приемник;
  3. Аналоговый либо компьютерный блок, который просчитывает все помехи, искажения и колебания амплитуды частоты воздействия ультразвукового сигнала.

Главным преимуществом таких приборов является отсутствие необходимости применять тестовый газ, а также звуковой прибор достаточно прост и легок в процессе поиска утечки. Что касается недостатков, то человек, который пользуется таким устройством должен иметь соответствующий опыт, помещение, где происходит тестирование не должно быть шумным, что касается и работы самой вакуумной установки, на котором происходит поиск утечки.

Ультразвуковой течеискатель PCE-ULD 1 для утечек

Фреоновый тип течеискателя

Достаточно популярный вид течеискателя, но если сравнивать его с гелиевым оборудованием, то он на несколько порядков имеет ниже чувствительность. Тестирование происходит в результате абсорбирования тестового газа на поверхности устройства. Основное оборудование для проверки утечки таким течеискателем являются холодильные установки, но существует и много других вакуумных систем, где актуально использование фреонового прибора.

Электронный течеискатель фреона CPS LS2

Ультрафиолетовый тип детектора

Ранее, в данной статье уже говорилось об этом виде тестирования. Его принцип заключается в добавке специальных светящихся под ультрафиолетом веществ во взрывоопасные и другие виды газов. Данный способ можно сравнить с вариантом обмыливания, но здесь возможно более точное определение мест утечки за счет ярко выраженных точек или полосок подсвечивающихся при воздействии ультрафиолетового света.

Ультрафиолетовый детектор

Аэродверь и датчик загазованности

Если говорить про аэродвери, то они представляют из себя некий манометрический прибор, который способен определить утечку в ходе тестирования оградительных элементов разного рода строений и прочих материалов на степень воздухопроницаемости.

Датчики загазованности служат для определения повышения уровня конкретного вида газа или появления, к примеру, в комнате взрывоопасных веществ. Эти устройства снабжены специальными сенсорами и сигнализаторами, которые оповещают компьютерный пост или просто издают звук в случае появления опасной среды рядом с установленным датчиком.

Аэродверь BlowerDoor

Фиксатор утечки жидкостей

Это изобретение является достаточно новыми, служит для оповещения либо самостоятельного отключения подачи воды при проявлении утечки в трубопроводе, в замкнутом сосуде или каком-нибудь приборе. Данные детекторы очень продуктивный при использовании в водонапорных станциях и подобных коммунальных строениях.

Шумовой идентификатор

В большинстве случаев является прибором, идентифицирующим уровень шума в конкретном помещении либо области пространства. Его используют для защиты человеческого слуха от опасного уровня шума. Прибор является компактным и удобным, чтобы любой человек смог воспользоваться им без каких-либо препятствий.

Масс-спектрометр

Механизм работы прибора включает в себя специальные элементы, которые позволяют взвешивать молекулы тестируемого газа. С его помощью определяют происхождение того или иного вещества через высчитывание отношения массы молекул к заряду ионов. Этот способ тестирования является самым точным и популярным во всем мире.

Времяпролетный масс-спектрометр

Практика использования течеискателей

Благодаря течеискателям сокращается время на поиск утечки и соответственно, трудоемкость выполнения подобных процедур. В принципе, в тестировании всевозможных вакуумных систем и прочего оборудования нуждается любая сфера деятельности человека, но основными отраслями, где просто нельзя обойтись без течеискателя являются:

  • Абсолютно все разновидности вакуумной техники;
  • Криогенное оборудование и резервуары для жидкого азота;
  • Холодильные установки и периферийные устройства, применяемые на соответствующем предприятии;
  • Космические исследования и производство аэрокосмической техники;
  • Литейная промышленность и некоторые области металлургии;
  • Пищевая продукция, фармацевтика, создание химических веществ;
  • Атомная энергетика.

Системы сжатого воздуха, газа и вакуума являются жизненно важным источником преобразованной энергии на заводах и промышленных предприятиях. Компрессоры проще в использовании, чем другие ресурсы, такие как электричество, поэтому на современных заводах они используются повсеместно. Они обеспечивают работу станков, инструментов, робототехники, лазеров, систем перемещения товаров и многого другого.

Тем не менее, обслуживание многих систем сжатого воздуха, газа и вакуума осуществляется недостаточно качественно, кроме того, они подвержены износу, что приводит к постоянным утечкам. Утечки могут быть скрытыми: они могут находиться за станками, в точках подключения, над закрепленными трубами, в треснувших трубах или в изношенных шлангах. Потери быстро увеличиваются и даже могут привести к простою.

Высокая стоимость потерянного воздуха

По данным Министерства энергетики США, одна утечка 1/8 дюйма (3 мм) в линии сжатого воздуха может стоить более 2500 долларов в год. По оценкам Министерства энергетики США, средний завод в США, на котором не осуществляется надлежащее техническое обслуживание, может терять 20 % от общей производственной мощности сжатого воздуха из-за утечек. По оценкам, выполненным правительством Новой Зеландии в рамках проекта по устойчивому развитию, из‑за утечек система сжатого воздуха может терять от 30 до 50 % своей производственной мощности. Быстрое обнаружение утечек сжатого воздуха, газа и вакуума является одной из ключевых операций, необходимых для поиска скрытых доходов. Утечки воздуха также могут привести к значительным расходам, ремонту, простоям или снижению качества, а также к увеличению расходов на техническое обслуживание.

Для компенсации потери давления из-за утечек операторы часто приобретают компрессор большего размера, чем это необходимо, что приводит к значительным дополнительным расходам и увеличивает затраты на электроэнергию. Утечки в системе также могут привести к неисправности оборудования, работающего на сжатом воздухе, из‑за низкого давления в системе. Это может привести к задержкам производства, незапланированным простоям, проблемам с качеством, сокращению срока службы и увеличению объема технического обслуживания из‑за излишней работы компрессоров.

Менеджер по техническому обслуживанию в одной производственной компании в США, например, говорит, что низкое давление в каком‑либо пневматическом инструменте для затяжки может привести к дефектам продукции. «Недостаточная или чрезмерная затяжка может привести к отзыву продукции. Это также приводит к тому, что тратится больше человеко-часов, чем это было бы необходимо в обычных условиях», — говорит он. «Из-за упущенной прибыли и продукции с дефектами деньги тратятся впустую. В худшем случае мы рискуем потерять спрос из‑за того, что не смогли доставить продукцию вовремя».

Неудивительно, что электростанции, а также промышленные и правительственные предприятия рассматривают системы сжатого воздуха в качестве потенциального источника экономии. Утечки приводят к напрасным расходам. Устранение этих утечек может сэкономить средства и предотвратить необходимость увеличения мощности системы.

Поиск и устранение утечек — непростая задача

Многие предприятия не имеют собственной системы обнаружения утечек. Поиск и устранение утечек — непростая задача. Чтобы определить объем потерь и расходов, необходимы услуги специалистов или консультантов по электроэнергии, которые, с помощью специальных анализаторов и регистраторов электроэнергии, выполняют проверку пневматических систем. Благодаря систематическому расчету ежегодной экономии в результате устранения утечек они могут составить действующую модель для подобного проекта.

Энергетические аудиты систем сжатого воздуха часто проводятся в сотрудничестве с промышленными, государственными и неправительственными организациями (НПО). Одной из таких организаций является организация Compressed Air Challenge (CAC), осуществляющая добровольное сотрудничество. Одной из ее задач является предоставление нейтральной информации и образовательных материалов, которые помогают промышленным предприятиям создавать и использовать системы сжатого воздуха с максимальной экологической эффективностью.

Почему ультразвуковое обнаружение утечек неэффективно

К сожалению, распространенные методы обнаружения утечек являются довольно примитивными. Один из проверенных временем методов — прислушиваться к шипящим звукам, что практически невозможно на многих объектах, и распылять мыльную воду на область предполагаемой утечки, что создает беспорядок и может привести к поскальзыванию.

На данный момент распространенным прибором для поиска утечек в компрессорах является ультразвуковой акустический детектор — это портативное электронное устройство, которое распознает высокочастотный звук, возникающий при утечках воздуха. Типичные ультразвуковые детекторы помогают обнаруживать утечки, но их использование требует много времени, и ремонтные бригады могут использовать их только во время плановых простоев, когда осуществляется техническое обслуживание других критически важных машин. При использовании этих устройств также необходимо, чтобы при обнаружении утечек оператор находился рядом с оборудованием, поэтому ультразвуковые детекторы сложно использовать в труднодоступных местах, например на потолке или за другим оборудованием.

Помимо времени, необходимого для обнаружения утечек с помощью мыльной воды или ультразвуковых детекторов, при использовании этих методов существуют угрозы безопасности при поиске утечек сверху или под оборудованием. Подниматься по лестницам или ползать рядом с оборудованием может быть опасным.

Революционный прибор для обнаружения утечек сжатого воздуха

Что если бы существовала технология обнаружения утечек, которая позволяла бы точно определять место утечки на расстоянии до 50 метров, в шумной обстановке, без отключения оборудования? Компания Fluke разработала именно такой промышленный течеискатель. Менеджеры по техническому обслуживанию промышленных объектов называют промышленный визуально‑акустический течеискатель Fluke ii900 «революционным» устройством для поиска утечек сжатого воздуха.

Новый промышленный визуально‑акустический течеискатель, способный работать с более широким диапазоном частот, чем традиционные ультразвуковые устройства, использует новую технологию SoundSight™, которая обеспечивает улучшенное визуальное сканирование утечек воздуха, подобно тому, как тепловизоры обнаруживают нагретые зоны.

Прибор ii900 оснащен акустическим массивом крошечных чувствительных микрофонов, которые обнаруживают как звуковые, так и ультразвуковые волны. Течеискатель ii900 распознает источник звука в месте возможной утечки, а затем использует собственные алгоритмы, которые интерпретируют звук как утечку. В результате получается изображение SoundMap™ — цветная карта, наложенная на изображение в видимом спектре, показывающая точное место утечки. Результаты отображаются на 7‑дюймовом ЖК‑экране в виде неподвижного изображения или видео в режиме реального времени. Течеискатель ii900 может сохранять до 999 файлов изображений или 20 видеофайлов для документирования или обеспечения соответствия нормативным требованиям.

Большие области можно быстро сканировать, что позволяет обнаруживать утечки гораздо быстрее, чем при использовании других методов. Прибор также позволяет выполнять фильтрацию по диапазонам интенсивности и частоты. Команда специалистов на одном из крупных производственных предприятий недавно использовала два прототипа ii900 для обнаружения 80 утечек сжатого воздуха за один день. Менеджер по техническому обслуживанию сказал, что, используя традиционные методы, для обнаружения такого количества утечек им потребовалось бы несколько недель. Благодаря быстрому поиску и устранению утечек команде также удалось предотвратить потенциальный простой, который на данном предприятии может стоить около 100 000 долларов в час из‑за потери производительности.

Где искать утечки:

  • Муфты
  • Шланги
  • Трубки
  • Фитинги
  • Резьбовые трубные соединения
  • Быстросъемные соединения
  • FRL (соединения фильтра, регулятора и смазочного устройства)
  • Конденсатные ловушки
  • Клапаны
  • Фланцы
  • Прокладки
  • Пневматические сборные баки

Сколько воздуха вы теряете?

Первый шаг в управлении утечками в системах сжатого воздуха, газа и вакуума — оценка нагрузки утечек. Определенный уровень утечек (менее 10 %) является нормой. Все, что превышает этот уровень, считается напрасными потерями. Первый шаг — определить текущую нагрузку утечек, чтобы использовать ее в качестве эталона для оценки улучшений.

Лучший способ оценки нагрузки утечек — использовать вашу систему управления. Если ваша система управления оснащена органами пуска/останова, просто запустите компрессор, когда нагрузка на систему отсутствует — это можно сделать по окончании рабочей смены. Затем снимите несколько показаний во время работы компрессора, чтобы определить среднее время разгрузки системы под нагрузкой. Если оборудование не работает, разгрузка системы происходит из‑за утечек.

Утечка (%) = (T x 100) ÷ (T + t)T = время загрузки (минуты), t = время разгрузки (минуты)

Чтобы оценить нагрузку утечек в системах с более сложными алгоритмами управления, установите манометр на выходе (V, в кубических футах), включая все вторичные ресиверы, сеть и трубопроводы. Когда в системе отсутствует какая-либо другая нагрузка, кроме нагрузки утечки, создайте в системе нормальное рабочее давление (P1, в фунтах/кв. дюйм (изб.)). Выберите второе давление (P2, около половины значения P1) и измерьте время (T, в минутах), которое требуется системе для снижения давления до P2.

Утечка (свободная подача воздуха, куб. футы/мин) = [(V × (P1 – P2) ÷ (T × 4,7)] × 1,25

Множитель 1,25 корректирует утечку до нормального давления в системе, таким образом обеспечивая снижение утечки при уменьшении давления в системе.

Эффективное устранение утечек может привести к существенному сокращению затрат в компаниях, активно использующих пневматическое оборудование. Компании не только могут экономить на электроэнергии за счет устранения утечек, но и могут повысить уровень производства и увеличить срок службы оборудования.

Выбираете оборудование?

Поможем с выбором и разъясним нюансы

Обнаружение утечек в вакууме — это процесс определения места утечки в вакуумной системе.

Утечка — это явление, при котором газ перетекает со стороны высокого давления на сторону низкого давления через течи или зазоры в системе.

Герметичность — это способность стенок вакуумной системы препятствовать проникновению газа.

Минимальная обнаруживаемая скорость течи относится к минимальному значению скорости течи, которое может обнаружить определенный метод обнаружения утечек.

Под оптимальной чувствительностью подразумевается наименьшая скорость утечки, которую может обнаружить прибор для обнаружения утечек или метод обнаружения утечек при оптимальных условиях. В приборах для обнаружения течей оптимальная чувствительность также называется чувствительностью прибора.

Чувствительность обнаружения течей относится к минимальной скорости утечки, которая может быть обнаружена с помощью определенного метода обнаружения течей при определенных условиях. Чувствительность обнаружения утечек также называется эффективной чувствительностью.

Время отклика — это время от реализации способа обнаружения течи (например, начала продувки утечек газа) до времени срабатывания способа индикации.

Время устранения — это время от остановки метода обнаружения утечки (например, прекращения продувки и начала откачки вытекающего газа) до исчезновения показаний метода индикации.

Скорость утечки — это количество газа, проходящего через течь (включая зазор) в единицу времени.

Классификация методов утечки

Существует множество методов обнаружения утечек, которые можно разделить на метод обнаружения утечек под давлением, метод обнаружения утечек в вакууме и другие методы обнаружения утечек в зависимости от состояния испытываемых деталей.

Способ обнаружения утечек под давлением

Внутри проверяемой детали заполняется вещество, указывающее на герметичность, под определенным давлением. Если на проверяемой детали имеется течь, то вещество вытечет из нее, тем самым определяя место течи и скорости утечки. Это метод обнаружения утечек при нагрузке.

Способ обнаружения утечек под вакуумом

Чувствительный элемент испытуемой детали и течеискателя находится в вакуумном состоянии, на внешнюю сторону испытуемой детали наносится вещество, указывающее на утечку. Если есть течь, то вещество попадет в испытуемую деталь и чувствительный элемент через отверстие для утечки.

Другие методы обнаружения утечек

Тестируемые детали не находятся под давлением и не откачиваются, или их внешнее давление относится к другим методам обнаружения утечек. Метод обратного давления является одним из основных методов.Так называемый “метод обнаружения утечек под обратным давлением” заключается в использовании камеры обратного давления для того, чтобы сначала заполнить образец газом, указывающим на течь, а затем обеспечить утечку газа из образца в вакуумном состоянии. Способ обнаружения утечки вытекающего газа с помощью определенного метода (или течеискателя) для определения общей скорости утечки испытуемой детали.

Гелиевые течеискатель 

Гелиевый течеискатель использует гелий или водород в качестве газа-индикатора течи. Гелий обладает низким фоновым шумом, малой молекулярной массой и коэффициентом вязкости, поэтому он легко проходит через течь и легко распространяется; кроме того, гелий является инертным газом, который не вызывает коррозии оборудования, поэтому его обычно используют в качестве газа для поиска течей.Газ поступает внутрь камеры, соединенный с газоанализатором (настроенный на рабочее состояние реакции только с гелием). Если в камере есть течь, анализатор отреагирует, и определит место и размер течи.

Гелиевый течеискатель не только обладает высокой чувствительностью, но и прост в эксплуатации. Он может автоматически переключать двойную нить накала, автоматически регулировать ноль, автоматически калибровать и автоматически переключать диапазон измерения.

Преимущества гелиевых течеискателей

1. Портативная конструкция

2. Компактный внешний вид

3. ЖК-дисплей с сенсорным экраном

4. Коммуникационный интерфейс

5. Данные об обнаружении утечки могут быть легко выведены на экран

Что входит в состав гелиевого течеискателя?

1. Турбомолекулярный насос 

2. Форвакуумный насос (пластинчато-роторный вакуумный насос, вакуумный насос Рутса, винтовой вакуумный насос, спиральный вакуумный насос)

3. Электромагнитный клапан

4. Калиброванная гелиевая течь

5. Специальный модуль для масс-спектрометрии

Метод обнаружения течи при помощи гелиевого течеискателя

Технология обнаружения течи при помощи гелиевого течеискателя является незаменимой технологией в области обнаружения утечек в вакууме. Он широко используется для обнаружения утечек в печи сопротивления из-за его высокой эффективности обнаружения течи, простоты в эксплуатации, чувствительного отклика, высокой точности и отсутствия помех со стороны других газов.Течеискатель основан на принципе масс-спектрометрии, использующем гелий в качестве газа утечки для создания детектора герметичности.

Он состоит из источника ионов, анализатора, коллектора, датчика ионизации с холодным катодом, камеры масс-спектрометрии, системы отбора воздуха и электрической части.Электроны, испускаемые нитями в масс-спектрометрической камере, колеблются назад и вперед в камере и сталкиваются с внутренним газом и гелием, поступающими в камеру через отверстие утечки, чтобы ионизировать их в положительные ионы.Эти ионы гелия попадают в магнитное поле под действием ускоряющего электрического поля, которое отклоняется под действием силы Лоренца, образуя дугообразную орбиту. Изменение ускоряющего напряжения может заставить ионы различного рода проходить через магнитное поле, и течь обнаруживается, когда он достигает приемного полюса. Метод впрыска гелия и метод поглощения гелия являются двумя наиболее часто используемыми методами обнаружения течи гелиевым течеискателем в печи сопротивления.

Основные причины использования гелия в качестве детектирующего газа

1) он не токсичен для человеческого организма и окружающей среды;

2) отсутствие горения, безопасная эксплуатация;

3) инертный газ не вступает в реакцию с испытуемым объектом;

4) маленькая молекулярная масса, легко проходит через небольшую течь, легко обнаруживается утечка;

5) в целом, газовое состояние поддерживается в окружающей среде, и микропротекание не блокируется;

6) в газе, выделяющемся из самой вакуумной камеры, почти нет гелия;

7) количество гелия в воздухе составляет всего 5 частей на миллион, поэтому легко определить место утечки.

Поскольку гелий намного легче воздуха, необходимо работать сверху вниз, когда гелий вводится в вакуумную камеру для обнаружения утечки, в противном случае это не способствует определению точки утечки. Когда структура полости сложная или скорость утечки очень мала, для покрытия ключевых деталей можно использовать пластиковый пакет, а затем в пластиковый пакет заливается газообразный гелий, чтобы обеспечить обнаружение утечек конкретных ключевых деталей.

В целом, обнаружение утечек в вакууме должно быть сосредоточено на следующих частях:

  • фланцевое соединение;

  • место сварки;

  • часть сильфона;

  • другие уплотнительные детали.

Во всех вакуумных камерах будет натекание воздуха с течением времени, в результате чего вакуум будет ухудшаться. Термин «скорость утечки» используется для определения того, насколько быстро воздух возвращается в эту вакуумную камеру. Конечно, воздух содержит в себе кислород, попадание которого при некоторых технологических процессах отрицательно отражается на качестве этих процессов. Воздух также содержит влагу, которая также является источником кислорода. К примеру, влага может стать проблемой на паяных металлических поверхностях, поскольку адсорбированная влажность часто очень трудно удаляется с поверхности металла (это может быть проблемой в алюминиевой вакуумной пайке).

Скорость натекания должна контролироваться до очень низких уровней, часто допускается натекание в диапазоне от 2 до 10 миллиторр в час, чтобы гарантировать хорошое протекание технологических процессов.

Поэтому одной из основных обязанностей персонала вакуумной установки является контроль натекания в вакуумной камере путем регулярного контроля скорости натекания, и если скорость натекания становится недопустимой, то необходимо найти источник утечки и устранить эту утечку.

Обычным способом обнаружения утечки в вакуумной камере является использование гелиевого течеискателя. Существует два метода, а именно метод гелиевого щупа или методом обдува. В методе гелиевого щупа вакуумная камера должна быть заполнена гелием, а щупом производился поиск течи. Это не работает для многих вакуумных камер, так как требуется, чтобы она была под давлением, а многие из них не способны выдерживать положительные давления.

Комплект для проведения течеискания

Типичный пистолет, используемый при течеискании

При методе гелиевого обдува происходит противоположное: вакуумная камера откачивается до рабочего вакуума, а затем гелий распыляется на все внешние стыки и соединения. Гелиевый течеискатель, который подключен к вакуумной камере, контролирует концентрацию гелия внутри. Для пайки я настоятельно рекомендую использовать только технологию гелиевого распыления.

Обнаружение утечки методом обдува.

Оборудование для этого метода состоит из переносного гелиевого течеискателя, в том числе баллон с гелием, регулятор потока газа и шланга с гелиевым пистолетом. Обратите внимание, что используемый масс-спектрометр — это тот, который обнаруживает только гелий.

Течеискатель Agilent

Фото типичного гелиевого течеискателя

Проще говоря, вакуумная камера откачивается до рабочего уровня вакуума. И она, очевидно, будет втягивать внешний воздух внутрь через любую небольшую течь, которая может присутствовать в любом из уплотнений, соединений и т. д. Гелий затем распыляется вокруг каждого из потенциальных мест утечек, обычно начиная с двери, поскольку она является наиболее распространенным источником течи. Когда крошечные атомы гелия сталкиваются с небольшой точкой, через которую воздух входит внутрь, газообразный гелий также быстро входит в вакуумную камеру в этой точке. В то время как оператор проверки герметичности медленно перемещает гелиевый пистолет вокруг каждого из фитингов, масс-спектрометр постоянно отбирает газ из вакуумной камеры через испытательное отверстие. Когда в него попадут какие-то атомы гелия, автоматически пройдёт сигнал тревоги.

Временная задержка между попаданием гелия внутрь и попаданием этого атома гелия в блок масс-спектрометра очень коротка и в зависимости от размера вакуумной печи обычно измеряется от долей секунды, до нескольких секунд.

Когда звучит сигнал тревоги, оператор течеискателя останавливается и очень медленно перемещает пистолет с гелием вокруг области уплотнения / прокладки, до тех пор, пока точное местонахождение течи не будет найдено.

После обнаружения течи персонал по техническому обслуживанию должен устранить эту утечку, заменив уплотнение, тщательно очистив область соединения между двумя соединениями и вставив новую прокладку. Если утечка обнаруживается в любом из других соединений, обслуживающий персонал просто уплотняет эту течь вакуум-герметиком.

Наличие в вакуумных системах течей представляет собой, как правило, весьма сложную задачу, решение которой, заключающееся в обнаружении, локализации и ликвидации течи, часто требует значительных усилий и времени.

Что касается сверхвысоковакуумных систем, то в этом случае даже предельно малые течи крайне нежелательны. К счастью, ввиду высокой степени разрежения, а также использования в этих системах высокочувствительных вакуумметров, обнаружение и локализация малых течей по сравнению с системами более грубого вакуума во многих случаях значительно упрощается.

Наличие течи в системе проявляется в невозможности достижения предельного разрежения, на которое рассчитана данная вакуумная система. Для выяснения причины плохого вакуума следует изолировать систему от насоса и следить за нарастанием давления в ней. Если сначала давление газа растет быстро, а затем достигает предела, то причиной плохого вакуума является, вероятнее всего, выделение газа со стенок системы или присутствие загрязняющих веществ с высоким давлением паров. Если же давление продолжает непрерывно расти, то в этом случае следует искать в системе течь.

Наличие в системе клапанов позволяет последовательно (посекционно) проверять на течь различные ее участки, тем самым сужая зону поиска. Время, необходимое для выявления малых течей, может быть весьма значительным, так что при невозможности достичь требуемого разрежения следует в первую очередь воспользоваться указанным методом определения течи, а не искать какие-либо иные причины натекания газа в систему.

Для определения малых течей через стенки вакуумных элементов наиболее часто применяют пластиковый чехол с пробным газом, которым охватывают отдельные участки оболочки. Прошедший сквозь течь пробный газ регистрируется помещенным внутри системы датчиком. Чувствительность датчика зависит от рода газа, а его показания по мере проникновения пробного газа сквозь течь изменяются.

Чувствительность ионизационных вакуумметров различна для разных газов; так, для вакуумметра Байярда — Альперта (ВБА) чувствительность по гелию в 5 раз хуже, чем по азоту. ВБА наиболее широко используется в системах сверхвысокого вакуума и представляет собой достаточно подходящий датчик для обнаружения течей при использовании гелия в качестве пробного газа.

Для поиска течи можно также воспользоваться ионным насосом в тех системах, где он применяется. Для этого измеряют падение тока в насосе, обусловленное изменением состава откачиваемого газа. Однако следует отметить, что ни один из указанных методов не обладает достаточной чувствительностью для определения экстремально малых течей, которые требуют применения специальных устройств.

Таким устройством является специально сконструированный для обнаружения течей масс-спектрометр, анализатор которого настроен на пробный газ для обеспечения максимальной чувствительности. Главным преимуществом высокочувствительного масс-спектрометрического течеискателя является его универсальность. Течеискатели этого типа, наряду с анализатором, обычно снабжены собственной системой откачки, а также электронной системой регистрации и контроля. Течеискатели выпускаются либо в стационарном варианте для проверки на герметичность отдельных вакуумных элементов систем, либо в переносном — для подсоединения в нужном месте вакуумной системы с целью проверки ее герметичности.

После обнаружения течи для ее локализации стенки вакуумной системы обдувают пробным газом с помощью наконечника с соплом. Однако при перемещении наконечника по поверхности течь можно пропустить вследствие слишком кратковременного обдува места течи. Поэтому на поиск места течи иногда затрачивается слишком много времени.

Предварительная проверка на герметичность элементов конструкции вакуумной установки, а также прогнозирование возможных мест течи, основанное на практическом опыте, могут значительно ускорить поиск. Для повышения чувствительности можно воспользоваться методом аккумулирования пробного газа в той части установки, где ведется поиск течи.

При значительной течи, когда давление остаточного газа довольно высокое, влияние пробного газа, проходящего через течь, на общий ток в датчике может быть незначительным, особенно если пробный газ разбавлен воздухом. В этом случае лучше использовать ацетон. Быстрое испарение ацетона или даже возможная закупорка им относительно небольших течей приводит к существенному изменению давления.

Способ устранения течи в каждом конкретном случае зависит от причин, ее вызвавших. Так, если течь возникла в разборном уплотнении, то подтягивание крепежных болтов или замена прокладки может быть вполне достаточным для ликвидации течи. Если же течь возникла в результате дефектов в материале некачественной сварки или повреждения неразъемного соединения различных материалов, то необходима замена бракованной детали на новую. Известен ряд материалов, которые могут быть использованы для устранения небольших течей; эти материалы, нанесенные в жидком виде на, место течи, в результате диффузии проникают в канал течи и закупоривают его.

Хотя получающееся уплотнение способно выдерживать нагрев до не слишком высоких температур, оно может быть использовано лишь временно, когда по каким-либо причинам невозможно сразу заменить некачественную деталь на новую. Если течь возникла в неразъемном соединении, то для устранения течи может быть достаточным проведение повторной технологической операции сварки или пайки соединяемых деталей.

Понравилась статья? Поделить с друзьями:
  • Как составить генотип человека
  • Как найти нужную игру майнкрафт
  • Как в поезде найти свое место купе
  • Как найти работу газпром
  • Как найти свою любовы