Валентность химических элементов
4.5
Средняя оценка: 4.5
Всего получено оценок: 5196.
4.5
Средняя оценка: 4.5
Всего получено оценок: 5196.
При рассмотрении химических элементов можно заметить, что количество атомов у одного и того же элемента в разных веществах разнится. Каким же образом правильно записать формулу и не ошибиться в индексе химического элемента? Это легко сделать, если иметь представление, что такое валентность.
Для чего нужна валентность?
Валентность химических элементов – это способность атомов элемента образовывать химические связи, то есть присоединять к себе другие атомы. Количественной мерой валентности является число связей, которые образует данный атом с другими атомами или атомными группами.
В настоящее время валентность представляет собой число ковалентных связей (в том числе возникших и по донорно-акцепторному механизму), которыми данный атом соединен с другими. При этом не учитывается полярность связей, а значит, валентность не имеет знака и не может быть равной нулю.
Ковалентная химическая связь – это связь, осуществляемая за счет образования общих (связывающих) электронных пар. Если между двумя атомами имеется одна общая электронная пара, то такая связь называется одинарной, если две – двойной, если три – тройной.
Как находить валентность?
Первый вопрос, который волнует учеников 8 класса, начавших изучать химию – как определить валентность химических элементов? Валентность химического элемента можно посмотреть в специальной таблице валентности химических элементов
Валентность водорода принята за единицу, так как атом водорода может образовывать с другими атомами одну связь. Валентность других элементов выражаем числом, которое показывает, сколько атомов водорода может присоединить к себе атом данного элемента. Например, валентность хлора в молекуле хлористого водорода равна единице. Следовательно формула хлористого водорода будет выглядеть так: HCl. Так как и у хлора и у водорода валентность равна единице, никакой индекс не используется. И хлор и водород являются одновалентными, так как одному атому водорода соответствует один атом хлора.
Рассмотрим другой пример: валентность углерода в метане равна четырем, валентность водорода – всегда единица. Следовательно, рядом с водородом следует поставить индекс 4. Таким образом формула метана выглядит так: CH4 .
Очень многие элементы образуют соединения с кислородом. Кислород всегда является двухвалентным. Поэтому в формуле воды H2O, где встречаются всегда одновалентный водород и двухвалентный кислород, рядом с водородом ставится индекс 2. Это значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода.
Не все химические элементы имеют постоянную валентность, у некоторых она может изменяться в зависимости от соединений, где используется данный элемент. К элементам с постоянной валентностью относятся водород и кислород, к элементам с переменной валентностью относятся, например, железо, сера, углерод.
Как определить валентность по формуле?
Если у вас перед глазами нет таблицы валентности, но есть формула химического соединения, то возможно определение валентности по формуле. Возьмем для примера формулу оксид марганца – Mn2O7
Как известно, кислород является двухвалентным. Чтобы выяснить, какой валентностью обладает марганец, необходимо валентность кислорода умножить на число атомов газа в этом соединении:
2*7=14
Получившееся число делим на количество атомов марганца в соединении. Получается:
14:2=7
7 (VII) – валентность марганца в данном соединении
Что мы узнали?
В данной теме раскрывается информация о том, что такое валентность. Валентность – способность образовывать химические соединения посредством присоединения к атомам одного элемента атомов другого элемента. Валентность бывает постоянная и переменная. Зная валентность того или иного элемента, можно легко научиться записывать формулы соединений.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Дмитрий Кравцов
10/10
-
Радмир Курманаев
10/10
-
Татьяна Никонова
7/10
-
Алёна Солдатова
8/10
-
Александр Котков
10/10
-
Вадим Квасов
10/10
-
Юлиана Сороко
9/10
-
Оксана Данилова
10/10
-
Василиса Трибунская
10/10
-
Елена Кудинова
7/10
Оценка доклада
4.5
Средняя оценка: 4.5
Всего получено оценок: 5196.
А какая ваша оценка?
Определение валентности
Определение валентности по химическим формулам соединений
Для бинарных соединений, т. е. образованных двумя элементами типа (где а, b — индексы; х, у — валентности), произведение индекса на валентность одного элемента равно произведению индекса на валентность другого элемента. Здесь соблюдается равенство ах = by. Поэтому, если три величины (скажем, а, b, х) известны, то можно найти четвертую: у = ах/b.
Если в формуле бинарного соединения нет индексов, то валентности элементов одинаковые. Зная валентность одного элемента, можно написать валентность другого, например:
Если валентность одного элемента равна единице, то валентность другого элемента равна индексу при одновалентном элементе, например:
Определение возможной валентности элемента по его положению в таблице Менделеева
- Максимальная или высшая валентность элемента часто равна номеру группы таблицы Менделеева, в которой расположен элемент. (Группы элементов — это вертикальные столбцы в таблице.) Например, высшие валентности некоторых элементов следующие: Si(IV), P(V), S(VI), Cl(VII).
- У элементов V—VII групп в дополнение к высшей валентности, равной номеру группы, бывает другая валентность, представляющая разность: 8 — № группы, т. е. у фосфора Р(III), у серы S(II), у хлора Сl(I). Как правило, это низшая валентность.
Чтобы составить химическую формулу бинарного соединения, надо знать последовательность элементов в формуле (какой элемент первый) и их валентность.
Правила очередности элементов в формуле и проявляемая валентность следующие.
- 1) Первым записывают металл, за ним — неметалл: FeO, AI2O3, Cu2S.
- 2) Если в формуле одни неметаллы, то сначала пишут символ элемента, расположенного в таблице Менделеева левее и ниже: NO2, РСl5, CS2, НСl, SiF4, PBr3.
- 3) Обычно 1-й элемент в формуле бинарного соединения проявляет свою высшую (или большую) валентность, а 2-й элемент проявляет низшую валентность
Примеры определения валентности
Пример 1.
Составьте формулу соединения (т.е. вещества) алюминия с кислородом (оксида алюминия).
Решение. Алюминий — металл, поэтому он 1-й в формуле: АlаОb. Валентности кислорода (II) и алюминия (III) — постоянные, следовательно, вид формулы:
Минимальные целые числа, удовлетворяющие равенству а • III = b • II, это а = 2, b = 3. Здесь валентность одного элемента равна индексу при другом элементе, х = b, у = а. Следовательно, искомая формула: Аl2O3.
Пример 2.
Составьте формулу соединения серы с кислородом при условии, что сера проявляет свою высшую валентность.
Решение. Сера и кислород — неметаллы. В таблице Менделеева сера находится ниже кислорода, она 1-я в формуле SaOb. Высшая валентность серы равна номеру ее группы (VI) в таблице Менделеева:
Минимальные целые числа, удовлетворяющие равенству а • VI = b • II, это а = 1, b = 3. Здесь валентность одного элемента не равна индексу при другом элементе, х ≠ b, у ≠ а. Искомая формула: SO3.
Пример 3.
Составьте формулу соединения серы с фосфором, в котором валентность фосфора — V.
Решение. Оба элемента S и Р — неметаллы. Первым в формуле записываем фосфор, так как он находится левее, чем сера, в таблице Менделеева: PaSb.
Валентность фосфора P(V) указана в задании. Сера (2-й элемент в формуле) проявляет свою низшую валентность S(II). Чтобы удовлетворялось равенство ах = by для соединения , индексы должны быть а = 2, b = 5. Искомая формула: P2S5.
Пример 4.
Составьте химические формулы бинарных соединений с кислородом (оксидов) следующих элементов: a) Li; б) Са; в) Sn(IV); г) С(II); д) Р(III); е) P(V).
Решение. Во всех этих формулах кислород — 2-й в формуле. Там, где валентности элементов нечетные, индекс при кислороде равен валентности соответствующего элемента, а индекс при элементе равен двум — валентности кислорода. В формулах оксидов веществ б) и г) индексов нет, т.к. валентности элементов одинаковые и равны II. В формуле оксида олова, чтобы суммарная валентность кислорода равнялась валентности олова, пишем при кислороде индекс «2». Формулы оксидов:
Конспект урока «Определение валентности на примерах».
Следующая тема: «Степень окисления химических элементов».
Различные химические элементы отличаются по своей способности создавать химические связи, то есть соединяться с другими атомами. Поэтому в сложных веществах они могут находиться только в определенных соотношениях. Разберемся, как определить валентность по таблице Менделеева.
Что такое валентность?
Существует такое определение валентности: это способность атома к образованию определенного числа химических связей. В отличие от степени окисления, эта величина всегда только положительная и обозначается римскими цифрами.
В качестве единицы используется эта характеристика для водорода, которая принята равной I. Это свойство показывает, с каким числом одновалентных атомов может соединиться данный элемент. Для кислорода эта величина всегда равна II.
Знать эту характеристику необходимо, чтобы верно записывать химические формулы веществ и уравнения реакций. Знание этой величины поможет установить соотношение между числом атомов различных типов в молекуле.
Данное понятие возникло в химии в XIX веке. Начало теории, объясняющей соединение атомов в различных соотношениях, положил Франкленд, но его идеи о «связывающей силе» не были очень распространены. Решающая роль в развитии теории принадлежала Кекуле. Он называл свойство образовывать некоторое количество связей основностью. Кекуле считал, что это фундаментальное и неизменное свойство каждого вида атомов. Важные дополнения к теории сделал Бутлеров. С развитием этой теории стало возможным наглядно изображать молекулы. Это очень помогло в изучении строения различных веществ.
Чем поможет периодическая таблица?
Находить валентность можно, посмотрев на номер группы в короткопериодном варианте. Для большинства элементов, у которых эта характеристика постоянная (принимает только одно значение), она совпадает с номером группы.
Такие свойства имеют металлы главных подгрупп. Почему? Номер группы соответствует числу электронов на внешней оболочке. Эти электроны называются валентными. Именно они отвечают за возможность соединяться с другими атомами.
Группу составляют элементы с похожим устройством электронной оболочки, а сверху вниз возрастает заряд ядра. В короткопериодной форме каждая группа делится на главную и побочную подгруппы. Представители главных подгрупп — это s и p-элементы, представители побочных подгрупп имеют электроны на d и f-орбиталях.
Как определить валентность химических элементов, если она меняется? Она может совпадать с номером группы или равняться номеру группы минус восемь, а также принимать другие значения.
Важно! Чем выше и правее элемент, тем его свойство образовывать взаимосвязи меньше. Чем он более смещен вниз и влево, тем она больше.
То, как изменяется валентность в таблице Менделеева для конкретного вида атома, зависит от структуры его электронной оболочки. Сера, например, может быть двух-, четырех- и шестивалентной.
В основном (невозбужденном) состоянии у серы два неспаренных электрона находятся на подуровне 3р. В таком состоянии она может соединиться с двумя атомами водорода и образовать сероводород. Если сера перейдет в более возбужденное состояние, то один электрон перейдет на свободный 3d-подуровень, и неспаренных электронов станет 4.
Сера станет четырехвалентной. Если сообщить ей еще больше энергии, то еще один электрон перейдет с подуровня 3s на 3d. Сера перейдет в еще более возбужденное состояние и станет шестивалентной.
Постоянная и переменная
Иногда способность к образованию химических связей может меняться. Она зависит от того, в какое соединение входит элемент. Например, сера в составе H2S двухвалентна, в составе SO2 четырехвалентна, а в SO3 — шестивалентна. Наибольшее из этих значений называется высшим, а наименьшая — низшим. Высшую и низшую валентности по таблице Менделеева можно установить так: высшая совпадает с номером группы, а низшая равняется 8 минус номер группы.
Как определить валентность химических элементов и то, изменяется ли она? Нужно установить, имеем мы дело с металлом или неметаллом. Если это металл, нужно установить, относится он к главной или побочной подгруппе.
- У металлов главных подгрупп способность к образованию химических взаимосвязей постоянная.
- У металлов побочных подгрупп — переменная.
- У неметаллов — также переменная. В большинстве случаев она принимает два значения — высшее и низшее, но иногда может быть и большее число вариантов. Примеры — сера, хлор, бром, йод, хром и другие.
Это интересно! Что такое алканы: строение и химические свойства
В соединениях низшую валентность проявляет тот элемент, который находится выше и правее в периодической таблице, соответственно, высшую — тот, который левее и ниже.
Часто способность образовывать химические связи принимает больше двух значений. Тогда по таблице узнать их не получится, а нужно будет выучить. Примеры таких веществ:
- углерод,
- сера,
- хлор,
- бром.
Как определить валентность элемента в формуле соединения? Если она известна для других составляющих вещества, это несложно. Например, требуется рассчитать это свойство для хлора в NaCl. Натрий — элемент главной подгруппы первой группы, поэтому он одновалентен. Следовательно, хлор в этом веществе тоже может создать только одну связь и тоже одновалентен.
Важно! Однако так не всегда можно узнать это свойство для всех атомов в сложном веществе. Для примера возьмем HClO4. Зная свойства водорода, можно только установить, что ClO4 — одновалентный остаток.
Как еще узнать эту величину?
Способность образовывать определенное количество связей не всегда совпадает с номером группы, и в некоторых случаях ее придется просто заучить. Здесь на помощь придет таблица валентности химических элементов, где приведены значения этой величины. В учебнике химии за 8 класс приведены значения способности соединяться с другими атомами наиболее распространенных видов атомов.
Н, F, Li, Na, K | 1 |
O, Mg, Ca, Ba, Sr, Zn | 2 |
B, Al | 3 |
C, Si | 4 |
Cu | 1, 2 |
Fe | 2, 3 |
Cr | 2, 3, 6 |
S | 2, 4, 6 |
N | 3, 4 |
P | 3, 5 |
Sn, Pb | 2, 4 |
Cl, Br, I | 1, 3, 5, 7 |
Применение
Стоит сказать, что ученые-химики в настоящее время понятие валентности по таблице Менделеева почти не используют. Вместо него для способности вещества образовывать определенное число взаимосвязей применяют понятие степени окисления, для веществ с ковалентной структурой — ковалентность, а для веществ ионного строения — заряд иона.
Однако рассматриваемое понятие применяют в методических целях. С его помощью легко объяснить, почему атомы разных видов соединяются в тех соотношениях, которые мы наблюдаем, и почему эти соотношения для разных соединений различны. Подарки от онлайн казино можно взять на этой странице — https://www.casinobonus-ruu.com и активировать их после регистрации.
На данный момент подход, согласно которому соединение элементов в новые вещества всегда объяснялось с помощью валентности по таблице Менделеева независимо от типа связи в соединении, устарел. Сейчас мы знаем, что для ионной, ковалентной, металлической связей существуют разные механизмы объединения атомов в молекулы.
Полезное видео
Подведем итоги
По таблице Менделеева определить способность к образованию химических связей возможно не для всех элементов. Для тех, которые проявляют одну валентность по таблице Менделеева, она в большинстве случаев равна номеру группы. Если есть два варианта этой величины, то она может быть равна номеру группы или восемь минус номер группы. Существуют также специальные таблицы, по которым можно узнать эту характеристику.
Как определить валентность по таблице Менделеева? Согласно школьному определению валентность — это способность химического элемента образовывать то или иное количество химических связей с другими атомами. Как известно, валентность бывает постоянной (когда химический элемент образует всегда одно и то же количество связей с другими атомами) и переменной (когда в зависимости от того или иного вещества валентность одного и того же элемента изменяется). Определить валентность нам поможет периодическая система химических элементов Д. И. Менделеева. Действуют такие правила: 1) Максимальная валентность химического элемента равняется номеру группы. Например, хлор находится в 7-й группе, а значит, у него максимальная валентность равна 7. Сера: она в 6-й группе, значит, у неё максимальная валентность равна 6. 2) Минимальная валентность для неметаллов равна 8 минус номер группы. Например, минимальная валентность того же хлора равна 8 – 7, то есть 1. Увы, из обоих правил имеются исключения. Например, медь находится в 1-й группе, однако максимальная валентность меди равна не 1, а 2. Кислород находится в 6-й группе, но у него валентность почти всегда 2, а вовсе не 6. Полезно помнить ещё следующие правила: 3) Все щелочные металлы (металлы I группы, главной подгруппы) всегда имеют валентность 1. Например, валентность натрия всегда равна 1, потому что это щелочной металл. 4) Все щёлочно-земельные металлы (металлы II группы, главной подгруппы) всегда имеют валентность 2. Например, валентность магния всегда равна 2, потому что это щёлочно-земельный металл. 5) Алюминий всегда имеет валентность 3. 6) Водород всегда имеет валентность 1. 7) Кислород практически всегда имеет валентность 2. Углерод практически всегда имеет валентность 4. Следует помнить, что в разных источниках определения валентности могут отличаться. Более или менее точно валентность можно определить как количество общих электронных пар, посредством которых данный атом связан с другими. Согласно такому определению, валентность азота в HNO3 равна 4, а не 5. Пятивалентным азот быть не может, потому что в таком случае вокруг атома азота кружилось бы 10 электронов. А такого не может быть, потому что максимум электронов составляет 8. автор вопроса выбрал этот ответ лучшим Каролина 9 лет назад Химические элементы могут быть постоянной или переменной валентности. Элементы с постоянной валентностью необходимо выучить. Всегда
Валентность можно определить по таблице Менделеева. Высшая валентность элемента всегда равна номеру группы, в которой он находится. Низшей переменной валентностью чаще всего обладают неметаллы. Чтобы узнать низшую валентность, из 8 вычитают номер группы — в результате будет искомая величина. Например, сера находится в 6 группе и её высшая валентность — VI, низшая валентность будет II (8–6=2). wildcat 6 лет назад Определять валентность по таблице Менделеева просто. Как правило она соответствует номеру группы в которой элемент расположен. Но есть элементы, которые в разных соединениях могут иметь разную валентность. В этом случае речь идет о постоянной и переменной валентности. Переменная может быть максимальной, равной номеру группы, а может быть минимальной или промежуточной. Но гораздо интереснее определять валентность в соединениях. Для этого существует ряд правил. Прежде всего легко определить валентность элементов если один элемент в соединении обладает постоянной валентностью, например это кислород или водород. Слева ставится восстановитель, то есть элемент с положительной валентностью, справа — окислитель, то есть элемент с отрицательной валентностью. Индекс элемента с постоянной валентностью умножается на эту валентность и делится на индекс элемента с неизвестной валентностью. Пример: оксиды кремния. Валентность кислорода -2. Найдем валентность кремния. SiO 1*2/1=2 Валентность кремния в моноксиде равна +2. SiO2 2*2/1=4 Валентность кремния в диоксиде равна +4. Элемент может иметь одну или несколько валентностей. Максимальная валентность элементов равна числу валентных электронов. Мы можем определить валентность, зная расположение элемента в периодической таблице. Максимальное число валентности равно номеру группы, в которой находится необходимый элемент. Валентность обозначается римской цифрой и, как правило, пишется в правом верхнем углу символа элемента. Некоторые элементы могут иметь разную валентность в разных соединениях. Например, сера имеет следующие валентности:
Правила определения валентности не как просты в использовании, поэтомуих нужно запомнить. Nelli4ka 6 лет назад Валентность какого-либо элемента можно определить по самой таблице Менделеева, по номеру группы. По крайней мере, так можно поступать в случае с металлами, ведь их валентность равна номеру группы. С неметаллами немного другая история: их высшая валентность (в соединениях с кислородом) также равна номеру группы, а вот низшую валентность (в соединениях с водородом и металлами) нужно определять по следующей формуле: «8 — номер группы». Чем больше работаешь с химическими элементами, тем лучше запоминаешь и их валентность. А для начала хватит и такой «шпаргалки»: Розовым цветом выделены те элементы, чья валентность непостоянна. moreljuba 6 лет назад В первую очередь стоит отметить, что химические элементы могут иметь как постоянную, так и переменную валентность. Что касается постоянной валентности, то такие элементы вам просто напросто необходимо заучить Итак: Одновалентными считаются щелочные металлы, водород, а также галогены; Двухвалентными принято считать щелочноземельные металлы, а также и кислород; А вот трёхвалентен бор и алюминий. Итак, теперь давайте пройдёмся по таблице Менделеева для определения валентности. Самая высокая валентность для элемента всегда приравнивается к его номеру группы Низшая валентность же узнаётся путём вычитания из 8 номера группы. Низшей валентностью наделены неметаллы в большей степени. Сайёра79 6 лет назад Валетность- это способность атомов одних химических элементов присоединить к себе атомы других элементов. Для успешного написания формул, правильного решения задач необходимо хорошо знать , как определить валентность. Для начала нужно выучить все элементы с постоянной валентностью. Вот они: 1. Водород, галогены, щелочные металлы( всегда одновалентны) ; 2. Кислород и щелочноземельные металлы ( двухвалентны) ; 3. B и Al ( трехвалентны). Чтобы определить валентность по таблице Менделеева , нужно выяснить в какой группе стоит химический элемент и определить, находится он в основной группе или побочной. Роман145658 4 года назад «…Максимальная валентность химического элемента равняется номеру группы…» Согласно данному утверждению максимальная валентность N — азота = 5 поскольку он находится в 5 группе Х.И… Однако википедия, излагая доказательства предела валентности, утверждает, что: «…Например, максимальная валентность атома бора, углерода и азота равна 4…» Что Вы на это скажите? Вы уже дали ответ на мой вопрос. Однако, он не проясняет ситуацию. Например есть у нас Mg3N2. Известно, что Mg3, в этом соединении, имеет валентность равную 2. Тогда какую валентность должен иметь азот N2 в этом соединении? Существует правило: Если у одного из атомов индекс отсутствует, то его валентность равна произведению валентности второго атома на его индекс. Согласно этому правилу валентность N2 = 6 что не верно ибо молекула нитрида магния Mg3N2 хорошо изучена и у N2 в ней валентность 4. Означает ли это, что правило сформулировано не верно, либо отсутствует уточнение об исключениях, обусловленными пределами ва… Azamatik 6 лет назад Валентность любого химического элемента — это его свойство, а точнее свойство его атомов (атомов этого элемента) удерживать какое — то количество атомов, но уже другого хим — ого элемента. Существуют Хим — ие элементы как с постоянной, так и с переменной валентностью, которая меняется в зависимости от того в соединение с каким элементом он (данный элемент) находится или же вступает. Валентности некоторых химических элементов: Перейдем теперь к тому, как же определяется валентность элемента по таблице. Итак, валентность можно определить по таблице Менделеева:
novachok88 2 месяца назад Валентность — это количество связей, которые может образовать атом определенного элемента с другими атомами. В химии валентность обычно определяется по количеству электронов во внешней оболочке атома (валентной оболочке), которые могут участвовать в химических связях. Общее количество электронов во внешней оболочке равно номеру группы элемента в периодической таблице. Так, например, элементы первой группы (литий, натрий, калий и т.д.) имеют валентность 1, а элементы второй группы (бериллий, магний, кальций и т.д.) — 2. Однако, есть элементы, которые могут образовывать несколько видов химических связей. Например, у серы валентность может быть 2, 4 или 6, в зависимости от того, с какими элементами она образует связи. Также следует учитывать, что валентность элемента может изменяться в зависимости от условий, например, при изменении температуры и давления. Кроме того, валентность может быть определена экспериментально, путем измерения свойств соединения, таких как молекулярная масса, электропроводность, точка плавления и т.д. Leona-100 8 лет назад Из школьного курса по химии мы знаем, что все химические элементы могут быть с постоянной или же переменной валентностью. Элементы у которых постоянная валентность нужно просто запомнить (например водород, кислород, щелочные металлы и другие элементы). Валентность легко определить по таблице Менделеева, которая есть в любом учебнике по химии. Высшая валентность соответствует своему номеру группы, в которой она расположена. Горизонт 6 лет назад Для того чтобы определить валентность того или иного вещества, вам нужно взглянуть на периодическую таблицу химических элементов Менделеева, обозначения римскими цифрами будут являться валентностями тех или иных веществ в этой таблице. К примеру, НО, водород (Н) будет всегда одновалентным а, а кислород (О) всегда двухвалентным. Вот ниже некая шпаргалка, которая как я полагаю поможет вам) Знаете ответ? |
Валентность
— число, которое показывает, со сколькими одновалентными атомами может сочетаться атом данного элемента или соединения; сколько таких атомов он может заместить. Валентность характеризует способность атома образовывать определенное количество химических связей , которая может быть связана со способностью атомов отдавать или присоединять определенное число электронов .
Степени валентности элемента является количество атомов водорода (или другого одновалентного элемента), которую атом данного элемента может присоединить или заместить. Так, в соединениях HCl, H 2 O
и хлор является одновалентным, кислород — двухвалентным, а азот — трехвалентным, ибо они соединены соответственно с одним, двумя и тремя атомами водорода.
Валентность химического элемента можно определять не только по формуле его соединения с водородом, но и с другими элементами, валентность которых известна. Например, в соединениях NaCl, MgCl 2 и AlCl 3 натрий является одновалентным, магний — двухвалентным, а алюминий — трехвалентным, ибо они соединены соответственно с одним, двумя и тремя атомами одновалентного хлора.
Некоторые элементы имеют постоянную валентность, а некоторые — переменную. Например, Водород , Натрий и Калий в своих соединениях бывают только одновалентные, Кальций , Барий , Магний , Цинк и Кислород — только двухвалентные, а Бор и Алюминий — только трехвалентный. Большинство химических элементов имеют переменную валентность. Так, медь может быть одновалентная (CuCl) и двухвалентного (CuCl 2), железо — двухвалентное (FeCl 2) и трехвалентное (FeCl 3), углерод — двухвалентный (CO) и четырехвалентный (CO 2), сера — четырехвалентный (SO 2) и шестивалентного (SO 3) и т. д.
Что касается природы валентности, то есть природы тех сил, которые обусловливают собой химическую связь атомов в молекулах, то она долгое время оставалась неизвестной. Только когда стала известна строение атомов, появились теории, которые объясняли причину различной валентности химических элементов и природу химической связи их атомов. Важнейшими из этих теорий является теория о електровалентний, или ионный химическая связь и теория о ковалентная , или атомный, химическая связь.
1. Постоянная валентность
o H, F, Li, Na, K, Rb, Cs, Fr, Ag, I, Cl, Br — 1
o Be, Mg, Ca, Ba, Zn, Ra, Cd, Sr, В — 2
o С, Si — 4. Al, Cr, Bi — 3
2. Переменная валентность
o Fe, Co, Ni — 2 и 3
o Sn, Pb — 2 и 4
o Mn — 2, 3, 4, 5 и 7
o N — 2, 3, 4, 5
1
§ 11. Валентность химических элементов
Понятие о валентности.
Химические формулы можно вывести на основании данных о составе веществ. Однако
чаще всего при составлении химических формул учитываются закономерности, которым подчиняются химические элементы , соединяясь между собой. Чтобы понять сущность этих закономерностей, следует ознакомиться со свойством атомов, которое называется валентностью.
Рассмотрим химические формулы соединений некоторых элементов с водородом:
НС1 Н 2 О NH 3 СН 4
Хлороводород вода аммиак метан
Как видно из приведенных примеров, атомы элементов хлора, кислорода, азота, углерода обладают свойством присоединять не любое, а только определенное число атомов водорода. Таким же свойством обладают и другие элементы в различных соединениях. Понятию «валентность» можно дать следующее определение:
Валентность — это свойство атомов химического элемента присоединять определенное число атомов других химических элементов.
Атомы водорода не могут присоединять более одного атома другого химического элемента, поэтому валентность водорода принята за единицу. Валентность же других элементов можно выразить числом , показывающим, сколько атомов водорода может присоединить к себе атом данного элемента. Например, в молекуле хлороводорода атом хлора присоединяет один атом водорода, следовательно, хлор одновалентен. Валентность кислорода равна двум, ибо его один атом присоединяет два атома водорода. Азот в молекуле аммиака трехвалентен, а углерод четырехвалентен. Это можно записать следующим образом:
(Численное значение валентности принято обозначать римскими цифрами, которые ставятся над знаками химических элементов.)
Валентность элементов определяют также по кислороду, который обычно двухвалентен. Например, ртуть Hg и медь Сu образуют оксиды HgO и СuО. Так как кислород двухвалентен и в этих оксидах на один атом элемента приходится по одному атому кислорода , то ртуть и медь в этих соединениях двухвалентны.
Ответьте на вопросы 1-3 (с. 32).
§12. Определение валентности элементов по формулам их соединений. Составление химических формул по валентности
Определение валентности элементов по формулам их соединений.
Зная формулы веществ, состоящих из двух химических элементов, и валентность одного из них, можно определить валентность другого элемента. Например, если дана формула оксида меди СuО, то валентность меди можно определить следующим образом. Валентность кислорода равна двум, а на один атом кислорода приходится один атом меди. Следовательно, валентность меди тоже равна двум.
Несколько сложнее определить валентность по формулам соединений, образованных не одним, а несколькими атомами химических элементов. Например, чтобы определить валентность железа в оксиде железа Fe 2 O 3 , рассуждают так. Валентность кислорода равна двум. Общее число единиц валентностей трех атомов кислорода равно шести (2-3). Следовательно, шесть валентностей приходятся на два атома железа , а на один атом железа приходятся три единицы валентности (6:2).
При определении валентности элемента по формуле следует учитывать, что число единиц валентности всех атомов одного элемента должно быть равно числу единиц валентности всех атомов другого элемента.
Итак, валентность элементов по формулам можно определить следующим образом:
1
. Пишут химическую формулу вещества и отмечают валентность известного элемента.
2. Находят и записывают общее число валентностей (наименьшее общее кратное) известного элемента:
3
. Вычисляют и проставляют над химическими знаками валентность другого элемента. Для этого общее число валентностей делят на индекс этого элемента:
Составление химических формул по валентности.
Чтобы составить химическую формулу, необходимо знать валентность элементов, образующих данное химическое соединение. Сведения о валентности некоторых элементов приведены в таблице 3.
Таблица 3. Валентность некоторых элементов в химических соединени
Валентность | Химические элементы | Примеры формул соединений |
С постоянной валентностью |
||
I | Н, Na, К, Li | Н 2 О, Na 2 O |
II | О, Be, Mg, Ca, Ba, Zn | MgO, CaO |
III | А1, В | А1 2 Оз |
С переменной валентностью |
||
Си | Cu 2 O, CuO | |
II и III | Fe, Co, Ni | FeO, Fe 2 O 3 |
II и IV | Sn, Pb | SnO, SnO 2 |
III и V | Р | PH 3 , P 2 O 5 |
II, III и VI | Cr | CrO, Сг 2 О 3 , СгОз |
II, IV и VI | S | H 2 S, SO 2 , SO 3 |
При составлении химических формул можно соблюдать следующий порядок действий:
1. Пишут рядом химические знаки элементов, которые входят в состав соединения:
КО, А1С1, А1О
2. Над знаками химических элементов проставляют валентность:
3. Определяют наименьшее общее кратное чисел, выражающих валентность обоих элементов:
4. Делением наименьшего общего кратного на валентность соответствующего элемента находят индексы (индекс «1» не пишут):
В названии веществ, образованных элементами с переменной валентностью , пишут в скобках цифру, показывающую валентность данного элемента в этом соединении. Например, СuО — оксид меди (II), Сu 2 О — оксид меди (I), и FeCl 2 — хлорид железа (II), FeCl 3 — хлорид железа (III).
Выполните упражнения 4-7 (с. 32-33). Решите задачи 1, 2 (с. 33).
§13. Атомно-молекулярное учение
Мы уже знаем, что многие вещества состоят из молекул, а молекулы — из атомов (с. 13-14). Сведения об атомах и молекулах объединяются в атомно-молекулярное учение. Вам известно, что основные положения этого учения были разработаны великим русским ученым М. В. Ломоносовым. С тех пор прошло более двухсот лет, учение об атомах и молекулах получило дальнейшее развитие. Так, например, теперь известно , что не все вещества состоят из молекул. Большинство твердых веществ, с которыми мы встретимся в курсе неорганической химии, имеют немолекулярное строение.
Однако
относительные молекулярные массы вычисляются как для веществ с молекулярным, так и для веществ с немолекулярным строением. Для последних понятия «молекула» и «относительная молекулярная масса» употребляют условно.
Основные положения атомно-молекулярного учения можно сформулировать так:
1. Существуют вещества с молекулярным и немолекулярным строением.
2. Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры.
Наибольшие расстояния имеются между молекулами газов. Этим объясняется их легкая сжимаемость. Труднее сжимаются жидкости, где промежутки между молекулами значительно меньше. В твердых веществах промежутки между молекулами еще меньше, поэтому они почти не сжимаются.
3. Молекулы находятся в непрерывном движении.
Скорость движения молекул зависит от температуры. С повышением температуры скорость движения молекул возрастает.
4. Между молекулами существуют силы взаимного притяжения и отталкивания.
В наибольшей степени эти силы выражены в твердых веществах , в наименьшей — в газах.
5. Молекулы состоят из атомов, которые, как и молекулы, находятся в непрерывном движении.
6. Атомы одного вида отличаются от атомов другого вида массой и свойствами.
7. При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются.
8. У веществ с молекулярным строением в твердом состоянии в узлах кристаллических решеток
(с. 14) находятся молекулы.
Связи между молекулами, расположенными в узлах кристаллической решетки , слабые и при нагревании разрываются. Поэтому вещества с молекулярным строением, как правило, имеют низкие температуры плавления.
9. У веществ с немолекулярным строением в узлах кристаллических решеток находятся атомы или другие ча
c
тицы
(с. 14). Между этими частицами существуют сильные химические связи, для разрушения которых требуется много энергии. Поэтому вещества с немолекулярным строением имеют высокие температуры плавления.
Объяснение физических и химических явлений с точки зрения атомно-молекулярного учения.
Физические и химические явления получают объяснение с позиций атомно-молекулярного учения. Так, например, процесс диффузии, знакомый вам из курса физики, объясняется способностью молекул (атомов, частиц) одного вещества проникать между молекулами (атомами, частицами) другого вещества. Это происходит потому , что молекулы (атомы, частицы) находятся в непрерывном движении и между ними имеются промежутки.
Сущность химических реакций заключается в разрушении химических связей между атомами одних веществ и в перегруппировке атомов с образованием других веществ.
Ответьте на вопросы 8-12 (с. 33).
1. Что такое валентность химических эле ментов? Поясните это на конкретных примерах.
2. Почему валентность водорода принята за единицу?
3. В реакции железа с соляной кислотой один
атом металла вытесняет два атома водорода. Как это можно объяснить, пользуясь понятием о валентности?
4. Определите валентность элементов по формулам: HgO, K 2 S, B 2 O 3 , ZnO, МnО 2 , NiO, Сu 2 О, SnО 2 , Ni 2 O 3 , SO 3 , As 2 O 5 , CI 2 O 7 .
5. Даны химические символы элементов и указана их валентность. Составьте соответствующие химические формулы:
I II V IV I III VII II III II IV III I
LiO, ВаО, РО, SnO, КО, РН, MnO, FeO, BO, HS, NO, CrCI.
6. Пользуясь данными таблицы 3 (с. 30), составьте химические формулы соединений с кислородом следующих химических элементов: Zn, В, Be, Co, РЬ, Ni. Назовите их.
7. Составьте формулы оксидов: меди (I), железа (III), вольфрама (VI), железа (II), углерода (IV), серы (VI), олова (IV), марганца (VII).
8. Изложите сущность основных положений атомно-молекулярного учения.
9. Какие явления подтверждают: а) движение молекул; 6) наличие между молекулами промежутков?
10. Чем отличается движение молекул в газах, жидкостях, твердых веществах?
11. Чем отличаются по своим физическим свойствам твердые вещества с молекулярным и немолекулярным строением?
12. Как объяснить физические и химические явления с точки зрения атомно-молекулярного учения?
1. Вычислите относительные молекулярные массы: а) оксида железа (III); б) оксида фосфора (V); в) оксида марганца (VII).
2. Определите массовые доли элементов в оксиде меди (I) и в оксиде меди (II). Найденные массовые доли выразите в процентах.
1. Что такое валентность химических эле- рода. Как это можно объяснить, пользуясь ментов? Поясните это на конкретных примерах. понятием о валентности?
2. Почему валентность водорода принята 4. Определите валентность элементов по за единицу? формулам: HgO, K 2 S, B2O3, ZnO, МпОг, NiO,
3. В реакции железа с соляной кислотой СигО, БпОг, N12O3, SO 3 , AS2O5, CI2O7.
один
атом металла вытесняет два атома водо- 5. Даны химические символы элементов и
Валентность
I
Вале́нтность (от лат. valentia — сила)
способность атома к образованию химических связей. Количественной мерой В. обычно принято считать число других атомов в молекуле, с которыми данный атом образует связи. В. — одно из фундаментальных понятий теории химического строения (см. Химического строения теория). Оно формировалось вместе с понятием химической связи, параллельно с развитием синтетической химии и методов исследования строения и свойств веществ, и его содержание неоднократно расширялось и изменялось по мере того, как экспериментальная химия находила всё новые и новые классы соединений с неизвестными ранее типами взаимодействия атомов в молекуле, а в последние 30-40 лет — с развитием квантовой химии. В настоящее время накопленный химией экспериментальный материал столь обширен и разнообразен, а картина химической связи в разных соединениях столь пестра, что задача нахождения последовательного, единого и всеобъемлющего определения В. представляется крайне сложной. Эти трудности побуждают некоторых химиков вообще отказаться от поисков универсального понятия В. и заменить его набором более узких, но зато более конкретных и более точных понятий (ковалентность, гетеровалентность, координационное число и т.д.), область применимости каждого из которых ограничена соединениями с каким-либо одним преобладающим типом взаимодействия (ковалентным, ионным, координационным и т.д.). Однако до настоящего времени и в специальной, и в учебной литературе В. продолжает широко использоваться и как определение способности атома к образованию связей в самом общем смысле слова, и как количественная мера этой способности, и как синоним предлагаемых более узких понятий.
Для отдельных классов соединений, где преобладает какой-либо один тип химического взаимодействия, полезную информацию о способности атомов к образованию связей могут дать перечисленные ниже частные понятия (частные определения В.).
1. Определение понятия «валентность» и связь его с другими понятиями химии
Ковалентность — мера способности атома к образованию ковалентных химических связей, возникающих за счёт двух электронов (по одному от каждого атома) и имеющих малополярный характер (см. Ковалентная связь (См. Купер)).
Ковалентность равна числу неспаренных электронов атома, участвующих в образовании связи, и часто может принимать все значения от 1 до максимальной, которая для большого числа элементов совпадает с номером их группы в периодической системе Менделеева (подробно см. разделы 2 и 3).
Гетеровалентность (употребляются также термины электровалентность и ионная валентность) — мера способности атома к образованию ионных химических связей, возникающих за счёт электростатического взаимодействия ионов, которые образуются при полном (или почти полном) переходе электронов одного атома к другому (см. Ионная связь). Гетеровалентность равна числу электронов, которые атом отдал или получил от другого атома, и совпадает с зарядом соответствующего иона (см. раздел 2).
Координационное число (КЧ) равно числу атомов, ионов или молекул, находящихся в непосредственной близости с данным атомом в молекуле, комплексном соединении или кристалле. В отличие от ковалентности и гетеровалентности, это понятие имеет чисто геометрический смысл и не зависит от характера связи между центральным атомом и лигандом. Так, например, КЧ атомов Al, Si, Р в комплексных ионах 3- , 2- , — равно 6, а КЧ атомов В, Xe, Ni в [ВН 4 ] — , ХеО 4 , Ni (CO) 4 равно 4. В кристалле NaCl каждый атом Na окружен шестью атомами Сl, так что КЧ Na равно 6. Величина КЧ может определяться как относительными размерами атомов, так и другими, более сложными причинами (см. разделы 2 и 3).
Окислительное число (ОЧ) (или степень окисления) — понятие, получившее в последнее время распространение в неорганической химии, — это электростатический заряд, условно приписываемый атому по следующим правилам. В ионных соединениях ОЧ совпадает с зарядом иона (например, в NaCl ОЧ Na равно +1, ОЧ Cl равно -1). В ковалентных соединениях ОЧ принято считать равным заряду, который получил бы атом, если бы все пары электронов, осуществляющие связь, были целиком перенесены к более электроотрицательным атомам (то есть если условно допустить, что связь имеет полностью ионный характер). Например, в HCl ОЧ Н равно +1, ОЧ Cl равно -1. В элементарных соединениях ОЧ равно 0 (например, в O 2 , Cl 2 , Р 4 , S 8 , в алмазе). При вычислении ОЧ в соединениях, где имеются два связанных атома одного элемента, их общую электронную пару принято делить пополам. Понятие ОЧ полезно при составлении уравнений окислительно-восстановительных реакций, для классификации неорганических и комплексных соединений и т.д.
Однако по своему определению ОЧ, в отличие от ковалентности и ионной В., имеющих чёткий физический смысл, носит в общем случае условный характер и, за исключением весьма ограниченного класса соединений с чисто ионной связью, не совпадает ни с эффективными зарядами атомов в соединениях, ни с фактическим количеством связей, которые атом образует. Кроме того, в ряде случаев, в частности, когда электроотрицательности двух разных связанных атомов близки и связь между ними имеет почти чисто ковалентный характер, возникает неопределённость, к какому из них следует целиком относить электронную пару (см. Окислительное число).
2. Эволюция понятия «валентность» и его роль в истории химии
В таком определении В., естественно, всегда выражается целыми числами. Поскольку в то время для водорода не были известны соединения, где он был бы связан более чем с одним атомом любого другого элемента, атом Н был выбран в качестве стандарта, обладающего В., равной 1. В «водородной» шкале кислород и сера имеют В., равную 2, азот и фосфор 3, углерод и кремний 4. Однако «водородной» шкалы оказалось недостаточно: в других соединениях, например в окислах, один и тот же элемент может реализовать В., которые не осуществляются в гидридах (существуют окислы P 2 O 5 , SO 3 и Cl 2 O 7 , но неизвестны гидриды PH 5 , SH 6 и ClH 7). В качестве второго стандарта с В., равной 2, был выбран кислород.
Лит.:
Сыркин Я. К., Периодическая система и проблема валентности, М., 1971; Сыркин Я. К. и Дяткина М. Е., Химическая связь и строение молекул, М.-Л., 1946; Паулинг Л., Природа химической связи, пер. с англ., М. — Л., 1947; Шусторович Е. М., Новое в учении о валентности, М., 1968; Коулсон Ч., Валентность, пер. с англ., М., 1965: Маррел Д., Кеттл С., Теддер Д., Теория валентности, пер. с англ., М., 1968; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969.
Первый камень преткновения изучающих химию. Большой ошибкой является подход, когда учащийся не пытается понять валентность, ожидая, что знания об этом потом приложатся сами собой. Но этот подход неверный, так как без понимания этого мы упираемся в тупик неспособности составить даже простейшую формулу.
Что такое «валентность» элементов?
Валентность — слово взятое учеными из латинского языка, что в переводе значит сила и возможность. Конечно, название неслучайно и может нам очень помочь в понимании сути термина. Ведь валентность характеризует атом с точки зрения его способности образовывать связи с другими атомами. Говоря иначе, валентность можно рассматривать, как возможность атома образовывать связи, благодаря которым появляются молекулы.
Обозначают валентность элемента
всегда только римскими цифрами. Посмотреть ее значение для разных атомов можно в специальной таблице.
Какие бывают характеристики у валентности элементов?
Все вещества, которые обладают валентностью, характеризуются тем, что она у них или постоянна (во всех связях), либо переменная. Постоянная валентность — характеристика очень небольшой группы веществ (водорода, фтора, натрия, калия, кислорода и др. Намного больше в мире атомов, которые обладают переменной валентностью. В разных реакциях, взаимодействуя с разными атомами, они становятся разновалентными. Например, азот в соединении NH3 имеет валентность — III, так как связан с тремя атомами, а в природе он бывает с валентность от одного до четырех. Еще раз повторю, что разная валентность — более распространенное явление.
Влияние валентности элементов в химических реакциях.
Даже того как ученые узнали, что атом — это не мельчайшая частица в мире, они уже оперировали этим понятием. Они понимали, что есть внутренний фактор, который влияет на протекание химической реакции различных веществ. Из-за того, что ученые по-разному видели строение молекулы, понятие «валентность элемента
» пережило несколько метаморфоз.
Валентность вещества определяется количеством внешних электронов атома. Каким количеством электронов атом обладает, столько максимально соединений он способен совершить. Таким образом «валентность» подразумевает собою число электронных пар атомов.
Хотя электронная теория появилась намного позже, после «разделения» атома на более мелкие частицы, до этого ученые все равно вполне успешно определяли валентность в большинстве случаев. Удавалось им это благодаря химическому анализу веществ.
Это была тяжелая работа: прежде всего, требовалось определить массу элемента в чистом виде. Далее, с помощью химического анализа, ученые определяли каков состав соединения, и только потом могли высчитать, сколько атомов содержит в себе молекула вещества.
Этот метод все еще используется, но не является универсальным. Так удобно определять элемент в простом соединении веществ. Например, с одновалентным водородом, или двухвалентным кислородом.
Но уже при работе с кислотами метод не особо удачный. Нет, мы можем частично использовать его, например, при определении валентности соединений кислотных остатков.
Выглядит это так: используя знание, что валентность кислорода всегда равна двум, мы можем с легкостью высчитать валентность всего кислотного остатка. Например, в H 2 SO 3 валентность SO 3 — I, в HСlO 3 валентность СlO 3 — I.
Валентность элементов в формулах.
Как мы уже говорили выше, понятие «валентность элементов
» связанно с электронной структурой атома. Но это не единственный вид связи, которые существуют в природе. Химики знакомы еще с ионными, кристаллическими и другими формами структуры вещества. Для таких структур валентность уже не столь актуальна, но вот работая с формулами молекулярных реакций, мы обязательно должны ее учитывать.
Для того, чтоб сделать формулу мы должны расставить все индексы, которые уравновешивают количество атомов, вступающие в реакцию. Только зная валентность веществ, мы можем правильно расставить индексы. И наоборот, зная молекулярную формулу и имея индексы, можно узнать валентность элементов, что входят в состав вещества.
Для произведения подобных расчетов важно помнить, что валентности обоих элементов, вступивших в реакцию, будут равны, а значит, для поиска необходимо найти наименьшее общее кратное.
Например, возьмем, оксид железа. В химической связи у нас участвуют железо и кислород. В данной реакции у железа валентность равна III, а кислорода — II. Путем легких вычислений определяем, что наименьшее общее кратное — 6. А значит формула имеет вид Fe 2 O 3 .
Необычные способы определения валентности элементов.
Есть и более нестандартные, но интересные способы определения валентности вещества. Если хорошо знать свойства элемента, то определить валентность можно даже визуально. Например, медь. Ее оксиды будут красными и черными, а гидроксиды — желтыми и синими.
Наглядность.
Для того, чтоб валентность элемента
была более понятна рекомендуют писать структурные формулы . Создавая их, мы пишем условные обозначения атомов, а потом рисуем черточки, опираясь на валентность. Там каждая черточка обозначает связи каждого из элементов и получается очень наглядно.
Валентность — это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.
Спонсор размещения P&G
Статьи по теме «Как определить валентность»
Как доказать амфотерность гидроксидов
Как вычислить валентность
Как определить химическую формулу
Инструкция
Возьмите на заметку, что обозначается показатель валентности римскими цифрами и ставится над знаком элемента.
Обратите внимание: если формула двухэлементного вещества написана правильно, то,
при умножении числа атомов каждого элемента на его валентность, у всех элементов
должны получиться одинаковые произведения.
Примите к сведению, что валентность атомов одних элементов постоянна, а других — переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну связь. Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у серы валентность может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера — элемент с переменной валентностью.
Заметьте, что в молекулах водородных соединений вычислить валентность очень просто.
Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.
Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле всегда равно произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.
Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V — это валентность атомов элементов, а К — количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.
Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.
Как просто
Другие новости по теме:
Химическая формула – это запись, сделанная с использованием общепринятых символов, которая характеризует состав молекулы какого-либо вещества. Например, формула всем известной серной кислоты – H2SO4. Легко можно увидеть, что каждая молекула серной кислоты содержит два атома водорода, четыре атома
Валентность — это способность атома присоединять другие атомные группы и отдельные атомы. Это важное понятие позволяет определить, сколько атомов того или иного вещества входит в формулу, и изобразить молекулу вещества графически. Вам понадобится таблица валентностей Спонсор размещения P&G Статьи
«Знание шрифтов – одно из самых элементарных требований, предъявляемых к сыщику!», — так наставлял когда-то великий Шерлок Холмс своего друга и летописца доктора Ватсона. Аналогично этому, можно смело сказать: «Знание того, как составляются химические формулы – одно из самых элементарных
Химия для каждого школьника начинается с таблицы Менделеева и фундаментальных законов. И уже только потом, уяснив для себя, что же изучает эта сложная наука, можно приступать к составлению химических формул. Для грамотной записи соединения нужно знать валентность атомов, составляющих его. Спонсор
Валентность химического элемента — это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Нужно помнить, что некоторые атомы одного и того же химического элемента могут иметь разную валентность в разных соединениях. Вам
Валентность – один из основных терминов, употребляемых в теории химического строения. Это понятие определяет способность атома образовывать химические связи и количественно представляет собой число связей, в которых он участвует. Спонсор размещения P&G Статьи по теме «Что такое валентность» Что
Со школы или даже раньше каждый знает, всё вокруг, включая и нас самих, состоит их атомов – наименьших и неделимых частиц. Благодаря способности атомов соединяться друг с другом, многообразие нашего мира огромно. Способность эта атомов химического элемента образовывать связи с другими атомами