Как найти увеличение линзы зная фокусное расстояние


Загрузить PDF


Загрузить PDF

Оптическое увеличение – это отношение линейных или угловых размеров изображения и предмета.[1]
Например, линза, увеличивающая размеры предмета, имеет большое увеличение, а линза, уменьшающая размеры предмета, имеет малое увеличение. Увеличение, как правило, вычисляется по формуле M = (hi/ho) = -(di/do), где М – увеличение, hi – высота изображения, ho – высота объекта, di и do – расстояние до изображения и предмета.

Примечание: собирающая линза широкая посередине и узкая по краям; рассеивающая линза широкая по краям и узкая посередине.[2]
Процесс вычисления увеличения одинаков для обеих линз за одним исключением в случае рассеивающей линзы.

  1. Изображение с названием Calculate Magnification Step 1

    1

    Напишите формулу. Теперь определите, какие переменные вам даны. По формуле вы можете найти любую переменную, входящую в формулу (а не только увеличение).

    • Например, рассмотрим фигурку высотой 6 см, которая находится на расстоянии 50 см от собирающей линзы с фокусным расстоянием 20 см. Здесь вы должны найти увеличение, размер изображения и расстояние до изображения. Запишите формулу так:
      M = (hi/ho) = -(di/do)
    • В задаче даны ho (высота фигурки) и do (расстояние от фигурки до линзы). Вы также знаете фокусное расстояние линзы, которое не входит в формулу. Вы должны найти hi, di и M.
  2. Изображение с названием Calculate Magnification Step 2

    2

    Используйте формулу линзы для вычисления di, если вы знаете расстояние от линзы до предмета и фокусное расстояние линзы. Формула линзы: 1/f = 1/do + 1/di, где f = фокусное расстояние линзы.

    • В нашем примере:
      1/f = 1/do + 1/di
      1/20 = 1/50 + 1/di
      5/100 — 2/100 = 1/di
      3/100 = 1/di
      100/3 = di = 33,3 см
    • Фокусное расстояние линзы – это расстояние от центра объектива до точки, в которой сходятся лучи света. В задачах фокусное расстояние, как правило, дано. В реальной жизни фокусное расстояние наносится на оправу линзы.[3]
  3. Изображение с названием Calculate Magnification Step 3

    3

    Теперь вы знаете do и di и можете найти высоту увеличенного изображения и увеличение линзы. Обратите внимание, что формула для вычисления увеличения включает два знака равенства (M = (hi/ho) = -(di/do)), то есть оба отношения равны, и вы можете воспользоваться этим фактом при вычислении M и hi.

    • В нашем примере найдите hi следующим образом:
      (hi/ho) = -(di/do)
      (hi/6) = -(33,3/50)
      hi = -(33,3/50) × 6
      hi = -3,996 см
    • Обратите внимание, что отрицательная высота означает, что изображение будет перевернутым.
  4. Изображение с названием Calculate Magnification Step 4

    4

    Для вычисления М используйте либо –(di/do), либо (hi/ho).

    • В нашем примере:
      M = (hi/ho)
      M = (-3,996/6) = -0,666
    • Вы получите тот же результат, используя значения d:
      M = -(di/do)
      M = -(33,3/50) = -0,666
    • Обратите внимание, что увеличение не имеет единиц измерения.
  5. Изображение с названием Calculate Magnification Step 5

    5

    Если у вас есть значение увеличения, вы можете предположить некоторые свойства изображения.

    • Размер изображения. Чем больше значение М, тем больше изображение. Значения M между 1 и 0 свидетельствуют о том, что предмет через линзу будет выглядеть меньше.
    • Ориентация изображения. Отрицательные значения М указывают на то, что изображение предмета будет перевернутым.
    • В нашем примере М = -0,666, то есть изображение фигурки будет перевернутым и составлять две трети высоты фигурки.
  6. Изображение с названием Calculate Magnification Step 6

    6

    В случае рассеивающей линзы используйте отрицательное значение фокусного расстояния. Это единственное отличие вычисления увеличения рассеивающей линзы от вычисления увеличения собирающей линзы (все формулы остаются теми же). В нашем примере этот факт повлияет на значение di.

    • Проделаем вычисления для нашего примера еще раз, но при условии, что мы используем рассеивающую линзу с фокусным расстоянием -20 см. Все другие значениями остаются такими же.
    • Во-первых, найдем di через формулу линзы:
      1/f = 1/do + 1/di
      1/-20 = 1/50 + 1/di
      -5/100 — 2/100 = 1/di
      -7/100 = 1/di
      -100/7 = di = -14,29 см
    • Теперь найдем hi и M.
      (hi/ho) = -(di/do)
      (hi/6) = -(-14,29/50)
      hi = -(-14,29/50) × 6
      hi = 1,71 см
      M = (hi/ho)
      M = (1,71/6) = 0,285

    Реклама

Две линзы

  1. Изображение с названием Calculate Magnification Step 7

    1

    Найдите фокусное расстояние обеих линз. Когда вы имеете дело с системой, состоящей из двух линз, которые расположены параллельно друг другу (например, как в телескопе), вам нужно определить фокусное расстояние обеих линз, чтобы найти увеличение такой системы. Это можно сделать по формуле M = fo/fe.[4]

    • В формуле fo – это фокусное расстояние линзы объектива, fo – это фокусное расстояние линзы окуляра (к окуляру вы прикладываете глаз).
  2. Изображение с названием Calculate Magnification Step 8

    2

    Подставьте значения фокусных расстояний в формулу, и вы найдете увеличение системы из двух линз.

    • Например, рассмотрим телескоп, в котором фокусное расстояние линзы объектива равно 10 см, а фокусное расстояние линзы окуляра равно 5 см. М = 10/5 = 2.

    Реклама

Детальный метод

  1. Изображение с названием Calculate Magnification Step 9

    1

    Найдите расстояние между линзами и предметом. Если перед предметом расположены две линзы, можно вычислить увеличение конечного изображения, зная расстояния от предмета до линз, высоту предмета и фокусные расстояния обеих линз.

    • Рассмотрим предыдущий пример – фигурку высотой 6 см, которая находится на расстоянии 50 см от собирающей линзы с фокусным расстоянием 20 см и на расстоянии 100 см от второй линзы с фокусным расстоянием 5 см. Найдите увеличение такой системы линз.
  2. Изображение с названием Calculate Magnification Step 10

    2

    Найдите расстояние до изображения, его высоту и увеличение первой линзы. Начните с ближайшей к фигурке линзы и по формуле линзы найдите расстояние до изображения, а затем по формуле для вычисления увеличения найдите высоту изображения и увеличение.

    • В предыдущем разделе мы выяснили, что первая линза дает изображение высотой -3,996 см, расстояние до изображения равно 33,3 см, а увеличение равно -0,666.
  3. Изображение с названием Calculate Magnification Step 11

    3

    Используйте изображение от первой линзы в качестве предмета для второй линзы. Теперь вы можете найти увеличение второй линзы, высоту изображения и расстояние до него; для этого используйте те же методы, которые вы использовали для первой линзы, только в этот раз вместо фигурки воспользуйтесь изображением от первой линзы.

    • В нашем примере изображение находится на расстоянии 33,3 см от первой линзы, поэтому находится на расстоянии 50-33,3 = 16,7 см от второй линзы. Найдем расстояние до изображения от второй линзы, используя найденное расстояние до предмета и фокусное расстояние второй линзы.
      1/f = 1/do + 1/di
      1/5 = 1/16,7 + 1/di
      0,2 — 0,0599 = 1/di
      0,14 = 1/di
      di = 7,14 см
    • Теперь мы можем найти hi и M для второй линзы:
      (hi/ho) = -(di/do)
      (hi/-3,996) = -(7,14/16,7)
      hi = -(0,427) × -3,996
      hi = 1,71 см
      M = (hi/ho)
      M = (1,71/-3,996) = -0,428
  4. Изображение с названием Calculate Magnification Step 12

    4

    Продолжайте описанный процесс вычислений для любого числа дополнительных линз. Для каждой последующей линзы предметом считайте изображение от предыдущей линзы и используйте формулу линзы и формулу для вычисления увеличения.

    • Имейте в виду, что последующие линзы могут переворачивать изображение. Например, полученное выше значение увеличения (-0,428) свидетельствует о том, что изображение от второй линзы будет составлять 4/10 размера изображения предмета от первой линзы, но теперь изображение фигурки не будет перевернутым (вторая линза перевернет «перевернутое» изображение от первой линзы).

    Реклама

Советы

  • На биноклях, как правило, стоит такая маркировка: число х число, например, 8×25 или 8×40. В этом случае первое число – это увеличение бинокля. Второе число относится к четкости изображения.
  • Заметьте, что для системы, состоящей из одной линзы, увеличение будет отрицательным в случае, если расстояние до предмета превышает фокусное расстояние линзы. Это не означает, что изображение предмета будет меньше его действительной высоты. Просто в данном случае изображение будет перевернутым.

Реклама

Об этой статье

Эту страницу просматривали 31 962 раза.

Была ли эта статья полезной?


Download Article


Download Article

In the science of optics, the magnification of an object like a lens is the ratio of the height of the image you can see to the height of the actual object being magnified. For instance, a lens that makes a small object appear very big has a high magnification, while a lens that makes an object appear small has a low magnification. An object’s magnification is generally given by the equation M = (hi/ho) = -(di/do), where M = magnification, hi = image height, ho = object height, and di and do = image and object distance.

Note: A converging lens is wider in the middle than it is at the edges (like a magnifying glass.) A diverging lens is wider at the edges than it is in the middle (like a bowl).[1]
Finding magnification is the same for both, with one important exception. Click here to go straight to the diverging lens exception.

  1. Image titled Calculate Magnification Step 1

    1

    Start with your equation and determine which variables you know.[2]
    Like with many other physics problems, a good way to approach magnification problems is to first write the equation you need to find your answer. From here, you can work backwards to find any pieces of the equation that you need.[3]

    • For example, let’s say that a 6 centimeter tall action figure is placed half a meter away from a converging lens with a focal length of 20 centimeters. If we want to find the magnification, image size, and image distance, we can start by writing our equation like this:
      M = (hi/ho) = -(di/do)
    • Right now, we know ho (the height of the action figure) and do (the distance of the action figure from the lens.) We also know the focal length of the lens, which isn’t in this equation. We need to find hi, di, and M.
  2. Image titled Calculate Magnification Step 2

    2

    Use the lens equation to get di. If you know the distance of the object you’re magnifying from the lens and the focal length of the lens, finding the distance of the image is easy with the lens equation. The lens equation is 1/f = 1/do + 1/di, where f = the focal length of the lens.[4]

    • In our example problem, we can use the lens equation to find di. Plug in your values for f and do and solve:
      1/f = 1/do + 1/di
      1/20 = 1/50 + 1/di
      5/100 — 2/100 = 1/di
      3/100 = 1/di
      100/3 = di = 33.3 centimeters
    • A lens’s focal length is the distance from the center of the lens to the point where the rays of light converge in a focal point. If you’ve ever focused light through a magnifying glass to burn ants, you’ve seen this. In academic problems, this is often given to you. In real life, you can sometimes find this information labeled on the lens itself.[5]

    Advertisement

  3. Image titled Calculate Magnification Step 3

    3

    Solve for hi. Once you know do and di, you can find the height of the magnified image and the magnification of the lens. Notice the two equals signs in the magnification equation (M = (hi/ho) = -(di/do)) — this means that all of the terms are equal to each other, so we can find M and hi in whatever order we want.[6]

    • For our example problem, we can find hi like this:
      (hi/ho) = -(di/do)
      (hi/6) = -(33.3/50)
      hi = -(33.3/50) × 6
      hi = -3.996 cm
    • Note that a negative height indicates that the image we see will be inverted (upside down).
  4. Image titled Calculate Magnification Step 4

    4

    Solve for M. You can solve for your final variable using either -(di/do) or (hi/ho).[7]

    • In our example, we would finally find M like this:
      M = (hi/ho)
      M = (-3.996/6) = -0.666
    • We also get the same answer if we use our d values:
      M = -(di/do)
      M = -(33.3/50) = -0.666
    • Note that magnification does not have a unit label.
  5. Image titled Calculate Magnification Step 5

    5

    Interpret your M value. Once you have a magnification value, you can predict several things about the image you would view through the lens. These are:

    • Its size. The bigger the absolute value of the M value, the bigger the object will seem under magnification. M values between 1 and 0 indicate that the object will look smaller.
    • Its orientation. Negative values indicate that the image of the object will be inverted.
    • In our example, our M value of -0.666 means that, under the conditions given, the image of the action figure will appear upside down and two-thirds its normal size.
  6. Image titled Calculate Magnification Step 6

    6

    For diverging lenses, use a negative focal length value. Even though diverging lenses look very different than converging lenses, you can find their magnification values using the same formulas as above. The one important exception here is that divergent lenses will have negative focal lengths. In a problem like the one above, this will affect the answer you get for di, so be sure to pay close attention.[8]

    • Let’s re-do the example problem above, only this time, we’ll say we’re using a diverging lens with a focal length of -20 centimeters. All of the other starting values are the same.
    • First, we’ll find di with the lens equation:
      1/f = 1/do + 1/di
      1/-20 = 1/50 + 1/di
      -5/100 — 2/100 = 1/di
      -7/100 = 1/di
      -100/7 = di = -14.29 centimeters
    • Now we’ll find hi and M with our new di value.
      (hi/ho) = -(di/do)
      (hi/6) = -(-14.29/50)
      hi = -(-14.29/50) × 6
      hi = 1.71 centimeters
      M = (hi/ho)
      M = (1.71/6) = 0.285
  7. Advertisement

Easy Two-Lens Method

  1. Image titled Calculate Magnification Step 7

    1

    Find the focal length of both lenses. When you’re dealing with a device that is made up of two lenses lined up with each other (like a telescope or one part of a pair of binoculars), all you need to know is the focal length of both lenses to find the overall magnification of the final image. This is done with the simple equation M = fo/fe.[9]

    • In the equation, fo refers to the focal length of the objective lens and fe to the focal length of the eyepiece lens. The objective lens is the large lens at the end of the device, while the eyepiece lens is, as its name suggests, the small lens you put your eye next to.
  2. Image titled Calculate Magnification Step 8

    2

    Plug your information into M = fo/fe. Once you have the focal lengths for both of your lenses, solving is easy — just find the ratio by dividing the objective’s focal length by the eyepiece’s. The answer you get will be the magnification of the device.[10]

    • For example, let’s say that we have a small telescope. If the focal length of the objective lens is 10 centimeters and the focal length of the eyepiece lens is 5 centimeters, the magnification is simply 10/5 = 2.
  3. Advertisement

Detailed Method

  1. Image titled Calculate Magnification Step 9

    1

    Find the distance between the lenses and the object. If you have two lenses lined up in front of an object, it’s possible to determine the magnification of the final image if you know the distances of the lenses and objects in relation to each other, the size of the object, and the focal lengths of both lenses. Everything else can be derived.[11]

    • For example, let’s say that we have the same setup as in our example problem in Method 1: a six-inch action figure 50 centimeters away from a converging lens with a focal length of 20 centimeters. Now, let’s put a second converging lens with a focal length of 5 centimeters 50 centimeters behind the first lens (100 centimeters away from the action figure.) In the next few steps, we’ll use this information to find the magnification of the final image.
  2. Image titled Calculate Magnification Step 10

    2

    Find the image distance, height, and magnification for lens one. The first part of any multi-lens problem is the same as if you were dealing with just the first lens. Starting with the lens closest to the object, use the lens equation to find the distance of the image, then use the magnification equation to find its height and magnification. Click here for a recap of single-lens problems.[12]

    • From our work in Method 1 above, we know that the first lens produces an image -3.996 centimeters high, 33.3 centimeters behind the lens, and with a magnification of -0.666.
  3. Image titled Calculate Magnification Step 11

    3

    Use the image from the first lens as the object for the second. Now, finding the magnification, height, and so on for the second lens is easy — just use the same techniques that you used for the first lens, only this time, use its image in place of the object. Keep in mind that the image will usually be a different distance from the second lens as the object was from the first one.[13]

    • In our example, since the image is 33.3 centimeters behind the first lens, it is 50-33.3 = 16.7 centimeters in front of the second one. Let’s use this and the new lens’s focal length to find the second lens’s image.
      1/f = 1/do + 1/di
      1/5 = 1/16.7 + 1/di
      0.2 — 0.0599 = 1/di
      0.14 = 1/di
      di = 7.14 centimeters
    • Now, we can find hi and M for the second lens:
      (hi/ho) = -(di/do)
      (hi/-3.996) = -(7.14/16.7)
      hi = -(0.427) × -3.996
      hi = 1.71 centimeters
      M = (hi/ho)
      M = (1.71/-3.996) = -0.428
  4. Image titled Calculate Magnification Step 12

    4

    Continue on in this pattern for additional lenses. This basic approach is the same whether you have three, four, five, or a hundred lenses lined up in front of an object. For each lens, treat the image of the previous lens as its object and use the lens equation and magnification equation to find your answers.[14]

    • Keep in mind that subsequent lenses can continue to invert your image. For instance, the magnification value we got above (-0.428) indicates that the image we see will be about 4/10 the size of the image from the first lens, but right side up, since the image from the first lens was upside down.
  5. Advertisement

Add New Question

  • Question

    What does it mean when a magnifying glass is 100mm — 5x?

    Donagan

    Its diameter is 100 mm, and it makes objects appear to be five times their actual size.

  • Question

    How does percent magnification convert to x times magnification?

    Donagan

    100% magnification equals 2x magnification. 200% = 3x. 300% = 4x, and so forth.

  • Question

    Should I look at the sign on the value of magnification to know if the image is larger than the object?

    Community Answer

    No, the sign is related to whether the image is (-) or isn’t (+) inverted in relation to the object. You know that the image is larger if the value is bigger than one M > 1.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Binoculars are typically specified as a number times a number. For example, binoculars can be specified as 8×25 or 8×40. When such a specification is made, the first number is the magnification of the binoculars. It does not matter that the examples given have different second numbers, the binoculars both have a magnification of 8. The second number refers to the clarity of the image presented by the binoculars.

  • Note that for a single lens magnifying tool, the magnification would be a negative number if the distance to the object was greater than the focal length of the lens. That does not mean that the object would be reduced in apparent size. In such a case, the magnification would occur, but the image would be seen upside down by the observer.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To calculate magnification, use the following formula: magnification = the height of the image ÷ by the height of the object. Plug your data into the formula and solve. If your answer is greater than 1, that means the image is magnified. If your answer is between 0 and 1, the image is smaller than the object. Finally, if your answer is negative, that means the image is upside down. Keep reading to learn how to calculate magnification when you’re looking through multiple lenses!

Did this summary help you?

Thanks to all authors for creating a page that has been read 299,755 times.

Did this article help you?

Определение

Формула тонкой линзы — формула, связывающая три величины: расстояние от предмета до линзы, расстояние от изображения до линзы и фокусное расстояние линзы.

Условные обозначения:

  • расстояние от предмета до линзы — d (м);
  • расстояние от изображения до линзы— f (м);
  • фокусное расстояние линзы — F (м).

Вывод формулы

Обратимся к рисунку, который мы использовали для объяснения правила построения изображений в собирающих линзах:

Видно, что треугольники АОВ и А1В1О подобные (по двум углам). Следовательно:

BOOB1=ABA1B1

По двум углам также являются подобными треугольники COF и FA1B1. Отсюда делаем вывод, что:

COA1B1=OFFB1

Линия предмета образует с частью главной оптической оси, перпендикуляром, проведенным из верхней точки к линзе, и частью самой линзы прямоугольник. Следовательно, его противоположные стороны равны:

AB=CO

Следовательно:

ABA1B1=COA1B1

Отсюда следует, что:

BOOB1=OFFB1

BO является расстоянием от предмета до линзы. Обозначим его за d. OB1 является расстоянием от линзы до изображения. Обозначим его за f. OF является фокусным расстоянием линзы. Обозначим его за F. FB1 является разностью расстояния от линзы до изображения и фокусного расстояния линзы. Поэтому это выражение мы можем записать так:

df=FfF

Избавимся от знаменателей и получим:

fdFd=fF

Или можно записать так:

fF+Fd=fd

Теперь все члены равенства поделим на произведение Ffd. В результате вычислений получим формулу тонкой линзы:

Формула тонкой линзы

1d+1f=1F

Поскольку величиной, равной обратной фокусному расстоянию, является оптическая сила, формулу тонкой линзы можно записать следующим образом:

1d+1f=D

Величины d, ƒ и F могут быть как положительными, так и отрицательными. Отметим (без доказательства), что при применении формулы тонкой линзы знаки нужно ставить перед членами уравнения согласно следующим правилам.

Правила расстановки знаков перед членами уравнения в формуле линзы

  • Если линза собирающая, то ее фокус действительный, и перед членом 1F ставят знак «плюс» (1F).
  • Если линза рассеивающая, то ее фокус мнимый, и перед членом 1F ставят знак «минус» (1F).
  • Если изображение действительное, то перед величиной 1d ставят знак «плюс» (1d).
  • Если изображение мнимое, то перед величиной 1d ставят знак «минус» (1d).
  • Величина 1f всегда имеет знак «плюс», поскольку расстояние от предмета до линзы всегда положительное.

Иногда случается, что перед величинами F, f и d знаки неизвестны. Тогда при вычислениях перед ними ставят знаки «плюс». Но если в результате вычислений фокусного расстояния или расстояния от линзы до изображения либо до источника получается отрицательная величина, то это означает, что фокус, изображение или источник мнимые.

Пример №1. Фокусное расстояние линзы равно 10 см. Найти расстояние от предмета до линзы, если расстояние от нее до изображения составляет 15 см.

Переводить в СИ единицы измерения не будем, поскольку они однородны. Так как все величины выражены в см, то и ответ будет выражен в см.

Применим формулу тонкой линзы:

1d+1f=1F

1d+115=110

Умножим выражение на 150d:

150+10d=15d

5d=150

d=30 (см)

Увеличение линзы

Раньше мы уже упоминали, что изображение, полученное в линзе, может быть увеличенным или уменьшенным. Различие размеров предмета и изображения характеризуется увеличением.

Определение

Линейное увеличение — отношение линейного размера изображения к линейному размеру предмета. Линейное увеличение обозначают буквой Γ.

Чтобы найти линейное увеличение изображения предмета в линзе, снова обратимся к первому рисунку этого параграфа. Если высота предмета АВ равна h, а высота изображения А1В1 равна Н, то:

Γ=Hh

Мы уже выяснили, что треугольники АОВ и ОА1В1 подобны. Поэтому:

Hh=|f||d|

Где H — высота изображения предмета, h — высота самого предмета.

Отсюда вытекает, что увеличение линзы равно:

Γ=|f||d|

Пример №2. Предмет имеет высоту h = 2 см. Какое фокусное расстояние F должна иметь линза, расположенная от экрана на расстоянии f = 4 м, чтобы изображение указанного предмета имело высоту H = 1 м?

2 см = 0,02 м

Сначала применим формулы тонкой линзы:

1d+1f=1F

Она необходима, чтобы выразить фокусное расстояние линзы:

F=dfd+f

Расстояние от предмета до линзы неизвестно. Но его можно выразить из формулы увеличения линзы:

Γ=fd=Hh

Отсюда это расстояние равно:

d=fhH

Подставим полученное выражение в формулу фокусного расстояния линзы:

F=fhHffhH+f=f2hH·
Hfh+fH=fhH+h

F=fhH+h=4·0,021+0,020,08 (м)=8 (см)

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17685

Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Ответ:

а) 0,50 м

б) 0,75 м

в) 1,25 м

г) 1,50 м


Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы и формулу тонкой линзы.

3.Выразить из обеих формул расстояние от линзы до изображения предмета.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Фокусное расстояние линзы: F = 1 м.

 Увеличение линзы: Γ = 4.

Запишем формулу увеличения линзы и выразим из нее расстояние от линзы до изображения предмета:

Γ=fd

f=Γd

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Γd=dFdF

Поделим на d и выразим расстояние от предмета до линзы:

Γ=FdF

d=FΓ+F=14+1=1,25 (м)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18124

Предмет высотой 6 см расположен на горизонтальной главной оптической оси тонкой собирающей линзы на расстоянии 30 см от её оптического центра. Высота  изображения предмета 12 см. Найдите фокусное расстояние линзы.

Ответ:

а) 5 см

б) 10 см

в) 20 см

г) 36 см


Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы в двух вариантах и выразить из нее расстояние от изображения до линзы.

3.Записать формулу тонкой линзы и тоже выразить из нее расстояние от изображения до линзы.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Расстояние от оптического центра линзы до предмета: d = 30 cм.

 Высота предмета: h = 6 см.

 Высота изображения: H = 12 см.

Так как все данные измеряются в сантиметрах, переводить единицы измерения величин в СИ нет необходимости. Просто ответ будет получен тоже в сантиметрах.

Запишем формулу увеличения линзы:

Γ=Hh=fd

Отсюда расстояние от изображения до линзы равно:

f=Hdh

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Hdh=dFdF

Поделим на d, у множим на h(d –F) и выразим фокусное расстояние:

Hh=FdF

H(dF)=hF

HdHF=hF

hF+HF=Hd

F(h+H)=Hd

F=Hdh+H=12·3012+6=20 (см)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF19112

В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью v = 5 м/с движется точечный источник света. Расстояние между плоскостями d = 15 см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы F = 10 см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертёж, указав ход лучей в линзе. Ответ запишите в м/с.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

3.Записать формулу тонкой линзы и определить из нее расстояние от изображения до линзы.

4.Записать формулу линейного увеличения линзы двумя способами для вычисления радиусов окружностей, по которым движутся точка и ее изображение.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Фокусное расстояние линзы: F = 10 см.

 Расстояние от линзы до плоскости, в которой вращается точка: d = 15 см.

 Скорость вращения точки: v = 5 м/с.

10 см = 0,1 м

15 см = 0,15 м

Выполним рисунок. Для его построения достаточно найти изображение точки А. Затем в противоположную сторону отложим перпендикуляр и на таком же расстоянии от главной оптической оси будет находиться изображение точки B.

Глядя со стороны, мы будем видеть вместо окружности, которую описывает точка, линию AB. Она равн диаметру окружности, по которой движется точка. Обозначим ее радиус OA за r. Изображением окружности будет окружность. Вместо нее мы со стороны также увидим отрезок — A´B´. Обозначим радиус O´A´ за R.

Запишем формулу тонкой линзы и выразим из нее расстояние от изображения до линзы:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Формулу линейного увеличения линзы можно определить как отношение радиуса окружности, по которой движется точка-изображение, к радиусу окружности, по которой движется сама точка:

Γ=Rr

Линейное увеличение также определяется формулой:

Γ=fd

Следовательно:

Rr=fd

Подставим сюда выражение, найденное для расстояния от изображения до линзы из формулы тонкой линзы:

Rr=dFd(dF)=FdF

Так как изображение будет двигаться вслед за точкой, то угловые скорости этой точки и изображения будут равны. Поэтому:

ω=vr=VR

Отсюда линейная скорость движения изображения равна:

V=Rvr=FvdF=0,1·50,150,1=10 (мс)

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 14.9k

Содержание:

Линзы:

На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.

Равные виды линз

Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).

Если толщина линзы d во много раз меньше радиусов Линзы в физике - виды, формулы и определения с примерами

Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).

Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).

Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Характеристики линз

Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.

Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).

Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.

На рисунках фокус линзы обозначают буквой F.

Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.

Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F<0).

Очевидно, что чем сильнее преломляющие свойства линзы, тем меньшим будет ее фокусное расстояние (рис. 3.58).

Физическая величина, характеризующая преломляющие свойства линзы и обратная фокусному расстоянию, называется оптической силой линзы.

Оптическая сила линзы обозначается символом D и вычисляется по формулеЛинзы в физике - виды, формулы и определения с примерами
где F — фокусное расстояние линзы.

Единицей оптической силы является диоптрия

Линзы в физике - виды, формулы и определения с примерами

1 диоптрия (дптр) — это оптическая сила такой линзы, фокусное рас стояние которой равняется 1 м.

Если линза собирающая, то ее оптическая сила положительна. Оптическая сила рассеивающей линзы отрицательна. Например, оптическая сила линз в бабушкиных очках +3 дптр, а в маминых -3 дптр. Это означает, что в бабушкиных очках стоят собирающие линзы, а в маминых — рассеивающие.
 

Пример №1

Оптическая сила линзы равняется -1,6 дптр. Каково фокусное расстояние этой линзы? Эта линза собирающая или рассеивающая?

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Анализ физической проблемы

Для определения фокусного расстояния этой линзы воспользуемся формулой для вычисления оптической силы линзы. Поскольку 1)< 0, то линза рассеивающая.

Поиск математической модели, решение:

Линзы в физике - виды, формулы и определения с примерами

Определим числовое значение искомой величины:

Линзы в физике - виды, формулы и определения с примерами

Ответ: F = -62,5 см, линза рассеивающая.

Итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линзы бывают собирающими и рассеивающими, а по форме — выпуклыми и вогнутыми.

Линза называется собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке. Эту точку называют действительным фокусом линзы.

Линза называется рассеивающей, если параллельные лучи, падающие на нее, после преломления в линзе идут расходящимся пучком, однако продолжения этих преломленных лучей пересекаются в одной точке. Эта точка называется мнимым фокусом линзы.

Физическая величина, характеризующая преломляющие свойства линзы и являющаяся обратной фокусному расстоянию линзы, называется оптической силой линзы = Оптическая сила линзы измеряется в диоптриях (дптр).
 

Формула тонкой линзы

Сейчас никого не удивляет, что можно увидеть бактерии и другие микроорганизмы, рассмотреть невидимые невооруженным глазом детали рельефа поверхности Луны или полюбоваться портретом, нарисованным на маковом зернышке. Все это стало возможным потому, что с по мощью линзы получают разные по размеру изображения предметов.
Линзы в физике - виды, формулы и определения с примерами

Изображение предмета, полученное с помощью линзы

Расположив последовательно зажженную свечу, собирающую линзу и экран, получим на экране четкое изображение пламени свечи (рис. 3.59). Изображение может быть как большим, так и меньшим, чем само пламя, или равным ему — в зависимости от расстояния между свечой и экраном. Чтобы выяснить, при каких условиях с помощью линзы образуется то или иное изображение предмета, рассмотрим приемы его построения.
 

Строим изображение предмета, которое дает тонкая линза

Любой предмет можно представить как совокупность точек. Каждая точка предмета, который светится собственным или
Линзы в физике - виды, формулы и определения с примерами

  1. — луч, проходящий через оптический центр О линзы (не преломляется и не изменяет своего направления);
  2. — луч, параллельный главной оптической оси / линзы (после преломления в линзе идет через фокус F);
  3. — луч, проходящий через фокус F (после преломления в линзе идет параллельно главной оптической оси/линзы)
  4. отраженным светом, испускает лучи во всех направлениях.

Для построения изображения точки S, получаемого с помощью линзы, достаточно найти точку пересечения Линзы в физике - виды, формулы и определения с примерами, любых двух лучей, выходящих из точки S и проходящих сквозь линзу (точка Линзы в физике - виды, формулы и определения с примерами и будет действительным изображением точки S). Кстати, в точке Линзы в физике - виды, формулы и определения с примерамипересекаются все лучи, выходящие из точки S, однако для построения изображения достаточно двух лучей (любых из трех показанных на рис. 3.60).

Изобразим схематически предмет стрелкой АВ и удалим его от линзы на расстояние, большее, чем 2F (за двойным фокусом) (рис. 3.61, а). Сначала построим изображение Линзы в физике - виды, формулы и определения с примерами точки В. Для этого воспользуемся двумя «удобными* лучами (луч 1 и луч 2). Эти лучи после преломления в линзе пересекутся в точке Линзы в физике - виды, формулы и определения с примерами. Значит, точка Линзы в физике - виды, формулы и определения с примерами является изображением точки В. Для построения изображения Линзы в физике - виды, формулы и определения с примерами точки А из точки Линзы в физике - виды, формулы и определения с примерамиопустим перпендикуляр на главную оптическую ось /. Точка пересечения перпендикуляра и оси / и является точкой Линзы в физике - виды, формулы и определения с примерами

Значит, Линзы в физике - виды, формулы и определения с примерамии является изображением предмета АВ, полученное с помощью линзы. Мы видим: если предмет расположен за двойным фокусом собирающей линзы, то его изображение, полученное с помощью линзы, будет уменьшенным, перевернутым, действительным. Такое изображение получается, например, на пленке фотоаппарата (рис. 3.61, б) или сетчатке глаза.

На рис. 3.62, а показано построение изображения предмета АВ, полученного с помощью собирающей линзы, в случае, когда предмет расположен
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).

Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Но, посмотрев на предмет сквозь линзу, увидим изображение предмета — оно будет прямое, увеличенное.

Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломления в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком. Однако их продолжения пересекутся в точке В,. Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.

Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. Построение показывает, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.

Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экраном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реальные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке — Линзы в физике - виды, формулы и определения с примерами то «удобные лучи*, с помощью которых мы строим изображение, тоже пересеклись бы в точке Линзы в физике - виды, формулы и определения с примерами

Как выглядит формула тонкой линзы

Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фокусным расстоянием F линзы. Эта зависимость называется формулой тонкой линзы и записывается так:
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изображение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей — отрицательное.

Пример №2

Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изображение монет

Дано:

d = 2 см = 0,02 м

D = + 5 дптр

f- ?

Анализ физической проблемы, поиск математической модели

Лупу можно считать тонкой линзой, поэтому чтобы найти расстояние от лупы до изображения, воспользуемся
формулой тонкой линзыЛинзы в физике - виды, формулы и определения с примерами Фокусное расстояние F неизвестно, но мы знаем, что Линзы в физике - виды, формулы и определения с примерами (2), где

D — оптическая сила линзы, данная в условии задачи.
Решение и анализ результатов

Подставив формулу (2) в формулу (1), получаем
Линзы в физике - виды, формулы и определения с примерами
Проверим единицу: Линзы в физике - виды, формулы и определения с примерами

Найдем числовое Линзы в физике - виды, формулы и определения с примерами

Проанализируем результат: знак ♦-* говорит о том, что изображение является мнимым.

Ответ: f = -21 см, изображение мнимое.

Итоги:

В зависимости от вида линзы (собирающая или рассеивающая) и местоположения предмета относительно этой линзы получают разные изображения предмета с помощью линзы (см.таблицу):

Линзы в физике - виды, формулы и определения с примерами

Таким образом, по типу изображения можно судить так и о местоположении предмета относительно нее.

Расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

Что такое линза

Многие люди носят очки. А задумывались ли вы над вопросами: что собой представляют стекла очков и какова их роль? Стекла очков есть не что иное, как линзы. Ни один оптический прибор (от простой лупы до сложных телескопов) не обходится без линз. Что же такое линза?

Линза представляет собой прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Материалом для линз обычно служит оптическое или органическое стекло.

Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

На рисунках 261, 262 представлены сечения линз двух типов: двояковыпуклой (см. рис. 261) и двояковогнутой (см. рис. 262). Одна из поверхностей линзы может быть плоской, как, например, на рисунке 263. Такие линзы называются плосковыпуклая (см. рис. 263, а) и плосковогнутая, (см. рис. 263, б).

Линзы в физике - виды, формулы и определения с примерами

Прямая, проходящая через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей (рис. 264), называется главной оптической осью линзы. Радиусы Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами есть радиусы кривизны поверхностей линзы (см. рис. 264).

Если толщина линзы мала но сравнению с радиусами Линзы в физике - виды, формулы и определения с примерами кривизны ее поверхностей (см. рис. 264), то линза называется тонкой. Ее часто изображают Линзы в физике - виды, формулы и определения с примерами Всякая тонкая линза имеет точку, проходя через которую, луч не меняет своего направления (лучи 1 и 2 на рисунке 264). Эта точка О называется оптическим центром линзы. В дальнейшем мы будем рассматривать только тонкие линзы, изготовленные из вещества, оптически более плотного, чем среда (воздух), в которой они находятся.

Как линзы меняют направление падающих на них лучей после преломления? Ответ получим с помощью опыта.

Линзы в физике - виды, формулы и определения с примерами

Направим на двояковыпуклую линзу (рис. 265, а) параллельно главной оптической оси лучи света. После преломления в линзе они пересекают главную оптическую ось в одной точке F. Значит, двояковыпуклая линза собирает преломленные лучи, поэтому такая линза называется собирающей. Также превращают параллельный пучок в сходящийся линзы 2, 3, изображенные на рисунке 270. При замене линзы на двояковогнутую (рис. 265, б) лучи после преломления в линзе расходятся, а центральный луч, как и в первом случае, не испытывает преломления. Итак, двояковогнутая линза рассеивает параллельный пучок падающих на нее лучей, поэтому такая линза называется рассеивающей. Рассеивают параллельный пучок и линзы 5, 6 (см. рис. 270).

Линзы в физике - виды, формулы и определения с примерами

Точка F (см. рис. 265, а, рис. 266, а), в которой пересекаются преломленные линзой лучи, падающие параллельно главной оптической оси, или их продолжения (см. рис. 265, б, рис. 266, б), называется главным фокусом линзы. Так как параллельные лучи можно пустить как с одной, так и с другой стороны линзы, то и главных фокуса у линзы два. Оба фокуса лежат на главной оптической оси симметрично относительно оптического центра линзы (см. рис. 266). А в какой точке собирает линза лучи, идущие под углом к главной оптической оси? Оказывается, в точке Линзы в физике - виды, формулы и определения с примерами которая находится в плоскости Линзы в физике - виды, формулы и определения с примерами(см. рис. 266, а), проходящей через главный фокус перпендикулярно главной оптической оси. Эта плоскость называется фокальной плоскостью, а точка Линзы в физике - виды, формулы и определения с примерами в отличие от главного фокуса, называется фокусом.

Обратите внимание, что у собирающей линзы в фокусе пересекаются сами преломленные лучи, несущие энергию, поэтому фокус называется действительным. У рассеивающей линзы в фокусе пересекаются продолжения преломленных лучей. Такой фокус называют мнимым.

Расстояние от оптического центра до главного фокуса называется фокусным расстоянием. Его тоже принято обозначать буквой F.

Линзы в физике - виды, формулы и определения с примерами

Линза, имеющая более выпуклые поверхности, преломляет лучи сильнее. Линза 1 (рис. 267, а) преломляет лучи сильнее, чем линза 2 (рис. 267, 6). Фокусное расстояние Линзы в физике - виды, формулы и определения с примерами у линзы 1 меньше, чем Линзы в физике - виды, формулы и определения с примерами у линзы 2.

Чтобы количественно оценить преломляющую способность линзы, введем величину, обратную фокусному расстоянию, и назовем ее оптической силой линзы (обозначается буквой D):

Линзы в физике - виды, формулы и определения с примерами
Оптическая сила измеряется в диоптриях (сокращенно дптр). Очевидно, что D = 1 дптр, если фокусное расстояние линзы F = 1 м.

А как оценивается оптическая сила рассеивающей линзы, у которой фокус мнимый? В этом случае фокусное расстояние считается отрицательным, а следовательно, и оптическая сила — отрицательной величиной.

Например, если F = -0,5 м, то оптическая сила

Линзы в физике - виды, формулы и определения с примерами

Теперь для вас не будет загадкой рекомендация врача-окулиста: «Вам нужны очки со стеклами +1,5 диоптрии или -2 диоптрии».
 

Для любознательных:

Не следует думать, что любая линза с выпуклой поверхностью будет обязательно собирающей, а с вогнутой — рассеивающей. Собирающей является всякая линза, у которой середина толще краев (например, линзы 2, 2, 3 на рисунке 270), а рассеивающей — линза, у которой середина тоньше краев (см. рис. 270, линзы 4, 5, 6). И не забывайте, что все наши рассуждения справедливы, если вещество линзы (стекло) имеет большую оптическую плотность, чем окружающая среда (воздух).

В природе собирающими линзами являются капельки росы, в быту — наполненные водой прозрачные сосуды — кувшин, пластиковая бутылка. Подумайте и ответьте, какие это линзы.

Главные выводы:

  1. Линзы меняют направление падающих на них лучей после преломления, за исключением тех, которые проходят через оптический центр линзы.
  2. Собирающая линза после преломления делает параллельный пучок лучей сходящимся, рассеивающая линза — расходящимся.
  3. Лучи, идущие параллельно главной оптической оси, после преломления в собирающей линзе пересекаются в главном фокусе. В рассеивающей линзе в главном фокусе пересекаются продолжения преломленных лучей.
  4. Величина, обратная фокусному расстоянию, определяет оптическую силу линзы.

Построение изображений в тонких линзах

Глядя в окуляр микроскопа на уроках биологии, задумывались ли вы, как получается увеличенное изображение клеток? Главными частями микроскопа являются линзы. Именно они позволяют получать увеличенное или уменьшенное (например, в фотоаппарате) изображение предмета.

Какие изображения предмета создает линза?

Линзы в физике - виды, формулы и определения с примерами

Проведем опыт. На столе расположим экран, собирающую линзу и зажженную свечу (рис. 271, а), удаленную от линзы на расстояние б/, большее, чем удвоенное фокусное, т. е. d > 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.

Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей Линзы в физике - виды, формулы и определения с примерамии 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.

Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.

Линзы в физике - виды, формулы и определения с примерами

Передвигая свечу ближе к линзе (F < d < 2F) и удаляя экран, мы увидим на нем действительное, перевернутое, увеличенное изображение пламени свечи (построение сделайте сами).

Линзы в физике - виды, формулы и определения с примерами

Наконец поставим свечу на расстоянии d от линзы, меньше фокусного, т. е. d

Линзы в физике - виды, формулы и определения с примерами

А какие изображения предмета дает рассеивающая линза? Пусть параллельно главной оптической оси надает луч 1 (рис. 275). После линзы преломленный луч Линзы в физике - виды, формулы и определения с примерами идет так, что только его продолжение проходит через фокус. Луч 2 не испытывает преломления. Видно, что лучи Линзы в физике - виды, формулы и определения с примерами и 2′ не пересекаются. В точке А’ пересекаются их продолжения. Тогда изображение точки А, а значит, и всего предмета АВ — мнимое. Как все мнимые изображения, оно прямое, но уменьшенное. Даст ли рассеивающая линза действительное изображение, если менять положение предмета? Может ли оно быть увеличенным? Ответьте на эти вопросы сами, сделав соответствующие построения изображений предмета в тетради.

Главные выводы:

  1. Собирающая линза дает как действительные, так и мнимые изображения, рассеивающая — только мнимые.
  2. Все мнимые изображения — прямые, все действительные — перевернутые.
  3. Для нахождения изображения точки наиболее целесообразно использовать луч, идущий параллельно главной оптической оси линзы, и луч, идущий через ее оптический центр.

Пример №3

С помощью стеклянной линзы на экране, удаленном от линзы на расстояние f = 36 см, получено увеличенное в 3 раза изображение предмета. Определите расстояние от предмета до линзы и оптическую силу линзы.

Дано:

Н = Зh

f = 36 см

d — ?

D — ?

Решение

Построим изображение предмета в линзе (рис. 276).

Линзы в физике - виды, формулы и определения с примерами

Поскольку изображение есть на экране, то оно действительное. Кроме того, оно увеличенное, значит, предмет находится между фокусом и двойным фокусом, а линза собирающая.

По условию размер предмета АВ в 3 раза меньше размера изображения А’В’. Из подобия треугольников АОВ и А’ОВ’ следует, что таким же будет и соотношение их сторон ВО и OB’, Значит, искомое расстояние d будет в 3 раза меньше заданного расстояния f. Это дает первый ответ: Линзы в физике - виды, формулы и определения с примерами Для ответа на второй вопрос используем подобие другой нары треугольников — CFO и A’FB’. И здесь подобные стороны треугольников различаются в 3 раза.
Так как одна из них — OF равна фокусному расстоянию F линзы, а другая — FB’ равна разности f — F, то их связь можно записать так: 3F = f — F, или 4F = f = 36 см. Вычислив значение фокусного расстояния Линзы в физике - виды, формулы и определения с примерами найдем и искомое значение оптической силы D линзы: Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Оптическая сила и фокусное расстояние линзы

Граница разделения двух, прозрачных для света, тел может быть искривленной. Если прозрачное тело ограничить искривленными поверхностями, получим линзу (нем. linse — «чечевица»).

Линза — это прозрачное тело, ограниченное двумя выпуклыми или вво-гнутыми прозрачными поверхностями, преломляющими лучи света.
Одна из поверхностей линз может быть плоской. Линзы изготавливают из какого-либо прозрачного для света вещества: стекла, кварца, разных пластмасс, каменной соли, но чаще всего — из специальных сортов стекла.

Наибольшее распространение получили линзы, ограниченные сферическими поверхностями. В зависимости от взаимного размещения сферических поверхностей, ограничивающих линзу, различают 6 типов линз: двояковыпуклая, плоско-выпуклая, вогнуто-выпуклая (рис. 165, а, б, в); двояковогнутая, плоско-вогнутая, выпукло-ввогнутая (рис. 165, г, д, е).
Линзы в физике - виды, формулы и определения с примерами

Любая линза имеет характерные точки и линии. Выясним, какие именно.

1.    Прямую, проходящую через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей, которые ограничивают линзу, называют ее главной оптической осью (рис. 166).

2.    Точку О, которая лежит на главной оптической оси в центре линзы, называют оптическим центром линзы (рис. 166).

Линзы в физике - виды, формулы и определения с примерами

Опыт 1. Направим на линзу пучок лучей, параллельных ее главной оптической оси. Проходя через линзу, световые лучи преломляются и пересекаются в одной точке, лежащей на главной оптической оси линзы (рис. 167).

Линзы в физике - виды, формулы и определения с примерами

Эту точку называют главным фокусом линзы F.

3.    Главный фокус линзы F — точка, в которой сходятся все, параллельные главной оптической оси, лучи после их преломления в линзе.

4.    Фокусное расстояние f — расстояние от оптического центра линзы О до главного фокуса F.

Каждая линза имеет два главных фокуса.

Любая тонкая линза характеризуется двумя основными параметрами -фокусным расстоянием и оптической силой. Оптическую силу линзы обозначают большой буквой D и определяют по формуле:

Линзы в физике - виды, формулы и определения с примерами
Единицей оптической силы является одна диоптрия (1 дптр), 1 дптр = Линзы в физике - виды, формулы и определения с примерами.

Как видно из опыта, линза преобразует пучок параллельных лучей в сходящийся, то есть собирает его в одну точку. Такую линзу называют собирательной.

Собирательная линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления собирает на этой оси в одну точку.

Опыт 2. Возьмем линзу другого типа и направим на нее параллельный главной оптической оси пучок лучей света. Лучи, преломившись на границе воздух-стекло, выходят из линзы расходящимся пучком, или рассеиваются (рис. 168).

Линзы в физике - виды, формулы и определения с примерами

Такую линзу называют рассеивающей.

Рассеивающая линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления отклоняет от этой оси.

Если пучок лучей, выходящий из рассеивающей линзы, продолжить в противоположном направлении, то продолжения лучей пересекутся в точке F, которая лежит на оптической оси с той же стороны, с которой свет падает на линзу. Эту точку F называют мнимым главным фокусом рассеивающей линзы (рис. 169).

Опыт 3. Пропустим световые лучи только через оптические центры линз. В результате опыта убеждаемся (рис. 170), что световые лучи, проходящие через оптический центр линзы, не преломляются, то есть не изменяют своего направления.

Линзы в физике - виды, формулы и определения с примерами

С помощью линз можно не только собирать или рассеивать световые лучи, но и строить изображение предметов. Как раз благодаря этому свойству линзы широко используют в практических целях.

Каким же образом строятся изображения предметов с помощью линз?

Изображение предмета — это воссоздание вида, формы и цвета предмета световыми лучами, проходящими через оптическую систему линз, которые имеют одну общую оптическую ось.

Если изображение предмета образовано пересечением самих лучей, то его называют действительным, если их продолжением — мнимым.

Определить ход лучей, отраженных всеми точками поверхности тела, невозможно. Поэтому для построения изображения будем использовать такие лучи, ход которых известен:

  • 1.    Луч, проходящий через оптический центр линзы, не преломляется (рис. 171, а).
  • 2.    Луч, параллельный главной оптической оси линзы, после преломления в линзе проходит через главный фокус линзы (рис. 171, б).
  • 3.    Луч, проходящий через главный фокус линзы, после преломления в ней, проходит параллельно главной оптической оси (рис. 171, в).

Линзы в физике - виды, формулы и определения с примерами

Рассмотрим случаи, при которых получается то или другое изображение, и особенности этих изображений.

1.    Предмет АВ размещен между линзой и ее фокусом F.

Линзы в физике - виды, формулы и определения с примерами

Построим изображение точки А, использовав для этого упомянутые лучи. Луч АС (рис. 172), параллельный главной оси линзы, преломившись в линзе, пройдет через главный фокус, а луч АО не изменит своего направления. Как видно на рисунке, эти лучи расходятся. Чтобы построить изображение точки А, следует продолжить лучи в противоположном направлении до пересечения, это будет точка Линзы в физике - виды, формулы и определения с примерами Это изображение точки есть мнимым. Такое же построение хода лучей можно выполнить для всех точек предмета, находящихся между точками А и В. Изображение этих промежуточных точек будут лежать междуЛинзы в физике - виды, формулы и определения с примерами. Таким образом, Линзы в физике - виды, формулы и определения с примерами — изображение предмета АВ.

Если предмет находится между линзой и ее фокусом, то получают увеличенное, прямое, мнимое его изображение, размещенное дальше от линзы, чем сам предмет.

Такое изображение получают, когда пользуются лупой — прибором для рассматривания мелких предметов (например, чтения мелкого текста).

2.    Предмет размещен в главном фокусе линзы F.

Для построения изображения предмета АВ снова воспользуемся лучами АС и АО (рис. 173). После прохождения лучей сквозь линзу мы увидим, что они параллельны между собой. Следовательно, изображение предмета АВ мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Если в главном фокусе разместить источник света, то мы превратим пучок расходящихся лучей на пучок параллельных лучей, который хорошо освещает отдаленные предметы.

Если предмет размещен в главном фокусе линзы F, изображение предмета получить нельзя.

3.    Предмет размещен между главным фокусом линзы F и двойным фокусом линзы 2F.

Во время построения изображения (рис. 174) мы видим, что лучи АС и АО после прохождения линзы пересекаются в точке Линзы в физике - виды, формулы и определения с примерами. В этой точке образуется действительное изображение точки А. Изображение Линзы в физике - виды, формулы и определения с примерамипредмета АВ также будет действительным.

Линзы в физике - виды, формулы и определения с примерами

Если предмет находится между фокусом F и двойным фокусом 2F линзы, то образуется увеличенное, перевернутое и действительное изображение предмета; оно размещено с противоположной относительно предмета стороны линзы на расстоянии, больше двойного фокусного расстояния.

Такое изображение используют в проекционном аппарате, киноаппарате. Чтобы изображение на экране было прямым, диапозитивы или киноленту устанавливают в аппарат в перевернутом виде.

4.    Предмет находится в двойном фокусе линзы. 2F.

В этом случае линза дает (рис. 175) перевернутое, действительное изображение предмета такого же размера, как и он сам. Это изображение размещено в ее двойном фокусе 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

5.    Если предмет находится за двойным фокусом линзы 2F (рис. 176), линза дает уменьшенное, перевернутое и действительное изображение предмета, которое размещено между ее главным фокусом F и двойным фокусом 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

Такое изображение используют в фотоаппарате.

Пример №4

Почему не рекомендуется поливать растения днем, когда они освещены солнечными лучами, особенно те, на листьях которых остаются капельки воды?

Ответ: потому что капельки играют роль линз, фокусирующих солнечные лучи, и растения получают ожоги.

Пример №5

На рисунке 177 показан ход лучей в линзах. Какие это линзы?
Линзы в физике - виды, формулы и определения с примерами
Ответ: (слева направо) источник света, собирательная линза, рассеивающая линза.

Простые оптические приборы

Знания законов отражения и преломления света в зеркалах и линзах дали возможность создать ряд оптических приборов, имеющих важное значение для современной науки и техники. Их используют специалисты разных отраслей. Это микроскоп биолога и фотоаппарат журналиста, кинокамера оператора и телескоп астронома, перископ подводника и т. п. Кроме того, оптическими приборами являются очки миллионов людей разного возраста и специальностей.

Самый простой оптический прибор — лупа.

Лупа (франц. loupe — «нарост») — оптический прибор, являющийся собирательной линзой, применяется для рассматривания мелких деталей, плохо заметных невооруженным глазом.

Общий вид луп разного вида представлен на рисунке 181, а.

Чтобы увидеть изображение предмета увеличенным, лупу следует разместить так, чтобы данный предмет был между лупой и ее фокусом (рис. 181, б).

Лучи, падающие на лупу от крайних точек предмета, преломляются в линзе и сходятся.
Линзы в физике - виды, формулы и определения с примерами

Каким же образом все это видит наш глаз?

Оказывается, наш глаз не замечает преломления лучей. Лучи, идущие от предмета сквозь линзу, воспринимаются глазом как прямолинейные. Нам кажется, что лучи, идущие от лупы к глазу, продолжаются после лупы, не преломляясь. Благодаря этому мы видим предмет увеличенным по сравнению с его действительными размерами.

Лупа дает увеличение в 10-40 раз.

Значительное увеличение изображения предметов можно получить с помощью двух линз, размещенных в металлической трубе на определенном расстоянии друг от друга. Такой прибор называют микроскопом.

Микроскоп (греч. mikro — «маленький», skopeo — «смотрю») — оптический прибор для рассматривания мелких предметов и их деталей (рис. 182, а).

Ход лучей в микроскопе показан на рисунке 182, б. Линзу, размещенную со стороны глаза, называют окуляром (лат. oculus — «глаз»), а линзу, размещенную со стороны данного предмета, называют объективом (лат. objectivus — «предметный»).

Первое увеличение изображения предмета дает объектив. Предмет в микроскопе размещается немного дальше от фокуса обьектива. В результате этого выходит увеличенное и перевернутое изображение предмета.
Линзы в физике - виды, формулы и определения с примерами

Это изображение увеличивается еще раз линзой-окуляром: оно будто служит для окуляра предметом. Окуляр, подобно лупе, размещают на расстоянии (меньше фокусного) от промежуточного изображения. В итоге мы получаем новое, более увеличенное изображение.

Если, например, объектив микроскопа дает изображение предмета, увеличенное в 20 раз, а окуляр увеличивает это изображение в 15 раз, то общее увеличение, которое дает микроскоп, будет уже 20*15 = 300 раз.

Современные электронные микроскопы дают увеличение в десятки тысяч раз. Например, так выглядят под микроскопом бактерии, увеличенные в 25 000 раз (рис. 183).

Посмотрите еще раз на схему микроскопа (рис. 182, б). Объектив микроскопа — линза — имеет меньшее фокусное расстояние, чем окуляр этого прибора. А что будет, если мы возьмем объектив, который имеет большее фокусное расстояние, чем окуляр?

В этом случае мы получим новый прибор, который называют телескопом, или рефрактором (лат. refringo — «преломляю»). Такой телескоп создал еще в 1611 г. немецкий астроном Иоганн Кеплер. А вообще первый телескоп на основе зрительной трубы построил в 1609 г. Галилео Галилей.

Телескоп (греч. tele — «далеко», skopeo — «смотреть») — оптический прибор для астрономических исследований космических объектов (рис. 184).

Прохождение в телескопе лучей от небесного тела показано на рисунке 185.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

Как следует из рисунка, изображение небесного тела в телескопе мы видим под большим углом зрения, в отличие от невооруженного глаза. Окуляр телескопа, как и окуляр микроскопа, действует как обычная лупа.

Следует отметить, что, рассматривая с помощью телескопа отдаленные предметы на Земле, мы видим их перевернутыми. Однако для наблюдения за небесными телами это обстоятельство не столь важно.

Самый большой телескоп-рефрактор установлен в Йеркской обсерватории университета в Чикаго (США). Его объектив в диаметре достигает 102 см.

Другой тип — это телескопы-рефлекторы (лат. reflecto — «отображаю»). В таких телескопах, кроме преломления лучей света, используют другое их свойство — способность отражаться от зеркальных поверхностей.

Изображение небесного тела отражается с помощью маленького плоского зеркальца и рассматривается с помощью окуляра (рис. 186), который увеличивает отраженное изображение.

Линзы в физике - виды, формулы и определения с примерами

Первый рефлектор с диаметром зеркала 2,5 см и фокусным расстоянием 16,5 см построил в 1668 г. Исаак Ньютон. Сегодня самым большим в мире является зеркальный телескоп HESS II, установленный в Намибии, его площадь достигает 600 Линзы в физике - виды, формулы и определения с примерами. Устройство предназначено для изучения происхождения космических лучей.

Линзы в физике - виды, формулы и определения с примерами

Фотоаппарат — это оптический прибор, с помощью которого на цифровом устройстве (англ, digital device — «техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии»), фотопленке, фотопластинке, фотобумаге получают изображение предмета.

Сегодня существует много различных типов фотоаппаратов (рис. 187, а). Они отличаются формой и размерами, но их строение и основные части одинаковы. Ход лучей в фотоаппарате изображен на рисунке 187, б.

  • Заказать решение задач по физике

Подробное объяснение формулы тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 58).

Линзы в физике - виды, формулы и определения с примерами

Основные типы линз и лучи, используемые для построения изображений в них, даны на рисунках 59, 60.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием I м: 1 дптр= 1 Линзы в физике - виды, формулы и определения с примерами.

Между фокусным расстоянием F тонкой линзы, расстоянием от предмета до линзы d и расстоянием от линзы до изображения f существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы, рассматривая ход характерных лучей (рис. 61).

Линзы в физике - виды, формулы и определения с примерами

Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f, фокусное расстояние линзы F, расстояние от предмета до переднего главного фокуса а, расстояние от заднего главного фокуса до изображения а’.

Из рисунка 61 видно, что Линзы в физике - виды, формулы и определения с примерами следовательно

Линзы в физике - виды, формулы и определения с примерами

Из формул (1) и (2) следует формула Ньютона:

Линзы в физике - виды, формулы и определения с примерами

С учетом того, что d = а + F, f = а’ + F, получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из выражения (3) находим

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы тонкой линзы следует запомнить правило знаков:

  • для собирающей линзы, действительных источника и изображения величины F, d, f считают положительными;
  • для рассеивающей линзы, мнимых источника и изображения величины F, d,f считают отрицательными.

Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F< 0 — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды.

В современных оптических приборах используются системы линз для улучшения качества изображений. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами:

Линзы в физике - виды, формулы и определения с примерами

Пример №6

Предмет расположен на расстоянии d = 0,15 м от рассеивающей линзы с фокусным расстоянием F=-0,30 м. На каком расстоянии f от линзы получается изображение данного предмета?

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Отрицательное значение f соответствует мнимому изображению предмета.

Ответ: f =-0,10 м, изображение мнимое.

Пример №7

На каком расстоянии d от рассеивающей линзы с оптической силой D = -4 дптр надо поместить предмет, чтобы его мнимое изображение получилось в k = b раз меньше (Г = Линзы в физике - виды, формулы и определения с примерами) самого предмета?

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для увеличения

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Из формулы линзы

Линзы в физике - виды, формулы и определения с примерами

с учетом выражения для f получаем

Линзы в физике - виды, формулы и определения с примерами

Ответ: d= 1 м.

Пример №8

Определите фокусное расстояние F собирающей линзы, дающей мнимое изображение предмета, помещенного перед ней на расстоянии d- 0,4 м, если расстояние от линзы до изображения f =-1,2 м. 

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Ответ: F= 0,6 м.

Разбираем формулу тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 80).

Линзы в физике - виды, формулы и определения с примерами

Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — 1 диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием

Линзы в физике - виды, формулы и определения с примерами

Линзы можно представить в виде совокупности частей трехгранных призм. На рисунке 81, а изображена модель двояковыпуклой линзы, собранной из частей призм, повернутых основаниями к центру линзы. Соответственно, модель двояковогнутой линзы будет представлена частями призм, повернутых основаниями от центра линзы (рис. 81, б).

Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке Линзы в физике - виды, формулы и определения с примерами

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев,
  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Обратим внимание на луч, идущий через оптический центр Линзы в физике - виды, формулы и определения с примерами линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.

Построим изображение предмета Линзы в физике - виды, формулы и определения с примерами в тонкой собирающей линзе (рис. 82). Пусть расстояние от предмета до линзы Линзы в физике - виды, формулы и определения с примерами расстояние от линзы до изображения Линзы в физике - виды, формулы и определения с примерами фокусное расстояние линзы Линзы в физике - виды, формулы и определения с примерами расстояние от предмета до переднего главного фокуса Линзы в физике - виды, формулы и определения с примерами расстояние от заднего главного фокуса до изображения Линзы в физике - виды, формулы и определения с примерами высота предмета Линзы в физике - виды, формулы и определения с примерами высота его изображения Линзы в физике - виды, формулы и определения с примерами

Из рисунка 82 видно, что Линзы в физике - виды, формулы и определения с примерами Из подобия треугольников следует:

Линзы в физике - виды, формулы и определения с примерами

Используя соотношения (1) и (2), получим:

Линзы в физике - виды, формулы и определения с примерами

Соотношение Линзы в физике - виды, формулы и определения с примерами называется формулой Ньютона.

С учетом того, что Линзы в физике - виды, формулы и определения с примерами (см. рис. 82), находим: Линзы в физике - виды, формулы и определения с примерами и подставляем в формулу (4):

Линзы в физике - виды, формулы и определения с примерами

Разделив обе части последнего выражения на Линзы в физике - виды, формулы и определения с примерами получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Линейным (поперечным) увеличением Г называется отношение линейного размера изображения Линзы в физике - виды, формулы и определения с примерами к линейному размеру предмета Линзы в физике - виды, формулы и определения с примерами Из соотношения (3) находим линейное увеличение тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» И. Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

Заметим, что предмет или источник является мнимым, только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с Линзы в физике - виды, формулы и определения с примерами является собирающей (положительной), а с Линзы в физике - виды, формулы и определения с примерами — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).

В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила Линзы в физике - виды, формулы и определения с примерами системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пример №9

На каком расстоянии Линзы в физике - виды, формулы и определения с примерами от рассеивающей линзы с оптической силой Линзы в физике - виды, формулы и определения с примерами дптр надо поместить предмет, чтобы его мнимое изображение получилось в Линзы в физике - виды, формулы и определения с примерами раз меньше Линзы в физике - виды, формулы и определения с примерами самого предмета? Постройте изображение предмета.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для линейного увеличения

Линзы в физике - виды, формулы и определения с примерами

находим:

Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы ( рис. 83) с учетом правила знаков:

Линзы в физике - виды, формулы и определения с примерами

и с учетом выражения для Линзы в физике - виды, формулы и определения с примерами получаем:

Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изучаем линзы

Скорее всего, вы пользовались фотоаппаратом, знакомы с биноклем, подзорной трубой, телескопом, на уроках биологии работали с микроскопом. Некоторые из вас носят очки. Все эти устройства имеют общее — их основной частью является линза. О том, какое значение имеют данные устройства в жизни человека, вы можете рассказать и сами, а вот о том, что такое линза, какие существуют виды линз и каковы их свойства, вы узнаете из этого параграфа.

Линза — прозрачное тело, ограниченное с двух сторон сферическими поверхностями*.

Линзы в физике - виды, формулы и определения с примерамиОдна из поверхностей линзы может быть плоскостью, поскольку плоскость можно рассматривать как сферу бесконечного радиуса. Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

По форме линзы делят на выпуклые (рис. 14.1) и вогнутые (рис. 14.2).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.1. Толщина выпуклой линзы посредине больше, чем у краев: а — вид; б — разные выпуклые линзы в разрезе

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.2. Толщина вогнутой линзы посредине меньше, чем у краев: а — вид; б — разные вогнутые линзы в разрезе

Если толщина Линзы в физике - виды, формулы и определения с примерами линзы во много раз меньше радиусов сферических поверхностей, ограничивающих линзу, такую линзу называют тонкой. Далее мы будем рассматривать только тонкие линзы. Прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы (рис. 14.3).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.3. Тонкая сферическая линза: Линзы в физике - виды, формулы и определения с примерами — главная оптическая ось линзы; Линзы в физике - виды, формулы и определения с примерами — толщина линзы; Линзы в физике - виды, формулы и определения с примерами— радиусы сферических поверхностей, ограничивающих линзу; Линзы в физике - виды, формулы и определения с примерами — оптический центр линзы

Если на линзу направить пучок световых лучей, они преломятся на ее поверхностях и изменят свое направление. В то же время на главной оптической оси линзы есть точка, которую луч света проходит практически не изменяя своего направления. Эту точку называют оптическим центром линзы (см. рис. 14.3).

Направим на линзу пучок лучей, параллельных ее главной оптической оси. Если лучи, пройдя сквозь линзу, идут сходящимся пучком, такая линза — собирающая. Точка F, в которой пересекаются преломленные лучи, — действительный главный фокус линзы (рис. 14.4).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.4. Ход лучей после преломления в собирающей линзе. Точка F — действительный главный фокус линзы

Линза является рассеивающей, если лучи, параллельные ее главной оптической оси, пройдя сквозь линзу, идут расходящимся пучком. Точку F, в которой пересекаются продолжения преломленных лучей, называют мнимым главным фокусом линзы (рис. 14.5).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.5. Ход лучей после преломления в рассеивающей линзе. Точка F — мнимый главный фокус линзы

Обратите внимание: любой пучок параллельных лучей, даже если эти лучи не параллельны главной оптической оси, после преломления в собирающей линзе всегда пересекаются в одной точке (рис. 14.6) (если линза рассеивающая, в одной точке пересекаются продолжения преломленных лучей).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.6. Ход параллельных лучей после преломления в собирающей линзе

Если оптическая плотность материала, из которого изготовлена линза, больше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет собирать лучи (будет собирающей), а вогнутая линза будет рассеивать лучи (будет рассеивающей) (см. рис. 14.4, 14.5).

Если оптическая плотность материала, из которого изготовлена линза, меньше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет рассеивающей (рис. 14.7, а), а вогнутая линза — собирающей (рис. 14.7, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.7. Выпуклая (а) и вогнутая (б) воздушные линзы в воде

Определение оптической силы линзы

Любая линза имеет два главных фокуса*, расположенных на одинаковом расстоянии от оптического центра линзы (см. рис. 14.8).

Линзы в физике - виды, формулы и определения с примерамиДалее главный фокус линзы, как правило, будем называть фокусом линзы.

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.8. Чем меньше радиусы R сферических поверхностей, ограничивающих линзу, тем сильнее эта линза преломляет свет, а значит, тем меньше ее фокусное расстояние F

Расстояние от оптического центра линзы до главного фокуса называют фокусным расстоянием линзы.

Фокусное расстояние, как и фокус, обозначают символом F. Единица фокусного расстояния в СИметр:

Линзы в физике - виды, формулы и определения с примерами

Фокусное расстояние собирающей линзы договорились считать положительным, а рассеивающей — отрицательным. Очевидно, что чем сильнее преломляющие свойства линзы, тем меньше по модулю ее фокусное расстояние (рис. 14.8).

Физическую величину, которая характеризует линзу и является обратной фокусному расстоянию линзы, называют оптической силой линзы.

Оптическую силу линзы обозначают символом D и вычисляют по формуле:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силыдиоптрия: Линзы в физике - виды, формулы и определения с примерами

1 диоптрияэто оптическая сила линзы, фокусное расстояние которой равно 1 м. Оптическая сила собирающей линзы положительна, а рассеивающей линзы — отрицательна.

Подводим итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линза является собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке (эта точка — действительный фокус линзы). Линза является рассеивающей, если параллельные лучи, падающие на нее, после преломления идут расходящимся пучком, а продолжения преломленных лучей пересекаются в одной точке (эта точка — мнимый фокус линзы).

Физическую величину, которая характеризует преломляющие свойства линзы и обратна ее фокусному расстоянию, называют оптической силой линзы: Линзы в физике - виды, формулы и определения с примерами Единица оптической силы линзы — диоптрия Линзы в физике - виды, формулы и определения с примерами

Построение изображений в линзах

Основное свойство линз заключается в том, что линзы дают изображение точки, а соответственно, и предмета (как совокупности точек) (рис. 15.1). В зависимости от расстояния между предметом и линзой изображение предмета может быть больше или меньше, чем сам предмет, мнимым или действительным. Выясним, при каких условиях с помощью линзы образуются те или иные изображения, и рассмотрим приемы их построения.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.1. Получение изображения пламени свечи с помощью собирающей линзы

Любой предмет можно представить как совокупность точек. Каждая точка предмета излучает (или отражает) свет во всех направлениях. В создании изображения участвует множество лучей, однако для построения изображения некоторой точки S достаточно найти точку пересечения любых двух лучей, выходящих из точки S и проходящих через линзу. Обычно для этого выбирают два из трех «удобных лучей» (рис. 15.2).

Точка S1 будет действительным изображением точки S, если в точке пересекаются сами преломленные лучи (рис. 15.2, а). Точка будет мнимым изображением точки S, если в точке пересекаются продолжения преломленных лучей (рис. 15.2, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.2. Три самых простых в построении луча («удобные лучи»):

  1. луч, проходящий через оптический центр О линзы, не преломляется и не изменяет своего направления;
  2. луч, параллельный главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы, после преломления в линзе идет через фокус Линзы в физике - виды, формулы и определения с примерами или через фокус Линзы в физике - виды, формулы и определения с примерами идет его продолжение (б);
  3. луч, проходящий через фокус Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идет параллельно главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы (а, б)

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.3. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен за двойным фокусом линзы; б — ход лучей в фотоаппарате

Строим изображение предмета, которое даёт линза:

Рассмотрим все возможные случаи расположения предмета АВ относительно собирающей линзы и докажем, что размеры и вид изображения зависят от расстояния между предметом и линзой.

1. Предмет расположен за двойным фокусом собирающей линзы (рис. 15.3, а). Сначала построим изображение точки Линзы в физике - виды, формулы и определения с примерами Для этого воспользуемся двумя лучами — 1 и 2. После преломления в линзе они пересекутся в точке Линзы в физике - виды, формулы и определения с примерами Значит, точка Линзы в физике - виды, формулы и определения с примерами является действительным изображением точки Линзы в физике - виды, формулы и определения с примерами Для построения изображения точки Линзы в физике - виды, формулы и определения с примерами опустим из точки Линзы в физике - виды, формулы и определения с примерами перпендикуляр на главную оптическую ось Линзы в физике - виды, формулы и определения с примерами Точка Линзы в физике - виды, формулы и определения с примерами пересечения перпендикуляра и оси I является изображением точки Линзы в физике - виды, формулы и определения с примерами

Итак, Линзы в физике - виды, формулы и определения с примерами — изображение предмета Линзы в физике - виды, формулы и определения с примерами Это изображение действительное, уменьшенное, перевернутое. Такое изображение получается, например, на сетчатке глаза или пленке фотоаппарата (рис. 15.3, б).

2. Предмет расположен между фокусом и двойным фокусом собирающей линзы (рис. 15.4, а). Изображение предмета действительное, увеличенное, перевернутое. Такое изображение позволяет получить на экране проекционная аппаратура (рис. 15.4, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.4. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между фокусом и двойным фокусом линзы; б — ход лучей в проекционном аппарате

3. Предмет расположен между фокусом и собирающей линзой (рис. 15.5, а). Лучи, вышедшие из точки Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идут расходящимся пучком. Однако их продолжения пересекаются в точке Линзы в физике - виды, формулы и определения с примерами

В данном случае изображение предмета является мнимым, увеличенным, прямым. Изображение расположено по ту же сторону от линзы, что и предмет, поэтому мы не можем увидеть изображение предмета на экране, но видим его, когда смотрим на предмет через линзу. Именно такое изображение дает короткофокусная собирающая линза — лупа (рис. 15.5, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.5. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между линзой и ее фокусом; б — с помощью

4. Предмет расположен на фокусном расстоянии от собирающей линзы. После преломления все лучи идут параллельным пучком (рис. 15.6), следовательно, в данном случае ни действительного, ни мнимого изображения мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.6. Если предмет расположен в фокусе собирающей линзы, мы не получим его изображения

Внимательно рассмотрите рис. 15.7, на котором показано построение изображений предмета, полученных с помощью рассеивающей линзы. Видим, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение, расположенное по ту же сторону от линзы, что и сам предмет.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.7. Рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение

Чаще всего предмет больше, чем линза, или часть линзы закрыта непрозрачным экраном (как, например, линза в объективе фотоаппарата). Изменяется ли при этом внешний вид изображения? Конечно же нет. Ведь от каждой точки предмета на линзу падает множество лучей, и все они собираются в соответствующей точке изображения. Если закрыть часть линзы, это приведет лишь к тому, что энергия, попадающая в каждую точку изображения, уменьшится. Изображение будет менее ярким, однако ни его вид, ни месторасположение не изменятся. Именно поэтому, строя изображение, мы можем использовать все «удобные лучи», даже те, которые не проходят через линзу (рис. 15.8).

Формула тонкой линзы:

Построим изображение предмета в собирающей линзе (рис. 15.9).

Рассмотрим прямоугольные треугольники Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами Эти треугольники подобны Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Приравняв правые части равенств (1) и (2), имеем Линзы в физике - виды, формулы и определения с примерами то есть Линзы в физике - виды, формулы и определения с примерамиили Линзы в физике - виды, формулы и определения с примерами Разделив обе части последнего равенства на Линзы в физике - виды, формулы и определения с примерами получим формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

где Линзы в физике - виды, формулы и определения с примерами — оптическая сила линзы.

При решении задач следует иметь в виду:

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.8. Построение изображения предмета в случае, когда предмет значительно больше линзы

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.9. К выведению формулы тонкой линзы: h — высота предмета; Н — высота изображения; d — расстояние от предмета до линзы; f — расстояние от линзы до изображения; F — фокусное расстояние

Пример №10

Рассматривая монету с помощью лупы, оптическая сила которой +10 дптр, мальчик расположил монету на расстоянии 6 см от лупы. Определите: 1) фокусное расстояние линзы; 2) на каком расстоянии от лупы находится изображение монеты; 3) какое изображение дает лупа — действительное или мнимое; 4) какое увеличение дает лупа.

Анализ физической проблемы. Лупу можно считать тонкой линзой, поэтому воспользуемся формулой тонкой линзы. Фокусное расстояние найдем, воспользовавшись определением оптической силы линзы.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Найти:

Линзы в физике - виды, формулы и определения с примерами

Поиск математической модели, решение

По определению Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы: Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами Следовательно, Линзы в физике - виды, формулы и определения с примерами

Зная расстояние Линзы в физике - виды, формулы и определения с примерами определим увеличение Линзы в физике - виды, формулы и определения с примерами

Найдем значения искомых величин:

Линзы в физике - виды, формулы и определения с примерами

Знак «-» перед значением Линзы в физике - виды, формулы и определения с примерами говорит о том, что изображение мнимое.

Ответ: Линзы в физике - виды, формулы и определения с примерами изображение мнимое; Линзы в физике - виды, формулы и определения с примерами

Подводим итоги:

В зависимости от типа линзы (собирающая или рассеивающая) и месторасположения предмета относительно данной линзы получают разные изображения предмета:

Расположение предмета Характеристика изображения в линзе
собирающей рассеивающей
За двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, уменьшенное, перевернутое мнимое, уменьшенное, прямое
В двойном фокусе линзы Линзы в физике - виды, формулы и определения с примерами действительное, равное, перевернутое
Между фокусом и двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, увеличенное, перевернутое
В фокусе линзы Линзы в физике - виды, формулы и определения с примерами изображения нет
Между линзой и фокусом Линзы в физике - виды, формулы и определения с примерами мнимое, увеличенное, прямое

Расстояние Линзы в физике - виды, формулы и определения с примерами от предмета до линзы, расстояние Линзы в физике - виды, формулы и определения с примерами от линзы до изображения и фокусное расстояние Линзы в физике - виды, формулы и определения с примерами связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Дифракция света
  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света

Формула тонкой линзы. Увеличение линзы

Гипермаркет знаний>>Физика и астрономия>>Физика 11 класс>> Формула тонкой линзы. Увеличение линзы

                                         § 65 ФОРМУЛА ТОНКОЙ ЛИНЗЫ. УВЕЛИЧЕНИЕ ЛИНЗЫ

Выведем формулу, связывающую три величины: расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F.

Из подобия треугольников АОВ и A1B1O (см. рис. 8.37) следует равенство

Формула тонкой линзы

10.02-73.jpg

Уравнение (8.10), как и (8.11), принято называть формулой тонкой линзы. Величины d, f и. F могут быть как поло-нсительными, так и отрицательными. Отметим (без доказательства), что, применяя формулу линзы, нуншо ставить знаки перед членами уравнения согласно следующему правилу. Если линза собирающая, то ее фокус действительный, и перед членом 10.02-74.jpg ставят знак «+». В случае рассеивающей линзы F < 0 и в правой части формулы (8.10) будет стоять отрицательная величина. Перед членом 10.02-75.jpg ставят знак «+», если изображение действительное, и знак «-» в случае мнимого изображения. Наконец, перед членом 10.02-76.jpg ставят знак «+» в случае действительной светящейся точки и знак «-», если она мнимая (т. е. на линзу падает сходящийся пучок лучей, продолжения которых пересекаются в одной точке).

В том случае, когда F, f или d неизвестны, перед соответствующими членами 10.02-77.jpg ставят знак «+». Но если в результате вычислений фокусного расстояния или расстояния от линзы до изображения либо до источника получается отрицательная величина, то это означает, что фокус, изображение или источник мнимые.

Увеличение линзы. Изображение, получаемое с помощью линзы, обычно отличается своими размерами от предмета. Различие размеров предмета и изображения характеризуют увеличением.

Линейным увеличением называют отноптение линейного размера изображения к линейному размеру предмета.

Для нахождения линейного увеличения обратимся снова к рисунку 8.37. Если высота предмета АВ равна h, а высота изображения А1В1 равна Н, то

10.02-78.jpg

есть линейное увеличение.

Из подобия треугольников АОВ и ОА1В1 следует, что

10.02-79.jpg

Следовательно, увеличение линзы равно отношению расстояния от изображения до линзы к расстоянию от линзы до предмета:

10.02-80.jpg

Линзы являются основной частью фотоаппарата, проекционного аппарата, микроскопа, телескопа. В глазу тоже есть линза — хрусталик.

7.02-1.jpg
1.    Какую линзу называют тонкой!
2.    Что называется главным фокусом линзы!
3.    Какие лучи удобно использовать для построения изображения в линзе!
4.    Что называется увеличением линзы!

7.02-22.jpg     ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 1. На рисунке 8.39 показано расположение главной оптической оси MN линзы, светящейся точки S и ее изображения S1. Найдите построением оптический центр линзы и ее фокусы. Определите, собирающей или рассеивающей является эта линза, действительным или мнимым является изображение.

Решение. Луч, проходящий через оптический центр линзы, не отклоняется от своего направления. Поэтому оптический центр О совпадает с точкой пересечения прямых SS1 и MN (рис. 8.40). Проведем луч SK, параллельный главной оптической оси. Преломленный луч KS1 пройдет через фокус. Зная, что луч, падающий на линзу через фокус, после преломления идет параллельно главной оптической оси, находим другой фокус. Линза является собирающей, а изображение — действительным.

Формула тонкой линзы

2. Изображение предмета имеет высоту Н = 2 см. Какое фокусное расстояние F должна иметь линза, расположенная на расстоянии f = 4 м от экрана, чтобы изображение данного предмета на экране имело высоту h = 1 м?

Решение. Из формулы линзы

Формула тонкой линзы
 
  7.02-25.jpg                                                                          УПРАЖНЕНИЕ 9

 1.    С помощью линзы на вертикальном экране получено действительное изображение электрической лампочки. Как изменится изображение, если закрыть верхнюю половину линзы?

2.    Фотоаппарат дает на пленке изображение человеческого лица. Поясните с помощью чертижа, почему изображение леса, виднеющегося вдали за человеком, получается нерезким. В какую сторону следует сместить объектив, чтобы лес был изображен четко? Будет ли при этом четким изображение лица?

3.    Почему ныряльщик без маски плохо различает предметы под водой?

4.    Постройте изображение предмета, помещенного перед собирающей линзой, в следующих случаях:

1) d > 2F; 2) d = 2F; 3) F < d < 2F; 4) d < F.

5.    На рисунке 8.41 линия АВС изображает ход луча через тонкую рассеивающую линзу. Определите построением положения главных фокусов линзы.

Формула тонкой линзы

6.    Постройте   изображение   светящейся точки в рассеивающей линзе,  используя три «удобных» луча.      

7.    Светящаяся точка находится в фокусе рассеивающей линзы. На каком расстоянии от линзы находится изображение? Постройте ход лучей.

Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.

Физика для 11 класса, учебники и книги по физике скачать, библиотека онлайн

Содержание урока
1236084776 kr.jpg конспект урока
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки

©  Автор системы образования 7W и Гипермаркета Знаний — Владимир Спиваковский

При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов —
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других «взрослых» тем.

Разработка — Гипермаркет знаний 2008-

Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email:

Понравилась статья? Поделить с друзьями:
  • Как найти сумму наклонных
  • Как найти расстояние между конденсаторами формула
  • Как составить алиментное соглашение дистанционно
  • Как можно найти дающие девушки
  • Как найти специалиста по продвижению сайта