Как найти валентность ионов

Валентность

Валентность (лат. valere — иметь значение) — мера «соединительной способности» химического элемента, равная числу индивидуальных
химических связей, которые может образовать один атом.

Определяют валентность по числу связей, которые один атом образует с другими. Для примера рассмотрим две молекулы

Валентность

Для определения валентности нужно хорошо представлять графические формулы веществ. В этой статье вы увидите множество формул. Сообщаю
вам также о химических элементах с постоянной валентностью, знать которые весьма полезно.

Постоянная валентность

В электронной теории считается, что валентность связи определяется числом неспаренных (валентных) электронов в основном или возбужденном
состоянии. Мы касались с вами темы валентных электронов и возбужденного состояния атома. На примере фосфора объединим эти две темы для
полного понимания.

Валентность и состояние атома

Подавляющее большинство химических элементов обладает непостоянным значением валентности. Переменная валентность характерна для меди,
железа, фосфора, хрома, серы.

Ниже вы увидите элементы с переменной валентностью и их соединения. Заметьте, определить их непостоянную валентность нам помогают другие
элементы — с постоянной валентностью.

Валентность и состояние атома

Запомните, что у некоторых простых веществ валентность принимает значения: III — у азота, II — кислорода. Подведем итог полученным знаниям,
написав графические формулы азота, кислорода, углекислого и угарного газов, карбоната натрия, фосфата лития, сульфата железа (II) и ацетата калия.

Графические формулы и валентность

Как вы заметили, валентности обозначаются римскими цифрами: I, II, III и т.д. На представленных формулах валентности веществ равны:

  • N — III
  • O — II
  • H, Na, K, Li — I
  • S — VI
  • C — III (в угарном газе CO, так как одна связь образована по донорно-акцепторному механизму), IV (в углекислом газе CO2 и карбонате натрия Na2CO3)
  • Fe — II
Степень окисления

Степенью окисления (СО) называют условный показатель, который характеризует заряд атома в соединении и его поведение в ОВР (окислительно-восстановительной
реакции). В простых веществах СО всегда равна нулю, в сложных — ее определяют исходя из постоянных степеней окисления у некоторых элементов.

Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны,
образующие связи, перешли к более электроотрицательному элементу.

Определяя степень окисления, одним элементам мы приписываем условный заряд «+», а другим «-«. Это связано с электроотрицательностью —
способностью атома притягивать к себе электроны. Знак «+» означает недостаток электронов, а «-» — их избыток. Повторюсь, СО — условное
понятие.

Степень окисления

Сумма всех степеней окисления в молекуле равна нулю — это важно помнить для самопроверки.

Зная изменения электроотрицательности в периодах и группах периодической таблицы Д.И. Менделеева, можно сделать вывод о том какой элемент
принимает «+», а какой минус. Помогают в этом вопросе и элементы с постоянной степенью окисления.

Кто более электроотрицательный, тот сильнее притягивает к себе электроны и «уходит в минус». Кто отдает свои электроны и испытывает их недостаток —
получает знак «+».

Элементы с постоянной степенью окисления

Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2,
KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.

Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией :) Однако по мере изучения химии, точное знание
степеней окисления должно заменить даже самую развитую интуицию ;-)

Степени окисления в веществах

Особо хочу выделить тему ионов. Ион — атом, или группа атомов, которые за счет потери или приобретения одного или нескольких
электронов приобрел(и) положительный или отрицательный заряд.

Определяя СО атомов в ионе, не следует стремиться привести общий заряд иона к «0», как в молекуле. Ионы даны в таблице растворимости, они имеют
разные заряды — к такому заряду и нужно в сумме привести ион. Объясню на примере.

Определение степени оксиления

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Валентность. Определение валентности. — Ида Тен

Валентность

До сих пор вы пользовались химическими формулами веществ, приведенными в учебнике, или теми, которые вам называл учитель. Как же правильно составлять химические формулы?

Химические формулы веществ составляются на основе знания качественного и количественного состава вещества. Веществ существует гигантское количество, естественно запомнить все формулы невозможно.

Это и не нужно! Важно знать определенную закономерность, согласно которой атомы способны соединяться друг с другом с образованием новых химических соединений. Такая способность называется валентностью.

Валентность – свойство атомов элементов присоединять определенное число атомов других элементов

Рассмотрим модели молекул некоторых веществ, таких, как вода, метан и углекислый газ.

Видно, что в молекуле воды атом кислорода присоединяет два атома водорода. Следовательно, его валентность равна двум. В молекуле метана атом углерода присоединяет четыре атома водорода, его валентность в данном веществе равна четырем.

Валентность водорода в обоих случаях равна одному. Такую же валентность углерод проявляет и в углекислом газе, но в отличие от метана, атом углерода присоединяет два атома кислорода, так как валентность кислорода равна двум.

Существуют элементы, валентность которых не меняется в соединениях. О таких элементах говорят, что они обладают постоянной валентностью. Если же валентность элемента может быть различной – это элементы с переменной валентностью. Валентность некоторых химических элементов приведена в таблице 2. Валентность принято обозначать римскими числами.

Таблица 2. Валентность некоторых химических элементов

Символ элемента   Валентность Символ элемента   Валентность
 H, Li, Na, K, F, Ag  C, Si, Sn, Pb  II, IV
 Be, Mg, Ca, Ba, Zn, O II  N  I, II, III, IV
 Al, B III  P, As, Sb  III, V
 S II, IV, VI  Cl  I, II,III, IV,V, VII
 Br, I I, III, V  Ti  II, III, IV

Стоит отметить, что высшая валентность элемента численно совпадает с порядковым номером группы Периодической Системы, в которой он находится. Например, углерод находиться в IV группе, его высшая валентность равна IV.

Исключение составляют три элемента:

  • азот – находится в V группе, но его высшая валентность IV;
  • кислород – находится в VI группе, но его высшая валентность II;
  • фтор – находится в VII группе, но его высшая валентность – I.

Исходя из того, что все элементы расположены в восьми группах Периодической Системы, валентность может принимать значения от I до VIII.

Составление формул веществ при помощи валентности

Для составления формул веществ при помощи валентности воспользуемся определенным алгоритмом:

 Алгоритм  Пример
Записать химические формулы элементов
Вверху, над символами элементов записать значение их валентности. Для элементов с переменной валентностью конкретная валентность указана в условии
Найти наименьшее общее кратное (НОК) значений валентности, записать его вверху
Поделить НОК на значения валентностей элементов – это индексы, выражающие число атомов  10:V=2(P)10:II=5(O)P2O5

Определение валентности по формуле вещества

Чтобы определить валентность элементов по формуле вещества, необходим обратный порядок действий. Рассмотрим его также при помощи алгоритма:

Алгоритм Пример
Записать формулу вещества
Указать известную валентность элемента (для элементов с постоянной валентностью)
Найти наименьшее общее кратное (НОК) валентности и индекса элемента
Поделить значение НОК на индекс элемента, валентность которого неизвестна

При изучении данного параграфа были рассмотрены сложные вещества, в состав которых входят только два вида атомов химических элементов. Формулы более сложных веществ составляются иначе.

Бинарные соединения – соединения, в состав которых входит два вида атомов элементов

Для определения порядка последовательности соединения атомов используют структурные (графические) формулы веществ. В таких формулах валентности элементов обозначают валентными штрихами (черточками). Например, молекулу воды можно изобразить как

Н─О─Н

Графическая формула изображает только порядок соединения атомов, но не структуру молекул. В пространстве такие молекулы могут выглядеть иначе. Так, молекула воды имеет угловую структурную формулу:

  • Валентность – способность атомов элементов присоединять определенное число атомов других химических элементов
  • Существуют элементы с постоянной и переменной валентностью
  • Высшая валентность химического элемента совпадает с его номером группы в Периодической Системе химических элементов Д.И. Менделеева. Исключения: азот, кислород, фтор
  • Бинарные соединения – соединения, в состав которых входит два вида атомов химических элементов
  • Графические формулы отражают порядок связей атомов в молекуле при помощи валентных штрихов
  • Структурная формула отражает реальную форму молекулы в пространстве

Валентность. Определение валентности. Элементы с постоянной валентностью

Валентность

Валентность — это способность атома данного элемента образовывать определенное количество химических связей.

Образно говоря, валентность — это число «рук», которыми атом цепляется за другие атомы. Естественно, никаких «рук» у атомов нет; их роль играют т. н. валентные электроны.

Можно сказать иначе: валентность — это способность атома данного элемента присоединять определенное число других атомов.

Необходимо четко усвоить следующие принципы:

Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство)

Элементы с постоянной валентностью необходимо запомнить:

Элементы Постоянная валентность
щелочные металлы (Li, Na, K, Rb , Cs, Fr) I
металлы II группы, главной подгруппы (Be, Mg, Ca, Sr, Ba, Ra) II
алюминий (Al) III
кислород (О) II
фтор (F) I

Остальные элементы могут проявлять разную валентность.

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент

Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.

Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

Важно запомнить несколько исключений: максимальная (и единственная) валентность фтора равна I (а не VII), кислорода — II (а не VI), азота — IV (способность азота проявлять валентность V — популярный миф, который встречается даже в некоторых школьных учебниках).

Валентность и степень окисления — это не тождественные понятия

Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность — нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.

Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого

Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента.

В соединении AxBy: валентность (А) • x = валентность (В) • y

Пример 1. Найти валентности всех элементов в соединении NH3.

Решение. Валентность водорода нам известна — она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 • 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).

Пример 2. Найти валентности всех элементов в молекуле Cl2O5.

Решение. У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 • 2 = 2 • Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).

Пример 3. Найти валентность хлора в молекуле SCl2, если известно, что валентность серы равна II.

Решение. Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl — элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).

В примерах 1 — 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.

Пример 4. Составьте формулу соединения кальция с водородом.

Решение. Валентности кальция и водорода известны — II и I соответственно. Пусть формула искомого соединения — CaxHy. Вновь составляем известное уравнение: 2 • x = 1 • у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH2.

«А почему именно CaH2? — спросите вы. — Ведь варианты Ca2H4 и Ca4H8 и даже Ca10H20 не противоречат нашему правилу!»

Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.

«Значит, соединения типа N2O4 или C6H6 невозможны? — спросите вы. — Следует заменить эти формулы на NO2 и CH?»

Нет, возможны. Более того, N2O4 и NO2 — это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С6Н6).

Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.

Пример 5. Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.

Решение. Пусть формула соединения — SxFy. Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 • x = 1 • y. Несложно понять, что наименьшие возможные значения переменных — это 1 и 6. Ответ: SF6.

Вот, собственно, и все основные моменты.

А теперь проверьте себя! Предлагаю пройти небольшой тест по теме «Валентность».

Хотите узнать, почему «классическое» определение валентности часто не «работает»? Почему валентность железа в FeO не равна двум? Почему для описания комплексных веществ используется понятие «координационное число»?

Смотрите продолжение этой статьи →

Как определить валентность элемента?

Валентность

Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.

Валентности постоянные и переменные

Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.

В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.

Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.

Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.

В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.

Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:

  • Li, Na, K, F — одновалентны;
  • Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
  • B, Al и Ga — трехвалентны.

Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).

Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III,  для N — IV, а для фтора — I.

Минимальное значение валентности всегда  соответствует разнице между числом 8 и номером группы (правило 2).

Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.

Определение валентности в бинарном соединении

Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.

Случай первый:

  • Fe2O3 — валентность кислорода постоянна и равна II. Три атома О имеют 2 × 3 = 6 единиц валентности.
  • Далее работаем по правилу: суммарное число единиц валентности для атомов одного элемента совпадает с числом единиц валентности для атомов другого вида (правило 3).
  • Согласно этому правилу, общее число единиц валентности для железа тоже равно 6.
  • Разделим общее число валентных единиц на количество атомов железа, то есть на 2, и получим валентность железа, равную III.

Случай второй:

  • SnCI4 — оба атома с переменной валентностью. Применяем ещё одно правило: в бинарном соединении элемент, стоящий на втором месте, имеет минимальную валентность. В соединениях металлов с неметаллами на втором месте записывают неметалл. В формуле вещества, состоящего только из неметаллов, на втором месте пишут символ того элемента, который в ПСХЭ находится правее или выше.
  • В приведённом примере Sn (олово) — металл, CI — неметалл, соответственно он и будет иметь минимальную валентность. Её определим, исходя из правила 2: 8 — 7 = 1
  • Далее определим суммарное число единиц валентности у хлора: 4 × 1= 4
  • Воспользуемся правилом 3. Суммарное количество валентных единиц олова тоже будет равно 4. Все они приходятся на один атом Sn, значит, это и есть его валентность.

Определение валентности по формуле трехэлементной частицы

Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения  K2Cr2O7.

  • Cr здесь называют центральным атомом. Необходимо помнить, что все остальные атомы связаны с ним через кислородные мостики. Исходя из этого, и будем производить вычисления.
  • Кислород — элемент с постоянной валентностью, равной двум. Калий всегда одновалентен.
  • Всего атомы O образуют 7 × 2 = 14 единиц валентности, а атомы калия 1 × 2 = 2.
  • Из 14 валентных единиц атом серы два расходует на присоединение калия, следовательно, на хром их остаётся 14 — 2 = 12.
  • Это число единиц валентности приходится на 2 атома Cr, значит, на один атом приходится 12÷2=6.

Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.

  • Атом кислорода двухвалентен, всего на кислород приходится II × 4 = 8 единиц валентности.
  • Валентность кислотного остатка SO4 равна II (как ее определить, написано в статье «Формулы кислот»).
  • По правилу 3 валентность железа в этом случае тоже равна II.
  • Центральный атом здесь S. Кислород присоединяет один атом железа, расходуя на него две валентные единицы, следовательно, на серу их остаётся 8 — 2 = 6 единиц валентности. Так как в формуле FeSO4 один атом серы, то это и есть ее валентность.

Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».

Урок 6. Валентность – HIMI4KA

Валентность
Архив уроков › Химия 8 класс

В уроке 6 «Валентность» из курса «Химия для чайников» дадим определение валентности, научимся ее определять; рассмотрим элементы с постоянной и переменной валентностью, кроме того научимся составлять химические формулы по валентности. Напоминаю, что в прошлом уроке «Химическая формула» мы дали определение химическим формулам и их индексам, а также выяснили различия химических формул веществ молекулярного и немолекулярного строения.

Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:

Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода.

В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами.

Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум.

По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем.

Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:

Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:

Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:

Так же определяют число единиц валентности атома кислорода:

По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:

Согласно вышеприведенному правилу х·1 = II·2, откуда х = IV.

Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:

В этом веществе валентность углерода равна II, так как х·1 = II·1, откуда х = II:

Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV, а азота — III.

Записываем рядом символы элементов в следующем виде:

Затем находим НОК валентностей обоих элементов. Оно равно 12 (IV·III).

Определяем индексы каждого элемента:

Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Надеюсь урок 6 «Валентность» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Валентность

Валентность

При составлении формул ковалентных молекул и ионных соединений удобно пользоваться валентностями атомов, ионов или групп атомов. Валентность-это число электронов, используемых атомом при образовании химической связи.

Валентность атома равна числу электронов, теряемых им при образовании катиона либо присоединяемых при образовании аниона.

Валентность атома в ковалентной молекуле равна числу электронов, обобществляемых им при образовании связей с другими атомами.

Валентности всегда выражаются небольшими целыми числами. В табл. 4.20 указаны наиболее распространенные валентности элементов. Инертные газы, как, например, гелий, имеют нулевую валентность. В обычных условиях они не образуют

Таблица 4.20. Наиболее распространенные валентности некоторых элементов

Элемент Символ Валентность Элемент Символ Валентность
Металлы Неметаллы
Литий Li 1 Гелий Не 0
Натрий Na 1 Неон Ne 0
Калий К 1 Водород H 1
Серебро Ag 1 Хлор Cl 1
Кальций Ca 2 Бром Br 1
Магний Mg 2 Иод I 1
Цинк Zn 2 Кислород о 2
Алюминий Al 3 Азот N 3
Углерод С 4

соединений. Некоторые элементы, в частности переходные (/-металлы, могут иметь несколько разных валентностей (табл. 4.21). В табл. 4.22 приведены примеры, показывающие, как пользоваться валентностями для определения формул простейших соединений.

Иногда валентности имеют численные значения, совпадающие со степенями окисления, однако так бывает отнюдь не всегда.

Например, углерод всегда имеет валентность 4, а его степень окисления может изменяться от —4 до +4. Поэтому в органической химии принято характеризовать углерод его валентностью, а не степенями окисления.

В табл. 4.23 сопоставлены валентность и степени окисления углерода в пяти соединениях.

Таблица 4.21. Элементы, имеющие непостоянную валентность

Основным оборудованием лаборатории является рабочий стол, на котором проводится вся экспериментальная работа.

В каждой лаборатории должна быть хорошая вентиляция. Обязателен вытяжной шкаф, в котором проводят все работы с использованием дурно пахнущих или ядовитых соединений, а также сжигание в тиглях органических веществ.

В специальном вытяжном шкафу, в котором не проводят работ, связанных с нагреванием, хранят легколетучие, вредные или дурно пахнущие вещества (жидкий бром, концентрированные азотную и соляную кислоты и т. п.

), а также легковоспламеняющиеся вещества (сероуглерод, эфир, бензол и др.).

В лаборатории необходимы водопровод, канализация, проводка технического тока, газа и водонагрева-тельные приборы. Желательно также иметь подводку сжатого воздуха, вакуум-линию, подводку горячей воды и пара.

Если пет специальной подводки, для получения горячей воды применяют водонагреватели различных систем.

При помощи этих аппаратов, обогреваемых электричеством или газом, можно быстро получить струю горячей воды с температурой почти 100° С.

Лаборатория должна иметь установки для дистилляции (или деминерализации) воды, так как без дистиллированной или деминерализованной воды в лаборатории работать нельзя. В тех случаях, когда получение дистиллированной воды затруднено или невозможно, пользуются продажной дистиллированной водой

Около рабочих столов и водопроводных раковин обязательно должны быть глиняные банки емкостью 10-— 15 л для сливания ненужных растворов, реактивов и т. д., а также корзины для битого стекла, бумаги и прочего сухого мусора.

Кроме рабочих столов, в лаборатории должны быть письменный стол, где хранятся все тетради и записи, и, при необходимости, титровальный стол. Около рабочих столов должны быть высокие табуреты или стулья.

Аналитические весы и приборы, требующие стационарной установки (электрометрические, оптические и др.), помещают в отдельном, связанном с лабораторией помещении, причем для аналитических весов должна быть выделена специальная весовая комната. Желательно, чтобы весовая была расположена окнами на север. Это важно потому, что на весы не должен попадать солнечный свет («Весы и взвешивание»).

В лаборатории нужно иметь также самые необходимые справочные книги, пособия и учебники, так как нередко во время работы возникает необходимость в тон или иной справке.

К оглавлению

см. также

Page 3

Применяемая в лабораториях химическая посуда может быть разделена на ряд групп. По назначению посуду можно разделить на посуду общего назначения, специального назначения и мерную. По материалу — на посуду из простого стекла, специального стекла, из кварца.

К группе. общего назначения относятся те предметы, которые всегда должны быть в лабораторий и без которых нельзя провести большинство работ. Такими являются: пробирки, воронки простые и делительные, стаканы, плоскодонные колбы, кристаллизаторы, конические колбы (Эрленмейера), колбы Бунзена, холодильники, реторты, колбы для дистиллированной воды, тройники, краны.

К группе специального назначения относятся те предметы, которые употребляются для одной какой-либо цели, например: аппарат Киппа, аппарат Сок-слета, прибор Кьельдаля, дефлегматоры, склянки Вуль-фа, склянки Тищенко, пикнометры, ареометры, склянки Дрекселя, кали-аппараты, прибор для определения двуокиси углерода, круглодонные колбы, специальные холодильники, прибор для определения молекулярного веса, приборы для определения температуры плавления и кипения и др.

К мерной посуде относятся: мерные цилиндры и мензурки, пипетки, бюретки и мерные колбы.

Для начала предлагаем посмотреть следующий видеоролик, где кратко и доступно рассмотрены основные виды химической посуды.

см. также:

Посуда общего назначения

Пробирки (рис. 18) представляют собой узкие цилиндрической формы сосуды с закругленным дном; они бывают различной величины и диаметра и из различного стекла. Обычные» лабораторные пробирки изготовляют из легкоплавкого стекла, но для особых работ, когда требуется нагревание до высоких температур, пробирки изготовляют из тугоплавкого стекла или кварца.

Кроме обычных, простых пробирок, применяют также градуированные и центрифужные конические пробирки.

Для хранения пробирок, находящихся в работе, служат специальные деревянные, пластмассовые или металлические штативы (рис. 19).

Рис. 18. Простая и градуированная пробирки

Рис. 20. Внесение в пробирку бирки порошкообразных веществ.

Пробирки применяют для проведения главным образом аналитических или микрохимических работ. При проведении реакций в пробирке реактивы не следует применять в слишком большом количестве. Совершенно недопустимо, чтобы пробирка была наполнена до краев.

Реакцию проводят с небольшими количествами веществ; достаточно бывает 1/4 или даже 1/8 емкости пробирки. Иногда в пробирку нужно ввести твердое вещество (порошки, кристаллы и т. п.

), для этого полоску бумаги шириной чуть меньше диаметра пробирки складывают вдвое по длине и в полученный совочек насыпают нужное количество твердого вещества. Пробирку держат в левой руке, наклонив ее горизонтально, и вводят в нее совочек почти до дна (рис. 20).

Затем пробирку ставят вертикаль» но и слегка ударяют по ней. Когда все твердое вещество высыпется, бумажный совочек вынимают.

Для перемешивания налитых реактивов пробирку держат большим и указательным пальцами левой руки за верхний конец и поддерживают ее средним пальцем, а указательным пальцем правой руки ударяют косым ударом по низу пробирки. Этого достаточно, чтобы содержимое ее было хорошо перемешано.

Совершенно недопустимо закрывать пробирку пальцем и встряхивать ее в таком виде; при этом можно не только ввести что-либо постороннее в жидкость, находящуюся в пробирке, но иногда и повредить кожу пальца, получить ожог и пр.

Если Пробирка наполнена жидкостью больше чем на половину, содержимое перемешивают стеклянной палочкой.

Если пробирку нужно нагреть, ее следует зажать в держателе.

При неумелом и сильном нагревании пробирки жидкость быстро вскипает и выплескивается из нее, поэтому нагревать нужно осторожно-Когда начнут появляться пузырьки, пробирку следует отставить и, держа ее не в пламени горелки, а около него или над ним, продолжать нагревание горячим воздухом. При нагревании открытый конец пробирки должен быть обращен в сторону от работающего и от соседей по столу.

Когда не требуется сильного нагрева, пробирку с нагреваемой жидкостью лучше опустить в горячую воду. Если работают с маленькими пробирками (для полумикроанализа), то нагревают их только в горячей воде, налитой в стеклянный стакан соответствующего размера (емкостью не больше 100 мл).

Воронки служат для переливания — жидкостей, для фильтрования и т. д. Химические воронки выпускают различных размеров, верхний диаметр их составляет 35, 55, 70, 100, 150, 200, 250 и 300 мм.

Обычные воронки имеют ровную внутреннюю стенку, но для ускоренного фильтрования иногда применяют воронки с ребристой внутренней поверхностью.

Воронки для фильтрования всегда имеют угол 60° и срезанный длинный конец.

При работе воронки устанавливают или в специальном штативе, или в кольце на обычном лабораторном штативе (рис. 21).

Для фильтрования в стакан полезно сделать простой держатель для воронки (рис.22).Для этого из листового алюминия толщиной около 2 мм вырезают полоску длиной 70—80 лш и шириной 20 мм.

На одном из концов полоски просверливают отверстие диаметром 12—13 мм и полоску сгибают так, как показано на рис. 22, а. Как укрепить воронку на стакане, показано на рис. 22, б.

При переливании жидкости в бутыль или колбу не следует наполнять воронку до краев.

Если воронка плотно прилегает к горлу сосуда, в который переливают жидкость, то переливание затрудняется, так как внутри сосуда создается повышенное давление. Поэтому воронку время от времени нужно приподнимать.

Еще лучше сделать между воронкой и горлом сосуда щель, вложив между ними, например, кусочек бумаги. При этом нужно следить, чтобы прокладка не попала в сосуд. Целесообразнее применять проволочный треугольник, который можно сделать самому.

Этот треугольник помещают на горло сосуда и затем вставляют воронку.

Существуют специальные резиновые или пластмассовые насадки на горлышко посуды, которые обеспечивают сообщение внутренней части колбы с наружной атмосферой (рис. 23).

Рис. 21. Укрепление стекляниой химической воронки

Рис. 22. Приспособление для крепле- ния воронки на стакане, в штативе.

Для аналитических работ при фильтровании лучше пользоваться аналитическими воронками (рис. 24). Особенность этих воронок заключается в том, что они имеют удлиненный срезанный конец, внутренний диаметр которого в верхней части меньше, чем в нижней части; такая конструкция ускоряет фильтрование.

Кроме того, бывают аналитические воронки с ребристой внутренней поверхностью, поддерживающей фильтр, и с шарообразным расширением в месте перехода воронки в трубку. Воронки такой конструкции ускоряют процесс фильтрования почти в три раза по сравнению с обычными воронками.

Рис. 23. Насадки на горла бутылей. Рис. 24. Аналитическая воронка.

Делительные воронки (рис. 25) применяют для разделения несмешивающихся жидкостей (например, воды и масла). Они имеют или цилиндрическую, или грушевидную форму и в большинстве случаев снабжены притертой стеклянной пробкой.

В верхней части отводной трубки находится стеклянный притертый кран. Емкость делительных воронок различна (от 50 мл и до нескольких литров), в зависимости от емкости меняется и толщина стенок.

Чем меньше емкость воронки, тем тоньше ее стенки, и наоборот.

При работе делительные воронки в зависимости от емкости и формы укрепляют по-разному. Цилиндрическую воронку небольшой емкости можно укрепить просто в лапке. Большие же воронки помещают между двумя кольцами.

Нижняя часть цилиндрической воронки должна опираться на кольцо, диаметр которого немного меньше диаметра воронки, верхнее кольцо имеет диаметр несколько больший.

Если воронка при этом качается, между кольцом и воронкой следует положить пластинку из пробки.

Грушевидную делительную воронку укрепляют на кольце, горлышко ее зажимают лапкой. Всегда прежде закрепляют воронку, а уже потом наливают в нее подлежащие разделению жидкости.

Капельные воронки (рис. 26) отличаются от делительных тем, что они более легкие, тонкостенные и

Рис. 25. Делительные воронки. рис. 26. Капельные воронки.

B большинстве случаев с длинным концом. Эти воронки врименяют при многих работах, когда вещество добавляют в реакционную массу небольшими порциями или по каплям. Поэтому они обычно составляют часть прибора. Воронки укрепляют в горле колбы на шлифе или при помощи корковой либо резиновой пробки.

Перед работой с делительной или капельной воронкой шлиф стеклянного крана нужно осторожно смазать вазелином или специальной смазкой.

Это дает возможность открывать кран легко и без усилий, что очень важно, так как если кран открывается туго, то можно при открывании сломать его или повредить весь прибор.

Смазку нужно наносить очень тонким слоем так, чтобы при поворачиваиии крана она не попадала в трубку воронки или внутрь отверстия крана.

Для более равномерного стекания капель жидкости из капельной воронки и для наблюдения за скоростью подачи жидкости применяют капельные воронки с насадкой (рис. 27). У таких воронок сразу после крана находится расширенная часть, переходящая в трубку. Жидкость через кран поступает в это расширение по короткой трубке и затем в трубку воронки.

Рис. 27. Kaпельная воронка с насадкой

Рис. 28. Химические  стаканы.

Рис. 29. Плоскопельная воронка с насадкой 

СТЕКЛЯННАЯ ПОСУДА 1 2 3

К оглавлению

см. также

Как определять валентность химических элементов? | We are students — Мы студенты!

Валентность

Как определять валентность химических элементов? С этим вопросом сталкивается каждый, кто только начинает знакомиться с химией. Сначала выясним, что же это такое. Валентность можно рассматривать как свойство атомов одного элемента удерживать определенное количество атомов другого элемента.

Элементы с постоянной и переменной валентностью

Например, из формулы Н-О-Н видно, что каждый атом Н соединен только с одним атомом (в данном случае с кислородом). Отсюда следует, что его валентность равна 1. Атом О в молекуле воды связан с двумя одновалентными атомами Н, значит он двухвалентен. Значения валентностей записывают римскими цифрами над символами элементов:

Валентности водорода и кислорода постоянны. Впрочем, для кислорода существуют и исключения. Например, в ионе гидроксония Н3О+ кислород трехвалентен. Существуют и другие элементы с постоянной валентностью.

  • Li, Na, K, F – одновалентны;
  • Be, Mg, Ca, Sr, Ba, Cd, Zn – обладают валентностью, равной II;
  • Al, B – трехвалентны.

Теперь определим валентность серы в соединениях H2S, SO2 и SO3.

В первом случае один атом серы связан с двумя одновалентными атомами Н, значит его валентность равна двум.

Во втором примере на один атом серы приходится два атома кислорода, который, как известно, двухвалентен. Получаем валентность серы, равную IV.

В третьем случае один атом S присоединяет три атома О, значит,  валентность серы равна VI (валентность атомов одного элемента помноженная на их количество).

Как видим, сера может быть двух-, четырёх- и шестивалентной:

Про такие элементы говорят, что они обладают переменной валентностью.

Правила определения валентностей

  1. Максимальная валентность для атомов данного элемента совпадает с номером группы, в которой он находится в Периодической системе. Например, для Са это 2, для серы – 6, для хлора – 7.

    Исключений из этого правила тоже немало:-элемент 6 группы, О, имеет валентность II (в H3O+ – III);-одновалентен F (вместо 7);-двух- и трехвалентно обычно железо, элемент VIII группы;-N может удержать возле себя только 4 атома, а не 5, как следует из номера группы;

    -одно- и двухвалентна медь, расположенная в I группе.

  2. Минимальное значение валентности для элементов, у которых она переменная, определяется по формуле:  № группы в ПС – 8. Так, низшая валентность серы 8 – 6 = 2, фтора и других галогенов – (8  – 7) = 1, азота и фосфора – (8 – 5)= 3 и так далее.
  3. В соединении сумма единиц валентности атомов одного элемента должна соответствовать суммарной валентности другого.
  4. В молекуле воды Н-О-Н валентность Н равна I, таких атомов 2, значит, всего единиц валентности у водорода 2 (1×2=2). Такое же значение имеет и валентность кислорода.
  5. В соединении, состоящем из атомов двух видов, элемент, расположенный на втором месте, обладает низшей валентностью.
  6. Валентность кислотного остатка совпадает с количеством атомов Н в формуле кислоты, валентность группы OH равна I.
  7. В соединении, образованном атомами трех элементов, тот атом, который находится в середине формулы, называют центральным. Непосредственно с ним связаны атомы О, а с кислородом образуют связи остальные атомы.

Используем эти правила для выполнения заданий:

  1. Определим валентности Cr и О в веществе, формула которого Cr2O3.Точно известно, что кислород двухвалентен. Всего он образует 2×3=6 единиц валентности.По правилу 3 два атома хрома образуют столько же валентных связей, что и кислород, то есть 6.Разделим полученное значение на количество атомов хрома: 6÷2=3.
  2. Рассмотрим, как определить валентность элементов в соединении CS2.Здесь и S, и C обладают переменной валентностью. По правилу 4 валентность серы будет 8 – 6 = 2 (элемент, расположенный на втором месте, имеет низшую валентность). Теперь умножим полученное значение на индекс 2 (количество ат. S), получим: 2×2=4. Разделим результат на количество атомов С: 4÷1=4. Это и будет его валентность.
  3. Определим валентность серы в сульфате натрия – Na2SO4.Здесь вспоминаем правило 6. Сера – центральный атом, непосредственно с ней соединяется кислород, а уже с ним – атомы Na. Валентность О равна II, всего таких атомов 4, вместе они образуют 8 единиц валентности. Na одновалентен. Из 8 единиц валентности кислород с натрием образует 2, остальные валентные единицы приходятся на серу:  8 – 2= 6.

Теперь вы знаете, как определять валентность химических элементов в разных случаях.

Валентность – видео

правила, формулы, элементы

Определяем валентность химических элементов

Валентность

Уровень знаний о строении атомов и молекул в XIX веке не позволял объяснить причину, по которой атомы образуют определенное число связей с другими частицами. Но идеи ученых опередили свое время, а валентность до сих пор изучается как один из основных принципов химии.

Из истории возникновения понятия «валентность химических элементов»

Выдающийся английский химик XIX века Эдвард Франкленд ввел термин «связь» в научный обиход для описания процесса взаимодействия атомов друг с другом. Ученый заметил, что некоторые химические элементы образуют соединения с одним и тем же количеством других атомов. Например, азот присоединяет три атома водорода в молекуле аммиака.

В мае 1852 года Франкленд выдвинул гипотезу о том, что существует конкретное число химических связей, которые атом может образовывать с другими мельчайшими частицами вещества.

Франкленд использовал фразу «соединительная сила» для описания того, что позже будет названо валентностью. Британский химик установил, сколько химических связей формируют атомы отдельных элементов, известных в середине XIX столетия.

Работа Франкленда стала важным вкладом в современную структурную химию.

Развитие взглядов

Немецкий химик Ф.А. Кекуле доказал в 1857 году, что углерод является четырехосновным. В его простейшем соединении — метане — возникают связи с 4 атомами водорода. Термин «основность» ученый применял для обозначения свойства элементов присоединять строго определенное количество других частиц. В России данные о строении вещества систематизировал А.

М. Бутлеров (1861). Дальнейшее развитие теория химической связи получила благодаря учению о периодическом изменении свойств элементов. Его автор — другой выдающийся русский химик, Д. И. Менделеев. Он доказал, что валентность химических элементов в соединениях и другие свойства обусловлены тем положением, которое они занимают в периодической системе.

Графическое изображение валентности и химической связи

Возможность наглядного изображения молекул — одно из несомненных достоинств теории валентности. Первые модели появились в 1860-х, а с 1864 года используются структурные формулы, представляющие собой окружности с химическим знаком внутри.

Между символами атомов черточкой обозначается химическая связь, а количество этих линий равно значению валентности. В те же годы были изготовлены первые шаростержневые модели (см. фото слева).

В 1866 году Кекуле предложил стереохимический рисунок атома углерода в форме тетраэдра, который он и включил в свой учебник «Органическая химия».

Валентность химических элементов и возникновение связей изучал Г. Льюис, опубликовавший свои труды в 1923 году после открытия электрона. Так называются отрицательно заряженные мельчайшие частицы, которые входят в состав оболочек атомов. В своей книге Льюис применил точки вокруг четырех сторон символа химического элемента для отображения валентных электронов.

Валентность по водороду и кислороду

До создания периодической системы валентность химических элементов в соединениях принято было сравнивать с теми атомами, для которых она известна. В качестве эталонов были выбраны водород и кислород. Другой химический элемент притягивал либо замещал определенное количество атомов H и O.

Таким способом определяли свойства в соединениях с одновалентным водородом (валентность второго элемента обозначена римской цифрой):

  • HCl — хлор (I):
  • H2O — кислород (II);
  • NH3 — азот (III);
  • CH4 — углерод (IV).

В оксидах K2O, CO, N2O3, SiO2, SO3 определяли валентность по кислороду металлов и неметаллов, удвоив число присоединяемых атомов O. Получали следующие значения: K (I), C (II), N (III), Si (IV), S (VI).

Как определять валентность химических элементов

Существуют закономерности образования химической связи с участием общих электронных пар:

  • Типичная валентность водорода — I.
  • Обычная валентность кислорода — II.
  • Для элементов-неметаллов низшую валентность можно определить по формуле 8 — № группы, в которой они находятся в периодической системе. Высшая, если она возможна, определяется по номеру группы.
  • Для элементов побочных подгрупп максимально возможная валентность такая же, как номер их группы в периодической таблице.

Определение валентности химических элементов по формуле соединения проводится с использованием следующего алгоритма:

  1. Запишите сверху над химическим знаком известное значение для одного из элементов. Например, в Mn2O7 валентность кислорода равна II.
  2. Вычислите суммарную величину, для чего необходимо умножить валентность на количество атомов того же химического элемента в молекуле: 2*7 = 14.
  3. Определите валентность второго элемента, для которого она неизвестна. Разделите полученную в п. 2 величину на количество атомов Mn в молекуле.
  4. 14 : 2 = 7. Валентность марганца в его высшем оксиде — VII.

Современные представления о валентности

Все атомы состоят из положительного ядра, окруженного отрицательно заряженными электронами. Наружная оболочка, которую они образуют, бывает недостроенной. Завершенная структура наиболее устойчива, она содержит 8 электронов (октет). Возникновение химической связи благодаря общим электронным парам приводит к энергетически выгодному состоянию атомов.

Правилом для формирования соединений является завершение оболочки путем приема электронов либо отдачи неспаренных — в зависимости от того, какой процесс легче проходит. Если атом предоставляет для образования химической связи отрицательные частицы, не имеющие пары, то связей он образует столько, сколько у него неспаренных электронов.

По современным представлениям, валентность атомов химических элементов — это способность к образованию определенного числа ковалентных связей. Например, в молекуле сероводорода H2S сера приобретает валентность II (–), поскольку каждый атом принимает участие в образовании двух электронных пар. Знак «–» указывает на притяжение электронной пары к более электроотрицательному элементу.

У менее электроотрицательного к значению валентности дописывают «+».

При донорно-акцепторном механизме в процессе принимают участие электронные пары одного элемента и свободные валентные орбитали другого.

Рассмотрим на примере углерода и кислорода, как зависит от строения вещества валентность химических элементов. Таблица Менделеева дает представление об основных характеристиках атома углерода:

  • химический знак — C;
  • номер элемента — 6;
  • заряд ядра — +6;
  • протонов в ядре — 6;
  • электронов — 6, в том числе 4 внешних, из которых 2 образуют пару, 2 — неспаренных.

Если атом углерода в моноооксиде CO образует две связи, то в его пользование поступает только 6 отрицательных частиц. Для приобретения октета необходимо, чтобы пары образовали 4 внешние отрицательные частицы. Углерод имеет валентность IV (+) в диоксиде и IV (–) в метане.

Порядковый номер кислорода — 8, валентная оболочка состоит из шести электронов, 2 из них не образуют пары и принимают участие в химической связи и взаимодействии с другими атомами. Типичная валентность кислорода — II (–).

Валентность и степень окисления

В очень многих случаях удобнее использовать понятие «степень окисления». Так называют заряд атома, который он приобрел бы, если бы все связывающие электроны перешли к элементу, который имеет выше значение электрооотрицательности (ЭО).

Окислительное число в простом веществе равно нулю. К степени окисления более ЭО элемента добавляется знак «–», менее электроотрицательного — «+». Например, для металлов главных подгрупп типичны степени окисления и заряды ионов, равные номеру группы со знаком «+».

В большинстве случаев валентность и степень окисления атомов в одном и том же соединении численно совпадают. Только при взаимодействии с более электроотрицательными атомами степень окисления положительная, с элементами, у которых ЭО ниже, — отрицательная.

Понятие «валентность» зачастую применяется только к веществам молекулярного строения.

На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.

Валентность и химический анализ

Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.

С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?

Понятие «валентность» — одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.

Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.

Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.

Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.

Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.

Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН4), по тому же принципу, – IV.

Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.

Как вы уже обратили внимание, обозначается валентность римскими цифрами.

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H2SO3 валентность SO3 – I, в HСlO3 валентность СlO3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO2(I) – HNO2, S4O6 (II) – H2 S4O6.

Валентность и формулы

Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.

Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.

Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.

Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.

Чтобы было понятно, возьмем формулу оксида железа Fe2O3. Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.

  • Пример: у вас есть формулы Mn2O7. Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.

Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.

  • Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р2О5.

Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.

Например: оксиды меди имеют красную (Cu2O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН)2) цвета.

А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):

Структурные -формулы

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе,  соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Таблица валентности химических элементов

Порядковый номер

хим. элемента (атомный номер)

 

Наименование

Химический символ

Валентность

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

Бор / Boron

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

Неон / Neon

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

Железо / Iron

Кобальт / Cobalt

Никель / Nickel

Медь / Copper

Цинк / Zinc

Галлий / Gallium

Германий /Germanium

Мышьяк / Arsenic

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

Молибден / Molybdenum

Технеций / Technetium

Рутений / Ruthenium

Родий / Rhodium

Палладий / Palladium

Серебро / Silver

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

Иод / Iodine

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

Вольфрам / Tungsten

Рений / Rhenium

Осмий / Osmium

Иридий / Iridium

Платина / Platinum

Золото / Gold

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

Полоний / Polonium

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

H

He

Li

Be

B

C

N

O

F

Ne

Na

Mg

Al

Si

P

S

Cl

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Сu

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Ac

Th

Pa

U

 I

0

I

II

III

(II), IV

(I), II, III, IV, V

II

I

0

I

II

III

(II), IV

I, III, V

II, IV, VI

I, (II), III, (IV), V, VII

0

I

II

III

II, III, IV

II, III, IV, V

II, III, VI

II, (III), IV, VI, VII

II, III, (IV), VI

II, III, (IV)

(I), II, (III), (IV)

I, II, (III)

II

(II), III

II, IV

(II), III, V

(II), IV, VI

I, (III), (IV), V

0

I

II

III

(II), (III), IV

(II), III, (IV), V

(II), III, (IV), (V), VI

VI

(II), III, IV, (VI), (VII), VIII

(II), (III), IV, (VI)

II, IV, (VI)

I, (II), (III)

(I), II

(I), (II), III

II, IV

III, (IV), V

(II), IV, VI

I, (III), (IV), V, VII

0

I

II

III

III, IV

III

III, IV

III

(II), III

(II), III

III

III, IV

III

III

III

(II), III

(II), III

III

IV

(III), (IV), V

(II), (III), (IV), (V), VI

(I), II, (III), IV, (V), VI, VII

(II), III, IV, VI, VIII

(I), (II), III, IV, VI

(I), II, (III), IV, VI

I, (II), III

I, II

I, (II), III

II, IV

(II), III, (IV), (V)

II, IV, (VI)

нет данных

0

нет данных

II

III

IV

V

(II), III, IV, (V), VI

В скобках даны те валентности, которые обладающие ими элементы проявляют редко.

Валентность и степень окисления

Понятие валентности можно считать родственным такой характеристике, как степень окисления. Тем не менее, обе эти характеристики не тождественным друг другу.

Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.

Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н2О, СН4 и др.) и различаться (Н2О2, HNO3).

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

Не забудьте поделиться ссылкой с друзьями в социальных сетях, чтобы они тоже могли воспользоваться этой полезной информацией.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.

Валентности постоянные и переменные

Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.

В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.

Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.

Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.

В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.

Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:

  • Li, Na, K, F — одновалентны;
  • Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
  • B, Al и Ga — трехвалентны.

Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).

Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III,  для N — IV, а для фтора — I.

Минимальное значение валентности всегда  соответствует разнице между числом 8 и номером группы (правило 2).

Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.

Определение валентности в бинарном соединении

Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.

Случай первый:

  • Fe2O3 — валентность кислорода постоянна и равна II. Три атома О имеют 2 × 3 = 6 единиц валентности.
  • Далее работаем по правилу: суммарное число единиц валентности для атомов одного элемента совпадает с числом единиц валентности для атомов другого вида (правило 3).
  • Согласно этому правилу, общее число единиц валентности для железа тоже равно 6.
  • Разделим общее число валентных единиц на количество атомов железа, то есть на 2, и получим валентность железа, равную III.

Случай второй:

  • SnCI4 — оба атома с переменной валентностью. Применяем ещё одно правило: в бинарном соединении элемент, стоящий на втором месте, имеет минимальную валентность. В соединениях металлов с неметаллами на втором месте записывают неметалл. В формуле вещества, состоящего только из неметаллов, на втором месте пишут символ того элемента, который в ПСХЭ находится правее или выше.
  • В приведённом примере Sn (олово) — металл, CI — неметалл, соответственно он и будет иметь минимальную валентность. Её определим, исходя из правила 2: 8 — 7 = 1
  • Далее определим суммарное число единиц валентности у хлора: 4 × 1= 4
  • Воспользуемся правилом 3. Суммарное количество валентных единиц олова тоже будет равно 4. Все они приходятся на один атом Sn, значит, это и есть его валентность.

Определение валентности по формуле трехэлементной частицы.

Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения  K2Cr2O7.

  • Cr здесь называют центральным атомом. Необходимо помнить, что все остальные атомы связаны с ним через кислородные мостики. Исходя из этого, и будем производить вычисления.
  • Кислород — элемент с постоянной валентностью, равной двум. Калий всегда одновалентен.
  • Всего атомы O образуют 7 × 2 = 14 единиц валентности, а атомы калия 1 × 2 = 2.
  • Из 14 валентных единиц атом серы два расходует на присоединение калия, следовательно, на хром их остаётся 14 — 2 = 12.
  • Это число единиц валентности приходится на 2 атома Cr, значит, на один атом приходится 12÷2=6.

Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.

  • Атом кислорода двухвалентен, всего на кислород приходится II × 4 = 8 единиц валентности.
  • Валентность кислотного остатка SO4 равна II (как ее определить, написано в статье «Формулы кислот»).
  • По правилу 3 валентность железа в этом случае тоже равна II.
  • Центральный атом здесь S. Кислород присоединяет один атом железа, расходуя на него две валентные единицы, следовательно, на серу их остаётся 8 — 2 = 6 единиц валентности. Так как в формуле FeSO4 один атом серы, то это и есть ее валентность.

Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».

В уроке 6 «Простые ионы» из курса «Химия для чайников» познакомимся с простыми ионами и выясним, чему равен его заряд; также рассмотрим как образуется ионная химическая связь; научимся определять степень окисления и валентность элементов. Данный урок очень важный, и чтобы его лучше понять, обязательно просмотрите прошлые уроки, особое внимание уделяя уроку 1 «Схема строения атомов», а также уроку 3 «Схема образования молекул».

Содержание

  • Ионная химическая связь
  • Положительные и отрицательные ионы
  • Степень окисления веществ
  • Валентность химических элементов
  • Название ионов

Ионная химическая связь

Мы уже кратко рассматривали ковалентную полярную химическую связь, в которой из-за незначительного различия в электроотрицательности атомов (0.4-2.0) электронная пара распределяется между ними не равномерно. Для тех, кто забыл, напоминаю, что электроотрицательность — это способность атомов притягивать к себе электроны.

Ионная химическая связь

Однако, если электроотрицательность атомов различается больше чем на 2 по таблице электроотрицательности, то электронная пара полностью переходит к более электроотрицательному атому, и в результате образуется ионная химическая связь. Ионная химическая связь образуется только между атомами типичных металлов (т.к. они легко теряют внешние электроны) и неметаллов (т.к. они обладают большой электроотрицательностью).

Таблица электроотрицательности

Положительные и отрицательные ионы

Наглядным примером ионной химической связи может служить обычная поваренная соль NaCl, которая присутствует на каждой кухне. Атомы натрия (и вообще всех металлов) слабо удерживают внешние электроны, тогда как атомы хлора напротив, обладают очень большой способностью притягивать к себе электроны, т.е обладают большой электроотрицательностью.

Положительный и отрицательный ион

Поэтому при образовании молекулы NaCl каждый атом Na теряет один электрон (e), образуя положительный ион натрия Na+, а каждый атом Cl, наоборот, приобретает этот потерянный электрон натрия, образуя отрицательный ион хлора Cl. Это записывается в виде двух реакций:

  • Na → Na+ + e   и   ½Cl2 + e → Cl

Записать ½Cl2 пришлось потому, что газообразный хлор в природе состоит из двухатомных молекул, а не из свободных одиночных атомов хлора.

Положительный и отрицательный ион

На рисунке выше, изображена кристаллическая решетка NaCl, где каждый хлорид-ион Cl окружен со всех сторон соседними положительными ионами натрия Na+; ионы натрия Na+ точно также окружены ближайшими хлорид-ионами Cl. Подобное расположение ионов обладает высокой устойчивостью.

Положительно заряженные ионы называются катионами. К ним в основном относятся металлы, так как они легко отдают от одного до трех электронов. Ниже приведены примеры катионов:

Катионы металлов

Анионами являются неметаллы, поскольку с радостью присоединяют к себе электроны, превращаясь в отрицательно заряженные ионы. Примеры анионов:

Анионами являются

Степень окисления веществ

Заряд простого, одноатомного иона, например Mg2+ или F2-, называется его степенью окисления. Степень окисления — это такое число электронов, которое необходимо прибавить (восстановить) к иону или отнять (окислить) у него, чтобы он превратился обратно в нейтральный атом.

  • Реакция восстановления: Mg2+ + 2e → Mg
  • Реакция окисления: F2- → F + 2e

Процесс присоединения электронов к атому или просто их смещение в сторону данного атома называется реакцией восстановления, а оттягивание электронов от атома или их полное удаление называется реакцией окисления. Вот вам отличная шпаргалка со степенями окисления простых ионов:

Степень окисления веществ

Пример 12. Окисляется или восстанавливается хлор при образовании хлорид-иона? Какова степень окисления этого иона?
Решение: Хлор восстанавливается, поскольку к каждому атому хлора необходимо присоединить один электрон, чтобы образовался хлорид-ион. Хлорид-ион, Сl, имеет степень окисления -1.

Пример 13. Окисляются или восстанавливаются металлы при образовании ими ионов? Какова степень окисления иона алюминия?
Решение: При образовании ионов металлов последние окисляются, поскольку при этом происходит удаление электронов от атомов металла. Ион алюминия, Аl3+, имеет степень окисления +3.

Валентность химических элементов

Валентностью называют число химических связей, которые данный атом образует с другими атомами в молекуле. Однако, если говорить простыми словами, то под валентностью понимается все та же степень окисления, но в отличии от нее валентность не имеет знака и не равна нулю.

Молекулярная формула Валентность Степень окисления
H2O H(I), O(II) H+1, O-2
CS2 C(IV), S(II) C+4, S-2
CH4 C(IV), H(I) C-4, H+1

Название ионов

Ионы металлов, которые имеют различные (переменные) степени окисления, записываются следующим образом:

  • Fe2+ железо(II) или ион двухвалентного железа
  • Fe3+ железо(III) или ион трехвалентного железа
  • Сu+ медь(I) или ион одновалентной меди
  • Cu2+ медь (II) или ион двухвалентной меди
  • Sn2+ олово(II) или двухвалентного олова
  • Sn4+ олово(IV) или ион четырехвалентного олова

Пример 2: Окисление или восстановление происходит при превращении иона трехвалентного железа в ион двухвалентного? Запишите уравнение этого процесса.

Решение: Уравнение реакции имеет следующий вид: Fe3+ + e → Fe2+. Она представляет собой процесс восстановления, поскольку к исходному иону присоединяется электрон.

Надеюсь урок 6 «Простые ионы» оказался для вас понятным и полезным. Если у вас возникли вопросы, пишите их в комментарии.

Понравилась статья? Поделить с друзьями:
  • Как найти ответы тесты по английскому языку
  • Как найти периметр квадрата зная только диагональ
  • Как найти активную мощность соединения
  • Как найти человека по своему характеру
  • Как найти ярлык яндекс браузер на компьютере