Как найти узел сети

Привет, посетитель сайта ZametkiNaPolyah.ru! Продолжаем изучать основы работы компьютерных сетей, в этой теме я предлагаю разобраться со структурой IP-адреса и откуда вообще берутся какие-то номера сети и номера узлов, ведь IP-адрес с виду цельная и неделимая сущность. Также в этой записи мы коротко поговорим о маске подсети и зачем она нужна, увидим, что когда-то было всё плохо и сети были классовыми, а сейчас всё стало хорошо благодаря CIDR и VLSM и сети стали бесклассовые и в завершении посмотрим на формы записи IP-адресов в протоколе IPv4.

Если тема компьютерных сетей вам интересна, то можете ознакомиться с другими записями курса.

Оглавление первой части: «Основы взаимодействия в компьютерных сетях».

Оглавление четвертой части: «Сетевой уровень: протокол IP и его версия IPv4».

4.2.1 Введение

Содержание статьи:

  • 4.2.1 Введение
  • 4.2.2 Структура IP-адреса и маска подсети
  • 4.2.3 Классовые сети
  • 4.2.4 Бесклассовые сети (CIDR) и маска подсети переменной длины (VLSM)
  • 4.2.5 Форма записи IP-адреса и сокращения
  • 4.2.6 Выводы

Структура IP-адреса — это одна из самых важных тем для понимания принципов работы протокола IP, эта тема очень тесно связана с маршрутизацией, механизмом работы классовых сетей и механизмом маски подсети переменной длинны, если вы не разберетесь со структурой IP-адреса, вы, конечно, не будете испытывать проблем с тем, чтобы настроить на своем ПК доступ в Интернет, но у вас не будет понимания принципов работы IP сетей. Надеюсь, я вас убедил в том, что тема важная, хоть и небольшая.

4.2.2 Структура IP-адреса и маска подсети

В протоколе IP есть две очень важные вещи, которые сделали его вездесущим. Первое – это заголовок IP-пакета, который определяет функционал протокола, а второе – это IP-адрес, который, следует заметить, является частью заголовка, но о нем стоит поговорить отдельно, чем мы сейчас и займемся. Я более чем уверен, что вы уже видели IP-адреса и более того, работали с ними, но если нет, то вот вам пример: 192.168.1.0. Для человека IP-адреса в протоколе IPv4 чаще всего представлены вот в таком виде.

Тут ничего сложного нет. Для нас IP-адрес разбит на четыре кусочка, разделителем между кусочками служат точки, каждый такой кусочек представляет собой один байт или один октет, следовательно, максимально возможное число, которое можно записать равно 255, а минимальное число ноль. Получается, что чисто теоретически можно использовать адреса от 0.0.0.0 до 255.255.255.255. Правда часть из этих адресов зарезервирована под специальные нужды, это мы обсудим в отдельной теме. Сейчас же будем считать, что нам доступно два в тридцать второй степени IP-адресов или 4 294 967 296, которых уже катастрофически не хватает, поэтому происходить плавное внедрение протокола IPv6.

На самом деле IP-адрес – это не просто четыре числа, разделенных точками, а более интересная и сложная сущность. Во-первых, следует заметить, что маршрутизаторы не знают десятичной системы счисления, так же, как и абонентские узлы, для них IP-адрес представлен набором нулей и единиц в нашем случае (192.168.1.0), IP-адрес для машины выглядит как-то так: 11000000 (192) 10101000 (168) 00000001 (1) 00000000 (0). Октеты в данном случае я разделил пробелами, думаю, тут всё очевидно: каждый байт – это восемь двоичных значений (0 или 1), а всего у нас для IP-адреса выделено четыре байта, то есть 32 бита, отсюда вытекает и два в тридцать второй степени IP-адресов.

Я сразу оговорился, что IP-адрес более сложная штука, чем кажется на первый взгляд. Дело всё в том, что IP-адрес включает в себя два параметра, которые позволяют идентифицировать узел в глобальной сети: номер узла и номер сети. Вообще, протокол IP предусматривает два механизма разбиения IP-адреса на номер сети и номер узла. Первый механизм называется классовая адресация, а второй механизм называется CIDR (Classless Inter-Domain Routing) или бесклассовая адресация. В этой теме мы сделаем поверхностный обзор этих механизмов, а в дальнейшем разберемся с ними детально.

Сейчас же сделаем небольшое отступление и поговорим про байты и биты, а если быть более точным, то про порядок нумерации байтов и битов в байте. Для примера возьмем IP-адрес 192.168.1.0 и запишем его в двоичном виде.

4.2.1 Номера октетов и битов в IP-адресе

Рисунок 4.2.1 Номера октетов и битов в IP-адресе

В таблице показана нумерация октетов и бит в октетах так, как это реализуется в сетях модели TCP/IP. Эта нумерация справедлива как для IP-адреса в отдельности, так для всего заголовка IP-пакета. Крайний левый байт или самый первый байт называется старшим и его порядковый номер ноль, последний байт — младший и его порядковый номер три. То же самое относится и к битам: самый старший бит имеет порядковый номер ноль, а самый младший бит в байте имеет порядковый номер семь. Такая нумерация называется от старшего к младшему или big-endian, иногда такой порядок называется сетевым порядком.

Кстати, если у вас процессор интеловской архитектуры, то он нумерует байты и биты в обратном порядке, то есть от младшего к старшему, big-endian или интеловский порядок нумерации. Есть еще смешанный порядок и переключаемый порядок, но это нам уже не очень интересно. Почему в компьютерных сетях используется прямой порядок? Да очень просто, дело в том, что в таком порядке числа удобнее сравнивать, а сетевые устройства в основном только и делают, что сравнивают то, что им пришло в пакетах с тем, что записано в их конфигурациях или памяти.

4.2.3 Классовые сети

Классовые сети были единственным способом разделить пространство IP-адресов между всеми желающими до 1993 года, то есть с 1981 по 1993 год, в 1993 году появился механизмы VLSM и CIDR, которые сделали процесс деления более гибким, из этого можно сделать вывод, что в начале девяностых уже появились первые проблемы с нехваткой IP-адресов в протоколе IPv4.

Классовая адресация, как ясно из названия, делит всё пространство IP-адресов на классы, всего этих классов пять: A, B, C, D, E. Как понять к какому классу принадлежит IP-адрес? Да очень просто! Посмотреть на его первые биты. Приведу небольшой список, чтобы было понятно, к какому классу какой IP-адрес относится:

  • сети класса А определяются значением первого бита, если первый бит IP-адреса нулевой, то это означает, что он относится к сети класса А, во всех остальных случаях – это другой класс;
  • сети класса B определяются по значениям первых двух бит IP-адреса, IP-адрес относится к сети класса B в том случае, если первый бит имеет значение 1, а второй 0;
  • IP-адрес будет принадлежать к сети класса C, если первый бит адреса будет равен 1, второй бит тоже 1, а третий будет 0;
  • сети класса D определяются по первым четырем битам IP-адреса, при этом первый бит 1, второй бит 1, третий бит 1, а четвертый 0, стоит добавить, что сети класса D использовались для многоадресной рассылки или иначе multicast;
  • и наконец сети класса E были зарезервированы и их нельзя было использовать простым смертным, определялись они первыми четырьмя битами, каждый из которых должен был иметь значение 1.

Для ясности давайте посмотрим на примере IP-адресов для каждого класса:

  1. Сеть класса А. IP-адрес в десятичном виде: 10.10.0.1. IP-адрес в двоичном виде: 00001010 00001010 00000000 00000001. Обратите внимание на то, что первый бит равен нулю, он как раз и определяет, что данный IP-адрес принадлежит к сети класса A.
  2. Сеть класса B. IP-адрес в десятичном виде: 130.25.25.12. IP-адрес в двоичном виде: 1000 0010 00011001 00011001 000011000. Принадлежность к данному классу определяют первых два бита: 10.
  3. Сеть класса C. IP-адрес в десятичном виде: 192.168.1.0. IP-адрес в двоичном виде: 11000000 10101000 00000001 00000000. Значение первых трех бит определяют принадлежность этого адреса к классу C.
  4. Сеть класса D. IP-адрес в десятичном виде: 224.0.0.6. IP-адрес в двоичном виде: 11100000 00000000 00000000 00000110. Значение первых четырех бит выделены жирным.
  5. Сеть класса E. IP-адрес в десятичном виде: 240.10.10.10. IP-адрес в двоичном виде: 11110000 00001010 00001010 00001010.

С классами сетей всё ясно и понятно, остается нераскрытым вопрос: как понять из какой подсети тот или иной IP-адрес, но об этом мы поговорим в теме про классовые сети, сейчас же только отмечу, что принадлежность IP-адреса к той или иной подсети определяется значением некоторых бит в самом IP-адресе и фиксированной маской, которая в любом случае будет сопровождать этот адрес.

4.2.4 Бесклассовые сети (CIDR) и маска подсети переменной длины (VLSM)

Бесклассовая адресация или CIDR – это механизм разделения сети на подсети в современных сетях передачи данных, этот механизм позволил существенно экономить адреса и не тратить лишнего. CIDR тесно связан с понятием VLSM (variable length subnet mask) или маска подсети переменной длинны, можно просто маска подсети или маска, на данный момент вас поймут верно. Становится понятно, что здесь уже нет жестких рамок классов, поскольку и самих классов нет. Теперь для того чтобы понять к какой подсети относится IP-адрес, самого IP-адреса недостаточно, нужна еще и маска подсети, которая, следует сказать, не передается по сети, она указывается только на конечных узлах и маршрутизаторах (а, например, L2 коммутаторы и хабы вообще ничего не знают про IP-адреса, первые работают на канальном уровне, а вторые реализуют механизмы физического уровня модели OSI 7, про разницу между хабами, коммутаторами и роутерами читайте здесь), и для нее нет отдельного поля в IP-пакете.

Как выглядит маска подсети? Да на самом деле, как IP-адрес, вот несколько примеров маски: 255.255.255.0, 255.255.254.0, 255.248.0.0. Заметили, здесь общего? Ну, кроме того, что во всех примерах первый октет 255. Общая составляющая будет заметна, если написать все эти маски в двоичном виде:

  • 255.255.255.0: 11111111 11111111 11111111 00000000;
  • 255.255.254.0: 11111111 11111111 11111110 00000000;
  • 255.248.0.0: 11111111 11111000 00000000 00000000.

Обратите внимание: у каждой маски вначале идут только единицы, затем идут только нули, чередоваться нули и единицы в маске подсети не могут. Например, не может быть вот такой маски: 255.254.255.0 или в двоичной системе: 11111111 11111110 11111111 00000000. И это очень важно, поскольку именно на границе нулей и единиц маски подсети находится граница между номером сети и номером узла в IP-адресе.

На примере будет все немного яснее, давайте возьмем следующий IP-адрес и маску: 192.168.1.25/24, иначе это можно было бы записать так: 192.168.1.25 с маской 255.255.255.0, число 24 означает количество единиц в маске. Если вам просто дать этот IP-адрес без маски, то вы не сможете сказать: какие биты этого IP-адреса отданы под номер сети, а какие под номер узла, с маской же все становится понятно. Чтобы понять где здесь номер сети, а где номер узла, нужно перевести и маску, и IP-адрес в двоичную систему счисления. Давайте сделаем всё это в виде таблицы.

4.2.2 Переводим IP-адрес и маску подсети в двоичный вид

Рисунок 4.2.2 Переводим IP-адрес и маску подсети в двоичный вид

Сразу отметим, что те биты IP-адреса, напротив которых в маске подсети стоят единицы, будут относиться к номеру сети, а те биты адреса, напротив которых у маски нули, относятся к номеру хоста. Чтобы узнать номер узла и номер сети нужно выполнить операцию «логическое И» между соответствующими битами IP-адреса и маски. Операция «логическое И» в двоичной системе счисления эквивалентна операции умножения в десятичной: 1×1=1, 1×0=0, 0×0=0. Вы уже понимаете, что номер сети в IP-адресе при использовании CIDR и VLSM определяется маской, а именно единичными битами маски, то есть для нашего случая номер сети это: 192.168.1.0, а под номера узлов у нас остается диапазон с 192.168.1.1 по 192.168.1.254, заметьте, что есть еще 192.168.1.255 — это широковещательный IP-адрес для данной сети и его нельзя назначить узлу или интерфейсу маршрутизатора.

Мы рассмотрели простой пример использования маски подсети, в данном случае граница между номером сети и номером узла в IP-адресе проходит по границе предпоследнего октета, но не всегда бывает так, например, маска 255.248.0.0 проводит границу между номером сети и номером узла посередине октета, но о таких случаях мы поговорим в отдельной теме, посвященной бесклассовой адресации (CIDR) и механизму маски подсети (VLSM).

4.2.5 Форма записи IP-адреса и сокращения

Теперь вас стоит немного удивить и сказать, что ни один официальный документ, посвященный IP протоколу, не говорит нам о том, как правильно записывать IP-адрес в документах, на бумаге или в конфигурациях того или иного устройства. На самом деле IP-адрес — это число, которое можно записать в любой системе счисления, хоть в восьмеричной.

Форма записи октетов, разделенных точками, просто удобна для человека: 127.0.0.1. Но для машины IP-адрес число, которое может находиться в диапазоне от 00000000 00000000 00000000 00000000 до 11111111 11111111 11111111 11111111 или в десятичной системе счисления: от 0 до 4 294 967 295. И вы понимаете, что IP-адрес 127.0.0.1 — это не число 127001, это вот такое число 01111111 00000000 00000000 00000001 или в десятичной системе: 2 130 706 433. Более того, если вы запустите командую строку или эмулятор терминала в своей операционной системе, то сможете пропинговать IP-адрес 127.0.0.1, используя число выше, если не верите, то смотрите листинг ниже.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Microsoft Windows [Version 10.0.17134.228]

(c) Корпорация Майкрософт (Microsoft Corporation), 2018. Все права защищены.

C:UsersDell>ping 2130706433

Обмен пакетами с 127.0.0.1 по с 32 байтами данных:

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Статистика Ping для 127.0.0.1:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приемапередачи в мс:

Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек

C:UsersDell>

Эстетами или проще говоря тем, кому хочется понтанутся, было придумано еще два способа записи IP-адресов в десятичном виде, эти способы идут к нам из стека BSD и функции inet_aton (). Первый способ записи выглядит так: 8bit.24bit. Вот так будет выглядеть IP-адрес в 127.0.0.1: 127.1, в двоичном виде он будет выглядеть так: 01111111.000000000000000000000001. То есть под первое число выделено 8 бит, а под второе 24.  Windows вполне себе понимает такую форму записи.

C:UsersDell>ping 127.1

Обмен пакетами с 127.0.0.1 по с 32 байтами данных:

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Статистика Ping для 127.0.0.1:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приемапередачи в мс:

Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек

Чтобы было понятнее, приведу еще один пример: 127.267894, чтобы понять, что это за IP, вам нужно будет перевести его в двоичный вид, разбить на октеты и восстановить его в том виде, к которому мы привыкли или просто попробовать пропинговать адрес:

C:UsersDell>ping 127.267894

Обмен пакетами с 127.4.22.118 по с 32 байтами данных:

Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128

Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128

Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128

Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128

Статистика Ping для 127.4.22.118:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приемапередачи в мс:

Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек

Вторая сокращенная форма записи IP-адреса выглядит так: 8bit.8bit.16bit. Адрес 127.0.0.1 в этой форме можно записать так: 127.0.1. Винда понимает и эту форму:

C:UsersDell>ping 127.0.1

Обмен пакетами с 127.0.0.1 по с 32 байтами данных:

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Статистика Ping для 127.0.0.1:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приемапередачи в мс:

Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек

Для примера давайте пропингуем адрес 127.99.259, чтобы посмотреть как происходит преобразование:

C:UsersDell>ping 127.99.259

Обмен пакетами с 127.99.1.3 по с 32 байтами данных:

Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128

Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128

Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128

Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128

Статистика Ping для 127.99.1.3:

Пакетов: отправлено = 4, получено = 4, потеряно = 0

(0% потерь)

Приблизительное время приемапередачи в мс:

Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек

Нормальный человек никогда не будет вам рекомендовать использовать для записи IP-адреса обычные числа или формы 8bit.24bit, 8bit.8bit.16bit. Дело в том, что эти формы записи IP-адресов настолько непривычны, что не всем удобно и понятно с ними работать, вас могут просто банально не понять, если вместо IP-адреса вы напишите огромное число или сокращенную форму записи. Второй момент заключается в том, что не всё оборудование и не каждая программа сможет работать с такими формами записи IP-адресов, нет никакой гарантии того, что разработчик софта вообще знал о том, что такие формы допустимы в протоколе IP.

4.2.6 Выводы

Итак, какие выводы можно сделать по IP-адресам в протоколе IPv4 и их структуре? IP-адрес состоит из двух частей: номера сети и номера узла. Для отделения мух от котлет у нас есть два механизма: классовая адресация, которая уже не используется из-за неэкономного расходования ограниченного ресурса IP-адресов, а также механизмы VLSM и CIDR, которые позволяют очень гибко делить сети на подсети. Оба этих механизма мы рассмотрим более подробно, сейчас же был просто поверхностный взгляд.

Также стоит сказать, что IP-адреса узлам назначаются администратором вручную или при помощи DHCP-сервера, который настраивает администратор. Если же у вас сеть разделена на подсети, то у каждой подсети должен быть уникальный номер, а еще внутри подсети каждый узел должен иметь уникальный номер.

Нужно сказать еще и о том, что очень часто вместе с IP-адресом узла, нам нужно будет использовать IP-адрес шлюза и маску сети, обе эти настройки никак не передаются по сети, поскольку для них нет поля в заголовке IP-пакета. В заголовке есть только IP-адрес источника и IP-адрес назначения, этой информации хватает маршрутизатору для того, чтобы выбрать направление, по которому будет направлен пакет.

Для вычисления номера сети по заданному
IP-адресу и маске необходимо применить
побитовую операцию “И” к адресу и
маске. Такая операция называется
наложением маски на
адрес.

На
рисунке 3
представлено
табличное
побитовой
операции “И”.

1-ый
операнд

2-ой
операнд

Значение
“И”

0

0

0

1

0

0

0

1

0

1

1

1

Рис.
3.
Определение
побитовой
операции
“И”

Для вычисления номера узла по заданному
IP-адресу и маске
необходимо применить
побитовую операцию “И” к адресу и
результату применения побитовой операции
“НЕ” к маске.

На
рисунке 4
представлено
табличное
определение
унарной операции
побитового
отрицания

“НЕ”
(побитового
дополнения).

Операнд

Значение
“НЕ”

0

1

1

0

Пример
7

Рис.
4.
Определение
побитовой
операции
“НЕ”

Применим побитовую
операцию “И”
к однобайтовым
числам 185
и 221.

Представим
числа в
двоичной форме:
185 =
10111001, 221
= 11011101.

10111001

11011101


И
10011001

Применим побитовую
операцию “НЕ”
к числу
185.

10111001

НЕ

01000110

Пример
8

Вычислим
номер сети
и номер
узла для
адреса 215.17.125.177
и маски
255.255.255.240.

IP-адрес:
215.17.125.177
(11010111.00010001.01111101.10110001)

Маска: 255.255.255.240
(11111111.11111111.11111111.11110000)

В этом
случае номер
сети (Н.с.)
и номер
узла (Н.у.)
будут следующими:

Н.с.:

215.17.125.176

(11010111.00010001.01111101.10110000)

Н.у.:

0.0.0.1

(00000000.00000000.00000000.00000001)

Пример
9

Вычислим
номер сети
и номер
узла для
адреса
67.38.173.245 и
маски 255.255.240.0.

IP-адрес:
67.38.173.245
(01000011.00100110.10101101.11110101)

Маска: 255.255.240.0
(11111111.11111111.11110000.00000000)

Н.с.: 67.38.160.0 (01000011.00100110.10100000.00000000)

Н.у.: 0.0.13.245 (00000000.00000000.00001101.11110101)

Соответствие блоков адресов номерам сетей на основе масок

При использовании маски, так же, как и
в случае адресации на основе классов,
номер сети определяет
блок адресов
с одинаковым префиксом.

Пример
10

В маске
255.255.255.192 (11111111.11111111.11111111.11000000) выделено
26 разрядов под
номер сети и
6 разрядов под
номер узла.

Номеру
сети 192.168.74.64
с данной
маской
соответствует
блок адресов:

Маска:

11111111.11111111.11111111.11000000

(255.255.255.192)

Н.с:

11000011.10101000.01001010.01000000

(192.168.74.64)

Адрес
1:

11000011.10101000.01001010.01000000

(192.168.74.64)

Адрес
2:

11000011.10101000.01001010.01000001

(192.168.74.65)

Адрес
3:

11000011.10101000.01001010.01000010

(192.168.74.66)

……………………

Адрес
63:

11000011.10101000.01001010.01111110

(192.168.74.126)

Адрес
64:

11000011.10101000.01001010.01111111

(192.168.74.127)

Всего в этом блоке 26 = 64
адресов (192.168.74.64 – 192.168.74.127). Все
адреса имеют
одинаковый
префикс (первые 26 разрядов):

11000011.10101000.01001010.01

Пример
11

В маске 255.255.254.0 (1111111.11111111.11111110.00000000)
выделено 23
разряда под номер
сети и
9 разрядов под
номер узла.

Номеру
сети 192.168.74.0
c данной
маской
соответствует
блок адресов:

Маска:

11111111.11111111.11111110.00000000
(255.255.254.0)

Н.c:

11000011.10101000.01001010.00000000
(192.168.74.0)

Адрес
1:

11000011.10101000.01001010.00000000
(192.168.74.0)

Адрес
2:

11000011.10101000.01001010.00000001
(192.168.74.1)

Адрес
3: 11000011.10101000.01001010.00000010
(192.168.74.2)

……………………

Адрес
511:
11000011.10101000.01001011.11111110
(192.168.75.254)

Адрес
512:
11000011.10101000.01001011.11111111
(192.168.75.255)

Всего в этом блоке 29 = 512
адресов (192.168.74.0 – 192.168.75.255). Все адреса
имеют одинаковый
префикс (первые 23 разряда):

11000011.10101000.0100101

Замечание: размер блока адресов,
соответствующий некоторой маске, всегда
равен степени
двойки.

  • Статьи по MikroTik
  • Статьи из Telegram
  • Договор-оферта
  • Политика конфиденциальности

ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ

Кратко о рассрочке

  • Возможна только для граждан РФ.
  • Банк-партнер Тинькофф.
  • Без переплаты и первоначального взноса.
  • Текущие клиенты подтверждают заявку онлайн, а к новым приедет подписать договор сотрудник банка.

Выберите интересующее вас обучение и отправьте запрос. Мы пришлем ссылку на оформление заявки.

Кратко о рассрочке

  • Возможна только для граждан РФ.
  • Банк-партнер Тинькофф.
  • Без переплаты и первоначального взноса.
  • Текущие клиенты подтверждают заявку онлайн, а к новым приедет подписать договор сотрудник банка.

Выберите интересующее вас обучение и отправьте запрос. Мы пришлем ссылку на оформление заявки.

Калькулятор производит расчет адреса сети IPv4, широковещательного адреса, ip-адрес первого узла, ip-адрес последнего узла, количество узлов в заданной сети, маску подсети и инверсию маски (wildcard mask).

Данные представлены в десятичной и двоичных системах исчисления.

При построении сети, классы подсетей выбираются исходя из предполагаемого количества узлов в компьютерной сети. Если изначально выбрана подсеть вмещающая малое количество узлов (например, класс С c маской 255.255.255.0), при большом росте компьютерной сети часто приходится менять подсеть и маску подсети, чтобы не усложнять адресацию.

И наоборот, если изначально выбрана подсеть включающая в себя огромное количество хостов (например, класса А с маской 255.0.0.0), то при возникновении в компании филиальной сети, приходится сжимать подсети чтобы выделять подсети под филиалы.

Использование:

Для того, чтобы рассчитать сетевые параметры, укажите IP-адрес хоста и маску подсети.

Справочная информация для IPv4:

Адреса зарезервированные для особых целей:

Подсеть Назначение
0.0.0.0/8 Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8 Для использования в частных сетях.
127.0.0.0/8 Подсеть для коммуникаций внутри хоста.
169.254.0.0/16 Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случает отсутствия сервера DHCP.
172.16.0.0/12 Для использования в частных сетях.
100.64.0.0/10 Для использования в сетях сервис-провайдера.
192.0.0.0/24 Регистрация адресов специального назначения.
192.0.2.0/24 Для примеров в документации.
192.168.0.0/16 Для использования в частных сетях.
198.51.100.0/24 Для примеров в документации.
198.18.0.0/15 Для стендов тестирования производительности.
203.0.113.0/24 Для примеров в документации.
240.0.0.0/4 Зарезервировано для использования в будущем.
255.255.255.255 Ограниченный широковещательный адрес.

Зарезервированные адреса, которые маршрутизируются глобально.

Подсеть Назначение
192.88.99.0/24 Используются для рассылки ближайшему узлу. Адрес 192.88.99.0/32 применяется в качестве ретранслятора при инкапсуляции IPv6 в IPv4 (6to4)
224.0.0.0/4 Используются для многоадресной рассылки.

Маски и размеры подсетей

Маска подсети Префикс, бит Количество подсетей Количество хостов Количество адресов Класс подсети
128.0.0.0 /1   2147483646 2147483648 А
192.0.0.0 /2   1073741822 1073741824 А
224.0.0.0 /3   536870910 536870912 А
240.0.0.0 /4   268435454 268435456 А
248.0.0.0 /5   134217726 134217728 А
252.0.0.0 /6   67108862 67108864 А
254.0.0.0 /7   33554430 33554432 А
255.0.0.0 /8   16777214 16777216 А
255.128.0.0 /9   8388606 8388608 B
255.192.0.0 /10   4194302 4194304 B
255.224.0.0 /11   2097150 2097152 B
255.240.0.0 /12   1048574 1048576 B
255.248.0.0 /13   524286 524288 B
255.252.0.0 /14   262142 262144 B
255.254.0.0 /15   131070 131072 B
255.255.0.0 /16   65534 65536 B
255.255.128.0 /17 2 32766 32768 C
255.255.192.0 /18 4 16382 16384 C
255.255.224.0 /19 8 8190 8192 C
255.255.240.0 /20 16 4094 4096 C
255.255.248.0 /21 32 2046 2048 C
255.255.252.0 /22 64 1022 1024 C
255.255.254.0 /23 128 510 512 C
255.255.255.0 /24 256 254 256 C
255.255.255.128 /25 2 126 128 C
255.255.255.192 /26 4 62 64 C
255.255.255.224 /27 8 30 32 C
255.255.255.240 /28 16 14 16 C
255.255.255.248 /29 32 6 8 C
255.255.255.252 /30 64 2 4 C
255.255.255.254 /31   2* 2 C
255.255.255.255 /32   1* 1 C

Время на прочтение
5 мин

Количество просмотров 360K

Доброго времени суток, уважаемые читатели Хабра!

Не так давно я написал свою первую статью на Хабр. В моей статье была одна неприятная шероховатость, которую моментально обнаружили, понимающие в сетевом администрировании, пользователи. Шероховатость заключается в том, что я указал неверные IP адреса в лабораторной работе. Сделал это я умышленно, так как посчитал что неопытному пользователю будет легче понять тему VLAN на более простом примере IP, но, как было, совершенно справедливо, замечено пользователями, нельзя выкладывать материал с ключевой ошибкой.

В самой статье я не стал править эту ошибку, так как убрав её будет бессмысленна вся наша дискуссия в 2 дня, но решил исправить её в отдельной статье с указание проблем и пояснением всей темы.

Для начала, стоит сказать о том, что такое IP адрес.

IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной на основе стека протоколов TCP/IP (TCP/IP – это набор интернет-протоколов, о котором мы поговорим в дальнейших статьях). IP-адрес представляет собой серию из 32 двоичных бит (единиц и нулей). Так как человек невосприимчив к большому однородному ряду чисел, такому как этот 11100010101000100010101110011110 (здесь, к слову, 32 бита информации, так как 32 числа в двоичной системе), было решено разделить ряд на четыре 8-битных байта и получилась следующая последовательность: 11100010.10100010.00101011.10011110. Это не сильно облегчило жизнь и было решение перевести данную последовательность в, привычную нам, последовательность из четырёх чисел в десятичной системе, то есть 226.162.43.158. 4 разряда также называются октетами. Данный IP адрес определяется протоколом IPv4. По такой схеме адресации можно создать более 4 миллиардов IP-адресов.

Максимальным возможным числом в любом октете будет 255 (так как в двоичной системе это 8 единиц), а минимальным – 0.

Далее давайте разберёмся с тем, что называется классом IP (именно в этом моменте в лабораторной работе была неточность).

IP-адреса делятся на 5 классов (A, B, C, D, E). A, B и C — это классы коммерческой адресации. D – для многоадресных рассылок, а класс E – для экспериментов.

Класс А: 1.0.0.0 — 126.0.0.0, маска 255.0.0.0
Класс В: 128.0.0.0 — 191.255.0.0, маска 255.255.0.0
Класс С: 192.0.0.0 — 223.255.255.0, маска 255.255.255.0
Класс D: 224.0.0.0 — 239.255.255.255, маска 255.255.255.255
Класс Е: 240.0.0.0 — 247.255.255.255, маска 255.255.255.255

Теперь о «цвете» IP. IP бывают белые и серые (или публичные и частные). Публичным IP адресом называется IP адрес, который используется для выхода в Интернет. Адреса, используемые в локальных сетях, относят к частным. Частные IP не маршрутизируются в Интернете.

Публичные адреса назначаются публичным веб-серверам для того, чтобы человек смог попасть на этот сервер, вне зависимости от его местоположения, то есть через Интернет. Например, игровые сервера являются публичными, как и сервера Хабра и многих других веб-ресурсов.
Большое отличие частных и публичных IP адресов заключается в том, что используя частный IP адрес мы можем назначить компьютеру любой номер (главное, чтобы не было совпадающих номеров), а с публичными адресами всё не так просто. Выдача публичных адресов контролируется различными организациями.

Допустим, Вы молодой сетевой инженер и хотите дать доступ к своему серверу всем пользователям Интернета. Для этого Вам нужно получить публичный IP адрес. Чтобы его получить Вы обращаетесь к своему интернет провайдеру, и он выдаёт Вам публичный IP адрес, но из рукава он его взять не может, поэтому он обращается к локальному Интернет регистратору (LIR – Local Internet Registry), который выдаёт пачку IP адресов Вашему провайдеру, а провайдер из этой пачки выдаёт Вам один адрес. Локальный Интернет регистратор не может выдать пачку адресов из неоткуда, поэтому он обращается к региональному Интернет регистратору (RIR – Regional Internet Registry). В свою очередь региональный Интернет регистратор обращается к международной некоммерческой организации IANA (Internet Assigned Numbers Authority). Контролирует действие организации IANA компания ICANN (Internet Corporation for Assigned Names and Numbers). Такой сложный процесс необходим для того, чтобы не было путаницы в публичных IP адресах.

Поскольку мы занимаемся созданием локальных вычислительных сетей (LAN — Local Area Network), мы будем пользоваться именно частными IP адресами. Для работы с ними необходимо понимать какие адреса частные, а какие нет. В таблице ниже приведены частные IP адреса, которыми мы и будем пользоваться при построении сетей.

Из вышесказанного делаем вывод, что пользоваться при создании локальной сеть следует адресами из диапазона в таблице. При использовании любых других адресов сетей, как например, 20.*.*.* или 30.*.*.* (для примера взял именно эти адреса, так как они использовались в лабе), будут большие проблемы с настройкой реальной сети.

Из таблицы частных IP адресов вы можете увидеть третий столбец, в котором написана маска подсети. Маска подсети — битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.

У всех IP адресов есть две части сеть и узел.
Сеть – это та часть IP, которая не меняется во всей сети и все адреса устройств начинаются именно с номера сети.
Узел – это изменяющаяся часть IP. Каждое устройство имеет свой уникальный адрес в сети, он называется узлом.

Маску принято записывать двумя способами: префиксным и десятичным. Например, маска частной подсети A выглядит в десятичной записи как 255.0.0.0, но не всегда удобно пользоваться десятичной записью при составлении схемы сети. Легче записать маску как префикс, то есть /8.

Так как маска формируется добавлением слева единицы с первого октета и никак иначе, но для распознания маски нам достаточно знать количество выставленных единиц.

Таблица масок подсети

Высчитаем сколько устройств (в IP адресах — узлов) может быть в сети, где у одного компьютера адрес 172.16.13.98 /24.

172.16.13.0 – адрес сети
172.16.13.1 – адрес первого устройства в сети
172.16.13.254 – адрес последнего устройства в сети
172.16.13.255 – широковещательный IP адрес
172.16.14.0 – адрес следующей сети

Итого 254 устройства в сети

Теперь вычислим сколько устройств может быть в сети, где у одного компьютера адрес 172.16.13.98 /16.

172.16.0.0 – адрес сети
172.16.0.1 – адрес первого устройства в сети
172.16.255.254 – адрес последнего устройства в сети
172.16.255.255 – широковещательный IP адрес
172.17.0.0 – адрес следующей сети

Итого 65534 устройства в сети

В первом случае у нас получилось 254 устройства, во втором 65534, а мы заменили только номер маски.

Посмотреть различные варианты работы с масками вы можете в любом калькуляторе IP. Я рекомендую этот.

До того, как была придумана технология масок подсетей (VLSM – Variable Langhe Subnet Mask), использовались классовые сети, о которых мы говорили ранее.

Теперь стоит сказать о таких IP адресах, которые задействованы под определённые нужды.

Адрес 127.0.0.0 – 127.255.255.255 (loopback – петля на себя). Данная сеть нужна для диагностики.
169.254.0.0 – 169.254.255.255 (APIPA – Automatic Private IP Addressing). Механизм «придумывания» IP адреса. Служба APIPA генерирует IP адреса для начала работы с сетью.

Теперь, когда я объяснил тему IP, становиться ясно почему сеть, представленная в лабе, не будет работать без проблем. Этого стоит избежать, поэтому исправьте ошибки исходя из информации в этой статье.

Ссылка на лабу

Понравилась статья? Поделить с друзьями:
  • Как составить представление или характеристику
  • Как найти дату регистрации права собственности
  • Как найти свое резюме в сети
  • Как найти муку в молоке
  • Как мне найти работу в усть каменогорске