Как найти валентность элемента в соединениях

Валентность

Слово «валентность» звучит красиво и одновременно загадочно. В этой статье вместе с экспертом разберемся, что скрывается за этим словом: что такое валентность, как ее определить и какова ее роль в химии

Валентность. Фото: pexels.com

Термин «валентность» появился еще в Средние века, где в научных трудах он имел значение «препарат», «экстракт». И только в конце ХIХ столетия его стали использовать для обозначения связей между мельчайшими частицами вещества.

В 1852 году английский химик Э. Франкленд ввел в химию понятие «соединительная сила», которое положило начало учению о валентности. В 1857 году немецкий ученый Ф. А. Кекуле, изучая свойства углерода в метане, пришел к выводу о существовании «основности» атомов – таком же важном и постоянном свойстве, как атомный вес. Спустя три года российский химик А. М. Бутлеров усовершенствовал учение о валентности, распространив его на органические соединения.

Что такое валентность в химии

Валентность – это способность атома образовывать химические связи с другими атомами. Такие связи создаются за счет электронов, расположенных на внешнем электронном слое. Поэтому количественной мерой валентности становится число совместных связей между атомами.

Химические соединения предполагают формирование общих электронных пар. Этот процесс получил наименование «ковалентная химическая связь». В зависимости от числа общих электронных пар выделяют одинарную, двойную и тройную ковалентную связь.

Большим достижением в химии стало наглядное изображение молекул, с помощью которого легко представить себе понятие валентности и ковалентной связи. К примеру, водород имеет сокращенную химическую формулу H₂ и структурную формулу: Н – Н. Во втором случае видно, что водород обладает одновалентностью, поскольку связан в молекуле только с одним своим собратом.

Формула воды H₂O и Н – О – Н наглядно свидетельствует о двухвалентности кислорода, так как он способен создавать две ковалентные связи с атомами водорода.

Углекислый газ CO₂ и О = С = О состоит из двух атомов кислорода и атома углерода, у которого валентность равна четырем. Он может присоединять 2 двухвалентных атома кислорода либо 4 одновалентных атома водорода, как в метане СН₄.

Таблица Менделеева

Рассказываем, как пользоваться таблицей, а также даем советы, как ее быстро выучить

подробнее

Как определить валентность химических элементов

Существуют разные способы определения валентности химических элементов. Самый простой заключается в том, чтобы обратиться к специальной таблице валентности химических элементов.

Другой способ связан с расчетом валентности по химической формуле. За единицу валентности принимается валентность атома водорода, так как он способен образовывать с другими атомами только одну связь. Химические элементы, взаимодействуя с водородом, показывают собственную валентность. Например, в молекуле хлористого водорода (HCl) хлор имеет валентность I. В молекуле аммиака (NН₃) азот соединен с тремя атомами водорода, следовательно, его валентность – III.

Кроме водорода, валентность химических элементов можно определять по кислороду, который во всех своих соединениях двухвалентен. Так, в оксиде серы (IV) SO₂ валентность серы равна IV (валентность кислорода умножаем на 2). А в соединении SO₃ валентность серы уже VI (два умножаем на три).

Когда речь идет о сложных соединениях, где присутствует более двух химических элементов, определить валентность каждого из них становится сложнее. О молекуле HClO₄ можно только сказать, что остаток ClO₄ одновалентен, а в соединении H₂SO₄ остаток SO₄ двухвалентен.

В сложных соединениях, где присутствует более двух химических элементов, определить валентность можно по химическим формулам. Фото: pixabay.com

Таблица валентности химических элементов

Приведем в качестве примера таблицу валентности наиболее распространенных химических элементов. Звездочкой отмечены элементы с постоянной валентностью.

Элемент Валентность Элемент Валентность
Водород (H)* I Барий (Ba)* II
Натрий (Na)* I Кислород (O)* II
Калий (K)* I Цинк (Zn) II
Серебро (Ag)* I Олово (Sn) II (IV)
Фтор (F)* I Свинец (Pb) II (IV)
Хлор (Cl) I (III, V, VII) Железо (Fe) II, III
Бром (Br) I (III, V, VII) Сера (S) II, IV, VI
Йод (I) I (III, V, VII) Марганец (Mn) II, IV, VII
Ртуть (Hg) I, II Хром (Cr) III, VI
Медь (Cu) I, II Алюминий (Al)* III
Бериллий (Be)* II Азот (N) III (и другие)
Магний (Mg)* II Фосфор (P) III, V
Кальций (Ca)* II Углерод (C) IV
Кремний (Si) IV (II) Цирконий (Zr) II, III, IV

Популярные вопросы и ответы

Отвечает Анастасия Чистякова, старший методист по естественно-научному направлению Домашней школы «ИнтернетУрок».

Что такое постоянная валентность?

В таблице Менделеева существуют так называемые элементы с постоянной валентностью. Свое название они получили из-за способности образовывать строго определенное количество химических связей. Постоянная валентность чаще всего совпадает с номером группы, где находится элемент. Таких элементов сравнительно немного, поэтому их можно легко запомнить.

Постоянную валентность I (могут присоединять или замещать только один атом другого элемента) имеют щелочные металлы (Li, Na, K, Rb, Cs, Fr) и фтор (F).

Постоянную валентность II (способность присоединить или заместить только два атома других элементов) имеют металлы второй группы, главной подгруппы (Be, Mg, Ca, Sr, Ba, Ra) и кислород (O).

Постоянную валентность III имеет всего лишь один элемент – алюминий (Al), так как только он способен присоединить либо заместить три атома других химических элементов.

Как определить валентность по таблице Менделеева?

Большинство химических элементов обладают переменной валентностью, и ее можно определить по таблице Менделеева. В этой таблице номер группы соответствует высшей валентности элемента. Если от восьми отнять номер группы, где находится элемент, мы узнаем его низшую валентность. Например, высшая валентность серы (S) – 6, так как она находится в шестой группе, а низшая – 2 (8 — 6 = 2).

Правда, бывают и исключения, которые нужно запомнить. Кремний (Si) находится в IV группе, и можно сделать предположение, что его низшая валентность – IV. Однако это не так. Низшая валентность кремния – II. Азот (N) расположен в V группе, но его низшая валентность также II.

Чем валентность отличается от степени окисления?

Понятия «валентность» и «степень окисления» являются близкими по своему значению, но далеко не тождественными. Валентность определяет количество химических связей, которыми атом элемента связан с другими атомами в молекуле. Степень окисления используется для описания тех реакций, которые сопровождаются присоединением либо отдачей электронов.

Валентность нейтральна, а степень окисления может быть положительной, отрицательной или нулевой. Положительная степень окисления соответствует количеству отданных электронов, отрицательная – числу присоединенных. Нулевая степень окисления говорит о том, что данный элемент находится или в состоянии простого вещества, или был восстановлен до нуля после окисления, или окислен до нуля после предшествующего восстановления.

Чаще всего валентность и степень окисления количественно равны, однако бывают и исключения, которые необходимо запомнить. Например, в азотной кислоте (HNO₃) валентность атома N равна IV, а степень окисления +5. В молекуле CO углерод имеет валентность II, а степень окисления +2

На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.

Валентность и химический анализ

Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.

С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?

Понятие «валентность» — одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.

Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.

Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.

Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.

Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.

Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН4), по тому же принципу, – IV.

Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.

Как вы уже обратили внимание, обозначается валентность римскими цифрами.

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H2SO3 валентность SO3 – I, в HСlO3 валентность СlO3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO2(I) – HNO2, S4O6 (II) – H2 S4O6.

Валентность и формулы

Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.

Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.

Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.

Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.

Чтобы было понятно, возьмем формулу оксида железа Fe2O3. Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.

  • Пример: у вас есть формулы Mn2O7. Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.

Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.

  • Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р2О5.

Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.

Например: оксиды меди имеют красную (Cu2O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН)2) цвета.

А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):

Структурные -формулы

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе,  соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Таблица валентности химических элементов

Порядковый номер

хим. элемента (атомный номер)

 

Наименование

Химический символ

Валентность

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

Бор / Boron

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

Неон / Neon

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

Железо / Iron

Кобальт / Cobalt

Никель / Nickel

Медь / Copper

Цинк / Zinc

Галлий / Gallium

Германий /Germanium

Мышьяк / Arsenic

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

Молибден / Molybdenum

Технеций / Technetium

Рутений / Ruthenium

Родий / Rhodium

Палладий / Palladium

Серебро / Silver

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

Иод / Iodine

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

Вольфрам / Tungsten

Рений / Rhenium

Осмий / Osmium

Иридий / Iridium

Платина / Platinum

Золото / Gold

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

Полоний / Polonium

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

H

He

Li

Be

B

C

N

O

F

Ne

Na

Mg

Al

Si

P

S

Cl

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Сu

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Ac

Th

Pa

U

 I

0

I

II

III

(II), IV

(I), II, III, IV, V

II

I

0

I

II

III

(II), IV

I, III, V

II, IV, VI

I, (II), III, (IV), V, VII

0

I

II

III

II, III, IV

II, III, IV, V

II, III, VI

II, (III), IV, VI, VII

II, III, (IV), VI

II, III, (IV)

(I), II, (III), (IV)

I, II, (III)

II

(II), III

II, IV

(II), III, V

(II), IV, VI

I, (III), (IV), V

0

I

II

III

(II), (III), IV

(II), III, (IV), V

(II), III, (IV), (V), VI

VI

(II), III, IV, (VI), (VII), VIII

(II), (III), IV, (VI)

II, IV, (VI)

I, (II), (III)

(I), II

(I), (II), III

II, IV

III, (IV), V

(II), IV, VI

I, (III), (IV), V, VII

0

I

II

III

III, IV

III

III, IV

III

(II), III

(II), III

III

III, IV

III

III

III

(II), III

(II), III

III

IV

(III), (IV), V

(II), (III), (IV), (V), VI

(I), II, (III), IV, (V), VI, VII

(II), III, IV, VI, VIII

(I), (II), III, IV, VI

(I), II, (III), IV, VI

I, (II), III

I, II

I, (II), III

II, IV

(II), III, (IV), (V)

II, IV, (VI)

нет данных

0

нет данных

II

III

IV

V

(II), III, IV, (V), VI

В скобках даны те валентности, которые обладающие ими элементы проявляют редко.

Валентность и степень окисления

Понятие валентности можно считать родственным такой характеристике, как степень окисления. Тем не менее, обе эти характеристики не тождественным друг другу.

Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.

Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н2О, СН4 и др.) и различаться (Н2О2, HNO3).

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

Не забудьте поделиться ссылкой с друзьями в социальных сетях, чтобы они тоже могли воспользоваться этой полезной информацией.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определение валентности химического элемента по формуле его соединения

Суммы единиц валентности каждого элемента в формуле бинарного соединения равны.

Пример:

определим валентность хлора в его соединении с кислородом — 

Cl2O7

.

1. Записываем известную валентность кислорода над формулой. Неизвестную валентность обозначаем буквой (x):

2. Находим сумму единиц валентности каждого элемента. Для этого его валентность умножаем на число атомов:

3. Вычисляем (x):

2x=14,x=14:2=7.

Валентность хлора равна

VII

:

Составление формулы бинарного соединения по валентностям химических элементов

Если известны валентности двух элементов, то можно составить формулу их соединения.

Пример:

составим формулу соединения алюминия с углеродом, валентность которого равна

IV

.

1. Записываем символы химических элементов рядом. Указываем над ними валентности. Валентность алюминия постоянная и равна

III

.

2. Находим наименьшее общее кратное валентностей, записываем его над формулой.

Наименьшее общее кратное равно 

3⋅4=12

.

3. Делим НОК на валентность каждого элемента:

12:3=4,12:4=3.

Получаем индексы в формуле соединения:

В уроке 6 «Валентность» из курса «Химия для чайников» дадим определение валентности, научимся ее определять; рассмотрим элементы с постоянной и переменной валентностью, кроме того научимся составлять химические формулы по валентности. Напоминаю, что в прошлом уроке «Химическая формула» мы дали определение химическим формулам и их индексам, а также выяснили различия химических формул веществ молекулярного и немолекулярного строения.

Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:

Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода. В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами. Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум. По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем. Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:

Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:

Содержание

  • Определение валентности
  • Постоянная и переменная валентность
  • Составление химических формул по валентности

Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:

Так же определяют число единиц валентности атома кислорода:

По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:

Согласно вышеприведенному правилу х·1 = II·2, откуда х = IV.

Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:

В этом веществе валентность углерода равна II, так как х·1 = II·1, откуда х = II:

Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Постоянная и переменная валентность

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Составление химических формул по валентности

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV, а азота — III.

Записываем рядом символы элементов в следующем виде:

Затем находим НОК валентностей обоих элементов. Оно равно 12 (IV·III).

Определяем индексы каждого элемента:

Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Надеюсь урок 6 «Валентность» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Валентность химических элементов


Валентность химических элементов

4.5

Средняя оценка: 4.5

Всего получено оценок: 5199.

4.5

Средняя оценка: 4.5

Всего получено оценок: 5199.

При рассмотрении химических элементов можно заметить, что количество атомов у одного и того же элемента в разных веществах разнится. Каким же образом правильно записать формулу и не ошибиться в индексе химического элемента? Это легко сделать, если иметь представление, что такое валентность.

Для чего нужна валентность?

Валентность химических элементов – это способность атомов элемента образовывать химические связи, то есть присоединять к себе другие атомы. Количественной мерой валентности является число связей, которые образует данный атом с другими атомами или атомными группами.

В настоящее время валентность представляет собой число ковалентных связей (в том числе возникших и по донорно-акцепторному механизму), которыми данный атом соединен с другими. При этом не учитывается полярность связей, а значит, валентность не имеет знака и не может быть равной нулю.

Ковалентная химическая связь – это связь, осуществляемая за счет образования общих (связывающих) электронных пар. Если между двумя атомами имеется одна общая электронная пара, то такая связь называется одинарной, если две – двойной, если три – тройной.

Как находить валентность?

Первый вопрос, который волнует учеников 8 класса, начавших изучать химию – как определить валентность химических элементов? Валентность химического элемента можно посмотреть в специальной таблице валентности химических элементов

Рис. 1. Таблица валентности химических элементов

Валентность водорода принята за единицу, так как атом водорода может образовывать с другими атомами одну связь. Валентность других элементов выражаем числом, которое показывает, сколько атомов водорода может присоединить к себе атом данного элемента. Например, валентность хлора в молекуле хлористого водорода равна единице. Следовательно формула хлористого водорода будет выглядеть так: HCl. Так как и у хлора и у водорода валентность равна единице, никакой индекс не используется. И хлор и водород являются одновалентными, так как одному атому водорода соответствует один атом хлора.

Рассмотрим другой пример: валентность углерода в метане равна четырем, валентность водорода – всегда единица. Следовательно, рядом с водородом следует поставить индекс 4. Таким образом формула метана выглядит так: CH4 .

Очень многие элементы образуют соединения с кислородом. Кислород всегда является двухвалентным. Поэтому в формуле воды H2O, где встречаются всегда одновалентный водород и двухвалентный кислород, рядом с водородом ставится индекс 2. Это значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода.

Рис. 2. Графическая формула воды

Не все химические элементы имеют постоянную валентность, у некоторых она может изменяться в зависимости от соединений, где используется данный элемент. К элементам с постоянной валентностью относятся водород и кислород, к элементам с переменной валентностью относятся, например, железо, сера, углерод.

Как определить валентность по формуле?

Если у вас перед глазами нет таблицы валентности, но есть формула химического соединения, то возможно определение валентности по формуле. Возьмем для примера формулу оксид марганца – Mn2O7

Рис. 3. Оксид марганца

Как известно, кислород является двухвалентным. Чтобы выяснить, какой валентностью обладает марганец, необходимо валентность кислорода умножить на число атомов газа в этом соединении:

2*7=14

Получившееся число делим на количество атомов марганца в соединении. Получается:

14:2=7

7 (VII) – валентность марганца в данном соединении

Заключение

Что мы узнали?

В данной теме раскрывается информация о том, что такое валентность. Валентность – способность образовывать химические соединения посредством присоединения к атомам одного элемента атомов другого элемента. Валентность бывает постоянная и переменная. Зная валентность того или иного элемента, можно легко научиться записывать формулы соединений.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Дмитрий Кравцов

    10/10

  • Радмир Курманаев

    10/10

  • Татьяна Никонова

    7/10

  • Алёна Солдатова

    8/10

  • Александр Котков

    10/10

  • Вадим Квасов

    10/10

  • Юлиана Сороко

    9/10

  • Оксана Данилова

    10/10

  • Василиса Трибунская

    10/10

  • Елена Кудинова

    7/10

Оценка доклада

4.5

Средняя оценка: 4.5

Всего получено оценок: 5199.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:
  • Как найти канал в контакте
  • Как найти гейм центр на андроид
  • Как в снэпчате найти избранные маски
  • Как найти хорошего художника
  • Как найти скачанный торрент файл на компьютере