Как найти вариационный ряд абсолютных частот

Пусть
результаты выборки количественного
признака X
из генеральной совокупности представлены
вариационным рядом. Кумулята, будучи
функцией распределения выборки, служит
ее интегральной вероятностной
характеристикой. Для изучения локальных
свойств нужна функция, аналогичная ряду
распределения или плотности вероятности.
Графиками таких вариационных рядов
служат полигон
и гистограмма.

Точечный вариационный
ряд наглядно можно представить с помощью
полигона частот, а интервальный – с
помощью гистограммы.

Полигоном
частот
называется ломаная, звенья которой
соединяют отрезками точки с координатами
(x1,
n1),
(x2,
n2),

,
(xk,
nk)
для полигона абсолютных частот и точки
с координатами (x1,
),
(x2,
),

,
(xk,
)
для полигона относительных частот.

Для
их построения, исходя из условия задачи,
необходимо составить точечный (либо
интервальный) вариационный ряд абсолютных
или относительных частот. Если задан
интервальный вариационный ряд, то для
построения полигона частот необходимо
найти середины интервалов 1,
2,
… , k
– точки x1,
x
2,

,
x
k.
Затем, в декартовой системе координат
надо отложить на оси абсцисс все возможные
значения вариант x1,
x
2,

,
x
k,
а на оси ординат соответствующие им
абсолютные частоты n1,
n2,
… , nk
(или относительные частоты
,,…,).
Для построения полигона абсолютных
(относительных) частот необходимо
соединить отрезками полученные точки
с координатами (x1,n1),
(x2,n2),

,
(xn,nk)
(или, соответственно, (x1,
),
(x2,
),

,
(xk,
)).

Гистограммой
абсолютных (относительных)

частот
называется ступенчатая фигура, состоящая
из прямоугольников, основания которых
есть частичные интервалы длиною h,
высотами которых служат значения,
пропорциональные частоте интервала ni
(или
).
Отношенияназываютплотности
частоты,
а
отношения

плотности относительной частоты.

Для
построения гистограммы необходимо
найти размах выборки – ее границы, т.е.
и,
длину интервалов,
а такжеk
– число интервалов.

При
удачном подборе интервалов гистограмма
и полигон дают представление о графике
функции плотности вероятности
распределения генеральной совокупности,
что используется для формулировки
предположения о виде исследуемого
теоретического закона распределения
(п.3.6.6).

Заметим,
что, если за единицу высоты принять 1/h,
площадь каждого i-го
прямоугольника равна произведению
основания на высоту:
т.е. частотеi-го
интервала (или сумме частот вариант,
входящих в этот интервал). Тогда площадь
всей гистограммы частот равна сумме
всех частот
,
т.е. объему выборки, причем площадь
каждого столбца гистограммы пропорциональна
частоте попадания наблюдений в данный
интервал группировки. Если в качестве
высот прямоугольников выбрать отношения,
то площадь фигуры под гистограммой
относительных частот равна единице,
т.к..

Т.о.,
площадь гистограммы
частот равна сумме всехчастот, т.е..

Задача
2.
Представить
графическое распределение размеров
зарплаты сотрудников фирмы за неделю
(в долларах), если они получили следующую
зарплату:

152.74;
176.66; 162.48; 167.72; 181.09; 155.00; 196.17; 169.60; 172.88;
182.47; 181.69; 186.91; 190.10; 176.14; 192.70; 178.59; 167.27;
175.14; 160.00; 177.46; 165.18; 167.77; 178.46; 165.00; 185.20;
157.02; 172.14; 192.22; 179.40; 191.03; 188.68; 169.51; 200.15;
178.47; 176.33; 179.05; 180.95; 174.28; 175.00; 178.45; 150.10;
176.86; 187.71; 168.33; 195.00; 172.37; 179.04; 182.05; 186.19;
190.05; 196.27; 209.28; 203.16; 168.52; 200.00; 196.30.

xmax=209.28,
xmin=150.10.

Решение.

Построим
интервальный вариационный ряд с
интервалом h=10:

Интервалы
зарплаты

150-160

160-170

170-180

180-190

190-200

200-210

ni

4

11

18

10

9

4

Для построения
точечного вариационного ряда найдем
середины интервалов:

xi

155

165

175

185

195

205

ni

4

11

18

10

9

4

Составим графики
распределения зарплаты (Рис. 2а,б)

Интервальному
вариационному ряду соответствует
гистограмма (Рис. 2(а). Точечному
вариационному ряду соответствует
полигон (Рис. 2(б).

Рис.
2 (а, б)

Задача
3.
Даны
результаты изменения напряжения (в
вольтах) в электросети. Составить
вариационный ряд и начертить график
распределения напряжения, если значения
напряжения следующие:

227, 229, 215, 230, 232, 223,
220, 222, 228, 219,

222,
221, 227, 226, 226, 229, 217, 215, 218, 220,

216, 220, 220, 221, 225, 224,
212, 217, 219, 220.

Решение.

Составим вариационный
ряд, по которому построим гистограмму
(Рис.3). Имеем

xmax=232,
xmin=212.
Применим формулу Стерджесса и подсчитаем
число интервалов:

Тогда вариационный
ряд абсолютных частот примет вид:

xi

212-217

217-222

222-227

227-232

ni

7

12

7

5

Соответствующая
гистограмма абсолютных частот представлена
на рисунке 3(а), а относительных частот
— на рисунке 3(б).

Рис.3
(а) Рис. 3(б)

Задача
4.
Контролер
на рынке выявлял отклонение весов в
граммах от стандарта на основе выборки.
Закон распределения выборки задан
вариационным рядом абсолютных частот:

xi

-2

0

3

5

8

ni

5

1

7

3

4

Составить
закон распределения относительных
частот и построить их графики.

Решение:

  1. Найдем
    объем выборки:
    .

  2. Найдем
    относительные частоты по формуле
    :.

  3. Составим
    вариационный ряд относительных частот:

-2

0

3

5

8

0.25

0.05

0.35

0.15

0.20

4. Полигон для
вариационного ряда распределения
абсолютных частот представлен на рисунке
4а. Полигон вариационного ряда относительных
частот представлен на рисунке 4б:

Величина
интервала группировки значительно
влияет на вид гистограммы: чем больше
величина h,
тем менее различимы особенности
распределений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Интервальный вариационный ряд и его характеристики

  1. Построение интервального вариационного ряда по данным эксперимента
  2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения
  3. Выборочная средняя, мода и медиана. Симметрия ряда
  4. Выборочная дисперсия и СКО
  5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации
  6. Алгоритм исследования интервального вариационного ряда
  7. Примеры

п.1. Построение интервального вариационного ряда по данным эксперимента

Интервальный вариационный ряд – это ряд распределения, в котором однородные группы составлены по признаку, меняющемуся непрерывно или принимающему слишком много значений.

Общий вид интервального вариационного ряда

Интервалы, (left.left[a_{i-1},a_iright.right)) (left.left[a_{0},a_1right.right)) (left.left[a_{1},a_2right.right)) (left.left[a_{k-1},a_kright.right))
Частоты, (f_i) (f_1) (f_2) (f_k)

Здесь k — число интервалов, на которые разбивается ряд.

Размах вариации – это длина интервала, в пределах которой изменяется исследуемый признак: $$ F=x_{max}-x_{min} $$

Правило Стерджеса
Эмпирическое правило определения оптимального количества интервалов k, на которые следует разбить ряд из N чисел: $$ k=1+lfloorlog_2 Nrfloor $$ или, через десятичный логарифм: $$ k=1+lfloor 3,322cdotlg Nrfloor $$

Скобка (lfloor rfloor) означает целую часть (округление вниз до целого числа).

Шаг интервального ряда – это отношение размаха вариации к количеству интервалов, округленное вверх до определенной точности: $$ h=leftlceilfrac Rkrightrceil $$

Скобка (lceil rceil) означает округление вверх, в данном случае не обязательно до целого числа.

Алгоритм построения интервального ряда
На входе: все значения признака (left{x_jright}, j=overline{1,N})
Шаг 1. Найти размах вариации (R=x_{max}-x_{min})
Шаг 2. Найти оптимальное количество интервалов (k=1+lfloorlog_2 Nrfloor)
Шаг 3. Найти шаг интервального ряда (h=leftlceilfrac{R}{k}rightrceil)
Шаг 4. Найти узлы ряда: $$ a_0=x_{min}, a_i=1_0+ih, i=overline{1,k} $$ Шаг 5. Найти частоты (f_i) – число попаданий значений признака в каждый из интервалов (left.left[a_{i-1},a_iright.right)).
На выходе: интервальный ряд с интервалами (left.left[a_{i-1},a_iright.right)) и частотами (f_i, i=overline{1,k})

Заметим, что поскольку шаг h находится с округлением вверх, последний узел (a_kgeq x_{max}).

Например:
Проведено 100 измерений роста учеников старших классов.
Минимальный рост составляет 142 см, максимальный – 197 см.
Найдем узлы для построения соответствующего интервального ряда.
По условию: (N=100, x_{min}=142 см, x_{max}=197 см).
Размах вариации: (R=197-142=55) (см)
Оптимальное число интервалов: (k=1+lfloor 3,322cdotlg ⁡100rfloor=1+lfloor 6,644rfloor=1+6=7)
Шаг интервального ряда: (h=lceilfrac{55}{5}rceil=lceil 7,85rceil=8) (см)
Получаем узлы ряда: $$ a_0=x_{min}=142, a_i=142+icdot 8, i=overline{1,7} $$

(left.left[a_{i-1},a_iright.right)) cм (left.left[142;150right.right)) (left.left[150;158right.right)) (left.left[158;166right.right)) (left.left[166;174right.right)) (left.left[174;182right.right)) (left.left[182;190right.right)) (left[190;198right])

п.2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения

Относительная частота интервала (left.left[a_{i-1},a_iright.right)) — это отношение частоты (f_i) к общему количеству исходов: $$ w_i=frac{f_i}{N}, i=overline{1,k} $$

Гистограмма относительных частот интервального ряда – это фигура, состоящая из прямоугольников, ширина которых равна шагу ряда, а высота – относительным частотам каждого из интервалов.
Площадь гистограммы равна 1 (с точностью до округлений), и она является эмпирическим законом распределения исследуемого признака.

Полигон относительных частот интервального ряда – это ломаная, соединяющая точки ((x_i,w_i)), где (x_i) — середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).

Накопленные относительные частоты – это суммы: $$ S_1=w_1, S_i=S_{i-1}+w_i, i=overline{2,k} $$ Ступенчатая кривая (F(x)), состоящая из прямоугольников, ширина которых равна шагу ряда, а высота – накопленным относительным частотам, является эмпирической функцией распределения исследуемого признака.
Кумулята – это ломаная, которая соединяет точки ((x_i,S_i)), где (x_i) — середины интервалов.

Например:
Продолжим анализ распределения учеников по росту.
Выше мы уже нашли узлы интервалов. Пусть, после распределения всех 100 измерений по этим интервалам, мы получили следующий интервальный ряд:

i 1 2 3 4 5 6 7
(left.left[a_{i-1},a_iright.right)) cм (left.left[142;150right.right)) (left.left[150;158right.right)) (left.left[158;166right.right)) (left.left[166;174right.right)) (left.left[174;182right.right)) (left.left[182;190right.right)) (left[190;198right])
(f_i) 4 7 11 34 33 8 3

Найдем середины интервалов, относительные частоты и накопленные относительные частоты:

(x_i) 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03
(S_i) 0,04 0,11 0,22 0,56 0,89 0,97 1

Построим гистограмму и полигон:
Гистограмма
Полигон
Построим кумуляту и эмпирическую функцию распределения:
Кумулята
Эмпирическая функция распределения
Эмпирическая функция распределения (относительно середин интервалов): $$ F(x)= begin{cases} 0, xleq 146\ 0,04, 146lt xleq 154\ 0,11, 154lt xleq 162\ 0,22, 162lt xleq 170\ 0,56, 170lt xleq 178\ 0,89, 178lt xleq 186\ 0,97, 186lt xleq 194\ 1, xgt 194 end{cases} $$

п.3. Выборочная средняя, мода и медиана. Симметрия ряда

Выборочная средняя интервального вариационного ряда определяется как средняя взвешенная по частотам: $$ X_{cp}=frac{x_1f_1+x_2f_2+…+x_kf_k}{N}=frac1Nsum_{i=1}^k x_if_i $$ где (x_i) — середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).
Или, через относительные частоты: $$ X_{cp}=sum_{i=1}^k x_iw_i $$

Модальным интервалом называют интервал с максимальной частотой: $$ f_m=max f_i $$ Мода интервального вариационного ряда определяется по формуле: $$ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h $$ где
(h) – шаг интервального ряда;
(x_o) — нижняя граница модального интервала;
(f_m,f_{m-1},f_{m+1}) — соответственно, частоты модального интервала, интервала слева от модального и интервала справа.

Медианным интервалом называют первый интервал слева, на котором кумулята превысила значение 0,5. Медиана интервального вариационного ряда определяется по формуле: $$ M_e=x_o+frac{0,5-S_{me-1}}{w_{me}}h $$ где
(h) – шаг интервального ряда;
(x_o) — нижняя граница медианного интервала;
(S_{me-1}) накопленная относительная частота для интервала слева от медианного;
(w_{me}) относительная частота медианного интервала.

Расположение выборочной средней, моды и медианы в зависимости от симметрии ряда аналогично их расположению в дискретном ряду (см. §65 данного справочника).

Например:
Для распределения учеников по росту получаем:

(x_i) 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03 1
(x_iw_i) 5,84 10,78 17,82 57,80 58,74 14,88 5,82 171,68

$$ X_{cp}=sum_{i=1}^k x_iw_i=171,68approx 171,7 text{(см)} $$ На гистограмме (или полигоне) относительных частот максимальная частота приходится на 4й интервал [166;174). Это модальный интервал.
Данные для расчета моды: begin{gather*} x_o=166, f_m=34, f_{m-1}=11, f_{m+1}=33, h=8\ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h=\ =166+frac{34-11}{(34-11)+(34-33)}cdot 8approx 173,7 text{(см)} end{gather*} На кумуляте значение 0,5 пересекается на 4м интервале. Это – медианный интервал.
Данные для расчета медианы: begin{gather*} x_o=166, w_m=0,34, S_{me-1}=0,22, h=8\ \ M_e=x_o+frac{0,5-S_{me-1}}{w_me}h=166+frac{0,5-0,22}{0,34}cdot 8approx 172,6 text{(см)} end{gather*} begin{gather*} \ X_{cp}=171,7; M_o=173,7; M_e=172,6\ X_{cp}lt M_elt M_o end{gather*} Ряд асимметричный с левосторонней асимметрией.
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|}=frac{2,0}{0,9}approx 2,2lt 3), т.е. распределение умеренно асимметрично.

п.4. Выборочная дисперсия и СКО

Выборочная дисперсия интервального вариационного ряда определяется как средняя взвешенная для квадрата отклонения от средней: begin{gather*} D=frac1Nsum_{i=1}^k(x_i-X_{cp})^2 f_i=frac1Nsum_{i=1}^k x_i^2 f_i-X_{cp}^2 end{gather*} где (x_i) — середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).
Или, через относительные частоты: $$ D=sum_{i=1}^k(x_i-X_{cp})^2 w_i=sum_{i=1}^k x_i^2 w_i-X_{cp}^2 $$

Выборочное среднее квадратичное отклонение (СКО) определяется как корень квадратный из выборочной дисперсии: $$ sigma=sqrt{D} $$

Например:
Для распределения учеников по росту получаем:

$x_i$ 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03 1
(x_iw_i) 5,84 10,78 17,82 57,80 58,74 14,88 5,82 171,68
(x_i^2w_i) — результат 852,64 1660,12 2886,84 9826 10455,72 2767,68 1129,08 29578,08

$$ D=sum_{i=1}^k x_i^2 w_i-X_{cp}^2=29578,08-171,7^2approx 104,1 $$ $$ sigma=sqrt{D}approx 10,2 $$

п.5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации

Исправленная выборочная дисперсия интервального вариационного ряда определяется как: begin{gather*} S^2=frac{N}{N-1}D end{gather*}

Стандартное отклонение выборки определяется как корень квадратный из исправленной выборочной дисперсии: $$ s=sqrt{S^2} $$

Коэффициент вариации это отношение стандартного отклонения выборки к выборочной средней, выраженное в процентах: $$ V=frac{s}{X_{cp}}cdot 100text{%} $$

Подробней о том, почему и когда нужно «исправлять» дисперсию, и для чего использовать коэффициент вариации – см. §65 данного справочника.

Например:
Для распределения учеников по росту получаем: begin{gather*} S^2=frac{100}{99}cdot 104,1approx 105,1\ sapprox 10,3 end{gather*} Коэффициент вариации: $$ V=frac{10,3}{171,7}cdot 100text{%}approx 6,0text{%}lt 33text{%} $$ Выборка однородна. Найденное значение среднего роста (X_{cp})=171,7 см можно распространить на всю генеральную совокупность (старшеклассников из других школ).

п.6. Алгоритм исследования интервального вариационного ряда

На входе: все значения признака (left{x_jright}, j=overline{1,N})
Шаг 1. Построить интервальный ряд с интервалами (left.right[a_{i-1}, a_ileft.right)) и частотами (f_i, i=overline{1,k}) (см. алгоритм выше).
Шаг 2. Составить расчетную таблицу. Найти (x_i,w_i,S_i,x_iw_i,x_i^2w_i)
Шаг 3. Построить гистограмму (и/или полигон) относительных частот, эмпирическую функцию распределения (и/или кумуляту). Записать эмпирическую функцию распределения.
Шаг 4. Найти выборочную среднюю, моду и медиану. Проанализировать симметрию распределения.
Шаг 5. Найти выборочную дисперсию и СКО.
Шаг 6. Найти исправленную выборочную дисперсию, стандартное отклонение и коэффициент вариации. Сделать вывод об однородности выборки.

п.7. Примеры

Пример 1. При изучении возраста пользователей коворкинга выбрали 30 человек.
Получили следующий набор данных:
18,38,28,29,26,38,34,22,28,30,22,23,35,33,27,24,30,32,28,25,29,26,31,24,29,27,32,24,29,29
Постройте интервальный ряд и исследуйте его.

1) Построим интервальный ряд. В наборе данных: $$ x_{min}=18, x_{max}=38, N=30 $$ Размах вариации: (R=38-18=20)
Оптимальное число интервалов: (k=1+lfloorlog_2⁡ 30rfloor=1+4=5)
Шаг интервального ряда: (h=lceilfrac{20}{5}rceil=4)
Получаем узлы ряда: $$ a_0=x_{min}=18, a_i=18+icdot 4, i=overline{1,5} $$

(left.left[a_{i-1},a_iright.right)) лет (left.left[18;22right.right)) (left.left[22;26right.right)) (left.left[26;30right.right)) (left.left[30;34right.right)) (left.left[34;38right.right))

Считаем частоты для каждого интервала. Получаем интервальный ряд:

(left.left[a_{i-1},a_iright.right)) лет (left.left[18;22right.right)) (left.left[22;26right.right)) (left.left[26;30right.right)) (left.left[30;34right.right)) (left.left[34;38right.right))
(f_i) 1 7 12 6 4

2) Составляем расчетную таблицу:

(x_i) 20 24 28 32 36
(f_i) 1 7 12 6 4 30
(w_i) 0,033 0,233 0,4 0,2 0,133 1
(S_i) 0,033 0,267 0,667 0,867 1
(x_iw_i) 0,667 5,6 11,2 6,4 4,8 28,67
(x_i^2w_i) 13,333 134,4 313,6 204,8 172,8 838,93

3) Строим полигон и кумуляту
Пример 1
Пример 1
Эмпирическая функция распределения: $$ F(x)= begin{cases} 0, xleq 20\ 0,033, 20lt xleq 24\ 0,267, 24lt xleq 28\ 0,667, 28lt xleq 32\ 0,867, 32lt xleq 36\ 1, xgt 36 end{cases} $$ 4) Находим выборочную среднюю, моду и медиану $$ X_{cp}=sum_{i=1}^k x_iw_iapprox 28,7 text{(лет)} $$ На полигоне модальным является 3й интервал (самая высокая точка).
Данные для расчета моды: begin{gather*} x_0=26, f_m=12, f_{m-1}=7, f_{m+1}=6, h=4\ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h=\ =26+frac{12-7}{(12-7)+(12-6)}cdot 4approx 27,8 text{(лет)} end{gather*}
На кумуляте медианным является 3й интервал (преодолевает уровень 0,5).
Данные для расчета медианы: begin{gather*} x_0=26, w_m=0,4, S_{me-1}=0,267, h=4\ M_e=x_o+frac{0,5-S_{me-1}}{w_{me}}h=26+frac{0,5-0,4}{0,267}cdot 4approx 28,3 text{(лет)} end{gather*} Получаем: begin{gather*} X_{cp}=28,7; M_o=27,8; M_e=28,6\ X_{cp}gt M_egt M_0 end{gather*} Ряд асимметричный с правосторонней асимметрией.
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|} =frac{0,9}{0,1}=9gt 3), т.е. распределение сильно асимметрично.

5) Находим выборочную дисперсию и СКО: begin{gather*} D=sum_{i=1}^k x_i^2w_i-X_{cp}^2=838,93-28,7^2approx 17,2\ sigma=sqrt{D}approx 4,1 end{gather*}
6) Исправленная выборочная дисперсия: $$ S^2=frac{N}{N-1}D=frac{30}{29}cdot 17,2approx 17,7 $$ Стандартное отклонение (s=sqrt{S^2}approx 4,2)
Коэффициент вариации: (V=frac{4,2}{28,7}cdot 100text{%}approx 14,7text{%}lt 33text{%})
Выборка однородна. Найденное значение среднего возраста (X_{cp}=28,7) лет можно распространить на всю генеральную совокупность (пользователей коворкинга).

Статистические исследования числовых рядов. Статистические характеристики числовых рядов

Очень часто из-за дороговизны или слишком большого числа наблюдений невозможно получить полной информации об объектах, событиях или наблюдениях. По этой причине информацию получают на основе анализа части всего множества объектов, событий или наблюдений, называемой рядом числовых данных, рядом выборочных данных или, просто, выборкой.

Выборка представляет собой конечный ряд чисел (выборочных данных), количество чисел в котором называют объемом выборки

Для обеспечения достоверности информации об объектах, событиях или наблюдениях, полученных на основе статистических исследований числовых рядов (анализа выборочных данных), отбор выборочных данных должен носить случайный характер и иметь достаточно большой объем, то есть выборка должны быть репрезентативной (представительной).

Статистические исследования числовых рядов (рядов чисел, рядов выборочных данных) удобно проводить в соответствии со следующей схемой, которую мы изложим на примере следующей выборки   X :

X = {3,24;   3,44;   3,12;   3,25;   3,12;   3,34;   3,37;   3,44;   3,24;   3,12} (1)
  1. Определяем объем выборки (число чисел в числовом ряде).

    В числовом ряде (1) десять чисел, поэтому объем выборки равен   10.

  2. Вычисляем среднее арифметическое числового ряда   X   (среднее выборочное значение), которое обозначают статистическое исследование выборка ряд числовых данных выборочные данные объем выборки репрезентативная выборка среднее выборочное значение медиана выборки мода выборки размах выборки статистические характеристики числовых рядов таблица частот числового ряда.

    Для числового ряда (1)

    статистическое исследование выборка ряд числовых данных выборочные данные объем выборки репрезентативная выборка среднее выборочное значение медиана выборки мода выборки размах выборки статистические характеристики числовых рядов таблица частот числового ряда

    статистическое исследование выборка ряд числовых данных выборочные данные объем выборки репрезентативная выборка среднее выборочное значение медиана выборки мода выборки размах выборки статистические характеристики числовых рядов таблица частот числового ряда

    статистическое исследование выборка ряд числовых данных выборочные данные объем выборки репрезентативная выборка среднее выборочное значение медиана выборки мода выборки размах выборки статистические характеристики числовых рядов таблица частот числового ряда

  3. Производим упорядочение числового ряда по возрастанию (ранжирование числовых данных). Полученный числовой ряд, который обозначим   X1 ,   называют вариационным рядом.

    Для числового ряда   X   вариационный ряд   X1   имеет следующий вид:

    X1 = {3,12;   3,12;   3,12;   3,24;   3,24;   3,25;   3,34;   3,37;   3,44;   3,44}

  4. Вычисляем размах числового ряда   X ,   то есть разность между наибольшим числом из числового ряда и наименьшим числом из числового ряда.

    В числовом ряде   X ,  как и в вариационном ряде   X1 ,   число   3,44   является наибольшим числом, а число   3,12   является наименьшим числом. Поэтому размах числового ряда   X   равен

    3,44 – 3,12 = 0,32

  5. Вычисляем медиану числового ряда.

    В случае, когда объем выборки (число членов числового ряда) чётное число, медианой числового ряда является число, равное половине суммы двух чисел, стоящих в середине вариационного ряда.

    Число членов ряда   X   равно чётному числу   10 ,   а в середине вариационного ряда   X1  стоят числа   3,24   и   3,25 .   Поэтому медиана числового ряда, которую обычно обозначают символом   Me ,   равна

    статистическое исследование выборка ряд числовых данных выборочные данные объем выборки репрезентативная выборка среднее выборочное значение медиана выборки мода выборки размах выборки статистические характеристики числовых рядов таблица частот числового ряда

    В случае, когда объем выборки (число членов числового ряда) нечётное число, медианой числового ряда является число, стоящее в середине вариационного ряда.

    Например, медианой числового ряда

    {2;   3;   7;   9;   15}

    является число   7 .

  6. Составляем таблицу частот числового ряда.

    Если взглянуть на числа (выборочные данные), составляющие вариационный ряд   X1 ,   то можно заметить, некоторые числа повторяются, а другие встречаются лишь по одному разу. Это наблюдение приводит к следующему определению.

    ОПРЕДЕЛЕНИЕ 1. Если выборочное данное встречается в вариационном ряде   m   раз, то число   m   называют частотой (абсолютной частотой) этого выборочного данного.

    Воспользовавшись определением 1, сформируем для числового ряда   X   таблицу, содержащую две строки, которую называют таблицей частот (абсолютных частот) числового ряда. Для этого в первой строке таблицы запишем числа, составляющие вариационный ряд   X1 ,   причем запишем числа в порядке возрастания и без повторений. Во второй строке таблицы запишем частоты (абсолютные частоты), соответствующие числам из первой строки таблицы.

    ТАБЛИЦА ЧАСТОТ ЧИСЛОВОГО РЯДА

    Числа, составляющие вариационный ряд (без повторений) 3,12 3,24 3,25 3,34 3,37 3,44
    Частоты 3 2 1 1 1 2
    Числа, составляющие вариационный ряд (без повторений) Частоты
    3,12 3
    3,24 2
    3,25 1
    3,34 1
    3,37 1
    3,44 2

    ЗАМЕЧАНИЕ. Сумма частот, то есть сумма чисел, записанных во второй строке таблицы частот числового ряда, равна объему выборки (числу чисел в числовом ряде). В рассматриваемом случае это число   10 .

  7. Составляем таблицу относительных частот (в процентах).

    ОПРЕДЕЛЕНИЕ 2. Относительной частотой (в процентах) выборочного данного называют число процентов, которое составляет частота этого выборочного данного от всего объема выборки (количества членов числового ряда).

    Для того, чтобы сформировать таблицу относительных частот числового ряда, заменим частоты, записанные во второй строке таблицы частот числового ряда, на соответствующие им относительные частоты. В результате получим следующую таблицу.

    ТАБЛИЦА ОТНОСИТЕЛЬНЫХ ЧАСТОТ (В ПРОЦЕНТАХ)

    Числа, составляющие вариационный ряд (без повторений) 3,12 3,24 3,25 3,34 3,37 3,44
    Относительные частоты (%) 30% 20% 10% 10% 10% 20%
    Числа, составляющие вариационный ряд (без повторений) Относительные частоты (%)
    3,12 30%
    3,24 20%
    3,25 10%
    3,34 10%
    3,37 10%
    3,44 20%
  8. Находим моду числового ряда.

    ОПРЕДЕЛЕНИЕ 3. Модой числового ряда называют выборочное данное с наибольшей частотой.

    Из таблицы частот числового ряда видно, что модой числового ряда   X   является число   3,12 ,   поскольку его частота   3   является наибольшей. Очевидно, что и относительная частота этого выборочного данного является самой большой   (30%) .

    ЗАМЕЧАНИЕ. Объем выборки, среднее выборочное значение, размах, медиана и мода числового ряда являются одними из статистических характеристик числовых рядов.

Понравилась статья? Поделить с друзьями:
  • Как составить электросхему для дома
  • Ведьмак 3 как найти шкуру драконида
  • Warning 217 loose indentation pawno как исправить
  • Как исправить проводки за прошлый период в текущем периоде
  • Абонент недоступен как его найти