Как найти в какой четверти находится точка

Если посмотреть на числовую окружность , то можно заметить, что оси абсцисс и ординат разбивают ее на четыре части. Эти части называют четвертями и нумеруют в том порядке как их проходят, двигаясь в положительном направлении (против часовой стрелки).

Дело в том, что каждая четверть уникальна в плане знаков тригонометрических функций .

Например, для любого угла из второй четверти — синус положителен, а косинус , тангенс и котангенс отрицательны. А для любого угла из первой четверти — все четыре функции будут положительны.

Теперь давайте рассмотрим пример задачи, которую не решить без использования знаний про четверти.

Нам известен косинус, а найти нужно синус того же угла. Какая тригонометрическая формула связывает синус и косинус того же угла?
Основное тригонометрическое тождество. Запишем его.

Подставим известное, и проведем вычисления.

Важно понимать, что, например, первой четверти принадлежат не только углы от (0) до (frac<π><2>) , но и углы от (2π) до (frac<5π><2>) , и от (4π) до (frac<9π><2>) , и от (6π) до (frac<13π><2>) и так далее. Ведь как только мы заканчиваем полный оборот – кончается четвертая четверть и опять начинается первая.

Кроме того, нужно помнить, что углы могут откладываться в отрицательную сторону (по часовой стрелке), и тогда мы попадем в первую четверть только в конце круга. Ведь сначала мы пройдем четвертую четверть, потом в третью и т.д.

((0;-) (frac<π><2>) ()) — четвертая четверть

Ну и, конечно, мы можем в отрицательную сторону делать обороты, так же как и в положительную.

Единичная числовая окружность на координатной плоскости

п.1. Понятие тригонометрии

Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., — спроектирован с использованием тригонометрии.

Базовым объектом изучения в тригонометрии является угол.

Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.

п.2. Числовая окружность

Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.

Числовая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0).
Точка с координатами (1;0) является началом отсчета , ей соответствует угол, равный 0.
Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным ; по часовой стрелке – отрицательным .
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90°, –120°, –180°.

п.3. Градусная и радианная мера угла

Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).

В целом, более обоснованной и естественной для измерения углов является радианная мера.

Найдем радианную меру прямого угла ∠AOB=90°.
Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr.
Длина дуги AB: (l_=frac<4>=frac<2pi r><4>=frac<pi r><2>.)
Тогда радианная мера угла: $$ angle AOB=frac>=frac<pi r><2cdot r>=frac<pi> <2>$$
30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
(frac<pi><6>) (frac<pi><4>) (frac<pi><3>) (frac<pi><2>) (frac<2pi><3>) (frac<3pi><4>) (frac<5pi><6>) (pi) (frac<3pi><2>) (2pi)

п.4. Свойства точки на числовой окружности

Построим числовую окружность. Обозначим O(0;0), A(1;0)

Каждому действительному числу t на числовой окружности соответствует точка Μ(t).
При t=0, M(0)=A.
При t>0 двигаемся по окружности против часовой стрелки, описывая дугу
AM=t. Точка M — искомая.
При t Например:
Отметим на числовой окружности точки, соответствующие (frac<pi><6>, frac<pi><4>, frac<pi><2>, frac<2pi><3>, pi), а также (-frac<pi><6>, -frac<pi><4>, -frac<pi><2>, -frac<2pi><3>, -pi)
Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности.
Отметим на числовой окружности точки, соответствующие (frac<pi><6>, frac<13pi><6>, frac<25pi><6>), и (-frac<11pi><6>).
Все четыре точки совпадают, т.к. begin Mleft(frac<pi><6>right)=Mleft(frac<pi><6>+2pi kright)\ frac<pi><6>-2pi=-frac<11pi><6>\ frac<pi><6>+2pi=frac<13pi><6>\ frac<pi><6>+4pi=frac<25pi> <6>end

п.5. Интервалы и отрезки на числовой окружности

Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.

Числовой промежуток Соответствующая дуга числовой окружности
Отрезок
$$ -frac<pi> <6>lt t lt frac<pi> <3>$$
а также, с учетом периода $$ -frac<pi><6>+2pi klt tltfrac<pi><3>+2pi k $$
Интервал
$$ -frac<pi> <6>leq t leq frac<pi> <3>$$
а также, с учетом периода $$ -frac<pi><6>+2pi kleq tleqfrac<pi><3>+2pi k $$
Полуинтервал
$$ -frac<pi> <6>leq t ltfrac<pi> <3>$$
а также, с учетом периода $$ -frac<pi><6>+2pi kleq tltfrac<pi><3>+2pi k $$

п.6. Примеры

Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?

Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: begin BE=30^<circ>=frac<pi><6>.\ EC=60^<circ>=frac<pi><3>.\ AE=EC+CD=90^<circ>+30^<circ>=120^<circ>=frac<2pi><3>.\ ED=EC+CD=60^<circ>+90^<circ>=150^<circ>=frac<5pi><6>. end

Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: (-frac<pi><2>; frac<3pi><4>; frac<7pi><6>; frac<7pi><4>).

Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. begin -frac<pi><2>=-90^<circ>, frac<3pi><4>=135^<circ>\ frac<7pi><6>=210^<circ>, frac<7pi><4>=315^ <circ>end

Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: (-frac<11pi><2>; 5pi; frac<17pi><6>; frac<27pi><4>).

Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk — четное количество π), чтобы попасть в промежуток от 0 до 2π.
Далее – действуем, как в примере 2. begin -frac<11pi><2>=frac<-12+1><2>cdotpi=-6pi+frac<pi><2>rightarrow frac<pi><2>=90^<circ>\ 5pi=4pi+pirightarrow pi=180^<circ>\ frac<17pi><6>=frac<18-1><6>pi=3pi-frac<pi><6>rightarrow pi-frac<pi><6>=frac<5pi><6>\ frac<27pi><4>=frac<28-1><4>pi=7pi-frac<pi><4>rightarrow pi-frac<pi><4>=frac<3pi> <4>end

Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.

Сравниваем каждое число с границами четвертей: begin 0, fracpi2approxfrac<3,14><2>=1,57, piapprox 3,14\ 3pi 3cdot 3,14\ frac<3pi><2>approx frac<3cdot 3,14><2>=4,71, 2piapprox 6,28 end

(fracpi2lt 2lt pi Rightarrow ) угол 2 радиана находится во 2-й четверти
(pilt 4lt frac<3pi> <2>Rightarrow ) угол 4 радиана находится в 3-й четверти
(frac<3pi><2>lt 5lt 2pi Rightarrow ) угол 5 радиана находится в 4-й четверти
(7gt 2pi), отнимаем полный оборот: (0lt 7-2pilt fracpi2Rightarrow) угол 7 радиан находится в 1-й четверти.

Пример 5. Изобразите на числовой окружности множество точек ((kinmathbb)), запишите количество полученных базовых точек.

Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.

Единичная окружность

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

  • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
  • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
  • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
  • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

  • 2π радиан = 360°
  • 1 радиан = (360/2π) градусов
  • 1 радиан = (180/π) градусов
  • 360° = 2π радиан
  • 1° = (2π/360) радиан
  • 1° = (π/180) радиан

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

источники:

http://reshator.com/sprav/algebra/10-11-klass/edinichnaya-chislovaya-okruzhnost-na-koordinatnoj-ploskosti/

http://skysmart.ru/articles/mathematic/edinichnaya-okruzhnost

Координатные четверти


Координатные четверти

4.6

Средняя оценка: 4.6

Всего получено оценок: 124.

4.6

Средняя оценка: 4.6

Всего получено оценок: 124.

Человечество с самого начала своего существования нуждалось в определении своего места положения. Как узнать конкретное расположение точки с точностью до миллиметра? Только с помощью системы координат, об особенностях которой и пойдет речь сегодня.

Что такое система координат?

Система координат это комплекс мер, которые позволяют определить положение точки в пространстве или на плоскости.

В физике помимо комплекса определения положения точки используется еще и прибор для определения времени. В математике достаточно определить положение точки в один момент времени.

Существует две разновидности систем координат:

  • Прямоугольная система координат. Это система координат, которая была изобретена английским математиком Декартом, потому второе название системы координат: декартова. Система представляет собой два взаимно перпендикулярных луча. Началом отсчета является точка пересечения лучей, на лучах отмечают единичные отрезки.
  • Полярная система координат. Эта система куда более древняя. Она использовалась еще мореплавателями в древней Греции. В качестве координат используется еще и угол. Число откладывается на луче, от точки поднимается перпендикуляр. После из начала координат проводится прямая под заданным углом. Точка пересечения проведенной прямой и перпендикуляра и есть искомое положение точки.

Полярная система в современности используется крайне редко, она сложнее декартовой системы, а потому утратила свою популярность.

Координатные четверти

Два взаимно перпендикулярных луча образуют четыре координатные четверти. Горизонтальная ось называется осью абсцисс или осью Ох, вертикальная оси называется осью ординат или осью Оу. Начало координат рассекает оси на положительную и отрицательную часть.

Каждая из координатных четвертей имеет свой номер и обозначение в виде римской цифры. Сначала нумеруют верхние четверти, так верхняя правая четверть зовется первой, верхняя левая второй, нижняя левая третье, а нижняя правая четвертой.

Для того, чтобы узнать координаты точки в прямоугольной системе координат, следует опустить от точки перпендикуляры на оси и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты прописываются в скобочках, первой идет координата по оси Ох, второй по Оу.

Разберемся, какие координаты могут быть в осях:

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательна, а координата у положительна, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительна, а координата у отрицательна, то точка лежит в четвертой четверти.

Заключение

Что мы узнали?

Мы поговорили о системах координат. Выделили две системы координат. Поговорили о координатных четвертях, а также сказали, как определить расположение точки в зависимости от ее координат.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.6

Средняя оценка: 4.6

Всего получено оценок: 124.


А какая ваша оценка?

Какой координатной четверти принадлежит точка?

Определить четверть координатной плоскости, которой принадлежит точка. Координаты точки ввести с клавиатуры.

  • Если у точки обе координаты ( x и y ) положительны, то она принадлежит первой четверти.
  • Если координата x отрицательна, а y положительна, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то точка принадлежит третьей координатной четверти.
  • Если x положительна, а y отрицательна, то точка находится в IV четверти.

Следует иметь в виду, что использовать в программе четыре отдельные инструкции if не совсем правильно. Хотя такое решение даст верный результат, программу нельзя будет назвать эффективной, т.к. даже если первая проверка дала «правду», дальнейшие проверки будут продолжены, хотя в них нет никакого смысла. Поэтому правильным решением будет использование вложенных конструкций if-else. Это замечание не касается языка Python, т.к. в нем есть конструкция множественного ветвления (if-elif-else).

Поскольку точка может лежать на одной из двух координатных осей или находиться в начале координат, то значит могут быть ситуации, когда точка не принадлежит ни одной из четвертей. Эти случаи обрабатываются в отдельных ветках, либо опускаются. Из этого также следует, что если первые три проверки не сработали, то нельзя делать однозначный вывод, что точка принадлежит оставшейся четверти. Поэтому в программе сообщение о том, в какой четверти находится точка может быть только в теле if, но не else.

Как найти координаты точки?

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Определение координат точки

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

фиксируем: A (1; 2) и B (2; 3)

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
    Начало координат — точка O
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
    оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
     оси ординат, имеют одинаковые ординаты
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
    Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0)
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
    Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y)

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
    Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
    Подняться из этой точки параллельно оси Oy вверх на 2 единицы

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Люди добрые помогите с математикой. ПОЖАЛУЙСТА, УМОЛЯЮ.

1.Определи ординату данной точки: C(−3;−1).
Даны координаты точки. Определи, на которой координатной оси находится данная точка.

Точка P(0;18) находится на оси ординат или абсцисс.

2.Даны координаты точки. Определи, в какой координатной четверти находится данная точка.

Точка E(20;−12) находится в 1,2,3 или 4 четверти.

Определи, которая из данных точек находится в I квадранте координатной плоскости:

4.На координатной плоскости дана точка с координатами (5;5) .

Которые из данных координат являются координатами точки, симметричной данной точке относительно начальной точки системы координат?

1.Определи ординату данной точки: C(−3;−1). y=-1
Даны координаты точки. Определи, на которой координатной оси находится данная точка.

Точка P(0;18) находится на оси ординат

2.Даны координаты точки. Определи, в какой координатной четверти находится данная точка.

Точка E(20;−12) находится в 4 четверти.

Определи, которая из данных точек находится в I квадранте координатной плоскости:

4.На координатной плоскости дана точка с координатами (5;5) .

Которые из данных координат являются координатами точки, симметричной данной точке относительно начальной точки системы координат?

Перейти к содержанию

Какой координатной четверти принадлежит точка?

Просмотров 30.1к. Обновлено 29 октября 2021

  • Если у точки обе координаты (x и y) положительны, то она принадлежит первой четверти.
  • Если координата x отрицательна, а y положительна, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то точка принадлежит третьей координатной четверти.
  • Если x положительна, а y отрицательна, то точка находится в IV четверти.

Следует иметь в виду, что использовать в программе четыре отдельные инструкции if не совсем правильно. Хотя такое решение даст верный результат, программу нельзя будет назвать эффективной, т.к. даже если первая проверка дала «правду», дальнейшие проверки будут продолжены, хотя в них нет никакого смысла. Поэтому правильным решением будет использование вложенных конструкций if-else. Это замечание не касается языка Python, т.к. в нем есть конструкция множественного ветвления (if-elif-else).

Поскольку точка может лежать на одной из двух координатных осей или находиться в начале координат, то значит могут быть ситуации, когда точка не принадлежит ни одной из четвертей. Эти случаи обрабатываются в отдельных ветках, либо опускаются. Из этого также следует, что если первые три проверки не сработали, то нельзя делать однозначный вывод, что точка принадлежит оставшейся четверти. Поэтому в программе сообщение о том, в какой четверти находится точка может быть только в теле if, но не else.

Pascal


var x,y: integer;
begin
readln(x,y);
if (x>0) and (y>0) then
writeln('I quadrant')
else
if (x<0) and (y>0) then
writeln('II quadrant')
else
if (x<0) and (y<0) then
writeln('III quadrant')
else
if (x>0) and (y<0) then
writeln('IV quadrant');
end.



-5 3
II quadrant

Язык Си


#include

main() {
int x,y;
scanf("%d%d",&x,&y);
if (x>0 && y>0) printf("I");
else
if (x<0 && y>0) printf("II");
else
if (x<0 && y<0) printf("III");
else
if (x>0 && y<0) printf("IV");
printf("n");
}

Python


x = int(input("x="))
y = int(input("y="))
if x>0 and y>0:
print('I')
elif x<0 and y>0:
print('II')
elif x<0 and y<0:
print('III')
elif x>0 and y<0:
print('IV')



x=-3
y=-2
III

КуМир


алг координатная четверть
нач
цел x,y
ввод x,y
если x>0 и y>0 то вывод "I"
иначе
если x<0 и y>0 то вывод "II"
иначе
если x<0 и y<0 то вывод "III"
иначе
если x>0 и y<0 то вывод "IV" все
все
все
все
кон

Basic-256


input x
input y
if x>0 and y>0 then
print "I четверть"
else
if x<0 and y>0 then
print "II четверть"
else
if x<0 and y<0 then
print "III четверть"
else
if x>0 and y<0 then print "IV четверть"
endif
endif
endif



7
-2
IV четверть

Понравилась статья? Поделить с друзьями:
  • Как составить инвестиционный проект организации производства
  • Как исправить ошибку 0xc0000098 при запуске windows
  • Как найти размер гвоздя
  • Как найти хорошую силу
  • Как найти неизвестную точку на плоскости