Как найти вектор заданный двумя векторами

Векторэто направленный прямолинейный отрезок, то есть отрезок, имеющий
определенную длину и определенное направление. Пусть точка  А – начало вектора, а точка B – его конец, тогда вектор обозначается символом 
 или . Вектор  называется противоположным
вектору 
 и может быть
обозначен
 .

Сформулируем ряд базовых определений. 

Длиной
или модулем
вектора 
 называется
длина отрезка и обозначается 
. Вектор нулевой длины (его суть — точка) называется нулевым 
 и направления
не имеет. Вектор 
 единичной длины, называется единичным. Единичный вектор, 
направление которого совпадает с направлением вектора 
, называется ортом вектора  .

Векторы
называются коллинеарными, если они лежат на одной прямой или на
параллельных прямых, записывают
. Коллинеарные векторы могут иметь совпадающие или
противоположные направления. Нулевой вектор считают коллинеарным любому
вектору.

Векторы
называются равными 
, если они коллинеарны, одинаково направлены и имеют
одинаковые длины.

 Три вектора в пространстве называются компланарными,
если они лежат в одной плоскости или на параллельных плоскостях. Если среди
трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы
компланарны.

Рассмотрим в
пространстве прямоугольную систему координат 0xyz. Выделим на осях координат 0x, 0y, 0z единичные векторы (орты) и
обозначим их через 
 соответственно.
Выберем произвольный вектор

 пространства и совместим его начало с началом
координат. Спроектируем вектор
 на координатные
оси и обозначим проекции через ax, ay, az 
соответственно. Тогда нетрудно показать, что 

.                                                                                                                                                                     (2.25)

Эта
формула является основной в векторном исчислении и называется разложением
вектора по ортам координатных осей
. Числа ax, ay, az называются координатами вектора 
. Таким образом, координаты вектора являются его
проекциями на оси координат. Векторное равенство (2.25) часто записывают в
виде 

. Мы будем использовать обозначение вектора в фигурных
скобках, чтобы визуально легче различать координаты вектора и координаты точки.
С использованием формулы длины отрезка, известной из школьной геометрии, можно
найти выражение для вычисления модуля вектора 

:

,                                                                                                                                                                               (2.26)

то
есть модуль вектора равен корню квадратному из суммы квадратов его координат.

Обозначим углы между вектором 
 и осями
координат через α, β, γ  соответственно. Косинусы этих углов называются
для вектора 
 направляющими, и для них выполняется соотношение:Верность данного равенства можно показать с помощью
свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем
пункте 4.

Пусть в трехмерном пространстве заданы векторы  своими
координатами.  Имеют место следующие
операции над ними: линейные (сложение, вычитание, умножение на число и
проектирование вектора на ось или другой вектор); не линейные – различные
произведения векторов (скалярное, векторное, смешанное).

1. Сложение  двух векторов производится покоординатно, то
есть если 

.

Данная
формула имеет место для произвольного конечного числа слагаемых.

Геометрически
два вектора складываются по двум правилам:

а) правило треугольника
результирующий вектор суммы двух векторов соединяет начало первого из них с
концом второго при условии, что начало второго совпадает с концом первого
вектора; для суммы векторов –
результирующий вектор суммы соединяет начало первого из них с концом последнего
вектора-слагаемого при условии, что начало последующего слагаемого совпадает с
концом предыдущего;

б)
правило
параллелограмма
(для двух
векторов) – параллелограмм строится на векторах-слагаемых как на сторонах,
приведенных к одному началу; диагональ параллелограмма исходящая из  их общего начала, является  суммой 
векторов.

2. Вычитание двух векторов производится
покоординатно, аналогично сложению, то есть если 
, то

.

Геометрически два
вектора складываются по уже упомянутому правилу параллелограмма  с учетом того, что разностью векторов
является диагональ, соединяющая концы векторов, причем результирующий вектор
направлен из конца вычитаемого в конец уменьшаемого вектора.

Важным следствием
вычитания векторов является тот факт, что если известны координаты начала и
конца вектора, то для вычисления координат вектора необходимо из координат его конца
вычесть координаты его начала
. Действительно, любой вектор пространства 
 может быть
представлен в виде разности двух векторов, исходящих из начала координат: 
. Координаты векторов и совпадают с
координатами точек
А и В, так как начало координат О(0;0;0). Таким образом, по правилу
вычитания векторов следует произвести вычитание координат точки
А из координат точки В.

3. Умножение вектора на число λ покоординатно:.

При  λ>0
– вектор
 сонаправлен ; λ<0 – вектор  противоположно направлен ; |λ|>1 –  длина вектора  увеличивается в λ раз; |λ|<1 –  длина вектора   уменьшается в λ раз.

4. Пусть в пространстве задана
направленная прямая (ось l), вектор 
 задан
координатами конца и начала. Обозначим проекции точек A и B на ось l
соответственно через A  и B.

Проекцией вектора  на ось l называется длина вектора ,   взятая со
знаком «+», если вектор 
 и ось  l  сонаправлены,  и  со
знаком «–»,  если 
 и l  противоположно направлены.

 

Если
в качестве оси l взять некоторый другой вектор 
, то получим проекцию вектора  на вектор .

Рассмотрим некоторые
основные свойства проекций:

1)     проекция вектора  на ось l равна произведению модуля
вектора 
 на косинус угла
 между вектором и осью, то есть 
;

2.)     проекция вектора на ось
положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и
равна нулю, если этот угол – прямой; 

3)     проекция суммы нескольких
векторов на одну и ту же ось равна сумме проекций на эту ось.

Сформулируем определения и
теоремы о произведениях векторов, представляющих нелинейные операции над
векторами.

5. Скалярным произведением  векторов  и  называется
число (скаляр), равное произведению длин этих векторов на  косинус угла
φ между
ними, то есть 

 .                                                                                                                                                                                 (2.27)

Очевидно, что скалярный квадрат любого ненулевого вектора равен квадрату его длины, так как в этом случае угол , поэтому его косинус (в 2.27) равен 1.

Теорема 2.2. Необходимым и достаточным условием
перпендикулярности двух векторов является равенство нулю их скалярного
произведения 

Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть 

Теорема 2.3. Скалярное произведение двух векторов ,
заданных своими координатами, равно сумме  произведений их одноименных координат, то есть 

                                                                                                                                                       (2.28)

С помощью скалярного произведения векторов можно
вычислить угол
 между ними. 
Если  заданы два ненулевых вектора
своими координатами 
, то косинус угла φ между ними:

                                                                                                                                            (2.29)

Отсюда
следует условие перпендикулярности ненулевых векторов
 
 и  :

                                                                                                                                                                              (2.30)

Нахождение проекции вектора  на направление,
заданное вектором 
 , может осуществляться по формуле

                                                                                                                       (2.31)

С помощью скалярного произведения векторов находят
работу постоянной  силы 
 на
прямолинейном участке пути.

Предположим, что под действием постоянной силы  материальная точка перемещается прямолинейно из
положения А в положение B. Вектор силы 
образует угол φ с вектором перемещения  (рис. 2.14). Физика утверждает, что работа силы  при перемещении  
равна .

Следовательно, работа постоянной силы
при прямолинейном перемещении точки ее приложения равна скалярному произведению
вектора силы на вектор перемещения.

       Пример
2.9.
С
помощью скалярного произведения векторов найти угол при вершине
A параллелограмма  ABCD
 построенного на векторах     

Решение. Вычислим модули векторов и их скалярное произведение
по теореме (2.3):

Отсюда согласно формуле (2.29) получим косинус
искомого угла 

Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых
на производство одной тонны творога, заданы в таблице 2.2 (руб.).

Какова общая цена этих ресурсов, затрачиваемых на изготовление одной
тонны творога?

                                                                                                         Таблица 2.2                               

                         

 Решение. Введем в рассмотрение два вектора: вектор затрат
ресурсов на тонну продукции  и вектор цены единицы
соответствующего ресурса  .

Тогда . Общая цена
ресурсов 
, что представляет собой скалярное произведение
векторов 
. Вычислим его по формуле (2.28) согласно теореме 2.3:

 

 Таким образом, общая цена затрат на производство одной
тонны творога составляет 279 541,5 рублей

Примечание. Действия с векторами, осуществленные в примере 2.10,
можно выполнить на персональном компьютере. Для нахождения скалярного
произведения векторов в MS Excel используют функцию СУММПРОИЗВ( ), где в качестве
аргументов указываются адреса диапазонов элементов матриц, сумму произведений
которых необходимо найти. В MathCAD
скалярное произведение двух векторов выполняется при помощи соответствующего
оператора панели инструментов Matrix 

Пример 2.11. Вычислить работу, произведенную силой , если точка ее приложения перемещается прямолинейно
из положения A(2;4;6) в положение A(4;2;7). Под каким углом к AB направлена сила 
?

Решение. Находим вектор перемещения, вычитая из координат его конца координаты
начала

 . По формуле (2.28)  (единиц работы).

Угол φ между  и
 
 находим по
формуле (2.29), то есть 

 

 6. Три некомпланарных вектора , взятые в указанном порядке, образуют правую
тройку
,
если при наблюдении из конца третьего вектора  кратчайший
поворот от первого вектора 
 ко второму
вектору 
совершается против часовой стрелки, и левую,
если по часовой стрелке.

Векторным
произведением
 
 вектора  на вектор  называется
вектор 
, удовлетворяющий следующим условиям:

–  перпендикулярен  векторам   и ;

– имеет длину, равную , где φ – угол, образованный векторами
 
 и ;

– векторы  образуют правую
тройку (рис. 2.15).

        Теорема 2.4. Необходимым и достаточным
условием коллинеарности двух векторов является равенство нулю их векторного
произведения 
  

Теорема 2.5. Векторное произведение векторов , заданных своими координатами, равно определителю
третьего порядка вида

                                                                                                                                                                    (2.32)  

Примечание.  Определитель (2.25) 
раскладывается по свойству 7  определителей 

 Следствие 1. Необходимым и достаточным условием коллинеарности двух
векторов является пропорциональность их соответствующих координат

Следствие 2. Векторные произведения единичных орт равны 

Следствие 3. Векторный квадрат любого вектора равен нулю 

Геометрическая
интерпретация векторного произведения
состоит в том, что длина результирующего
вектора численно равна площади S
параллелограмма, построенного на векторах–сомножителях как на сторонах,
приведенных к одному началу. Действительно, согласно определению,  модуль
векторного произведения векторов равен  
. С другой стороны, площадь параллелограмма,
построенного на векторах 
 и , также равна    

. Следовательно,

 .                                                                                                                                                                         (2.33)

         Также с помощью векторного произведения можно
определить момент  силы относительно точки и  линейную  скорость вращения.

      
Пусть в точке A приложена
сила 
 и пусть O
некоторая точка пространства (рис. 2.16). Из курса физики известно, что моментом
силы 
 относительно
точки
O называется вектор 
, который проходит через точку  O и удовлетворяет следующим условиям:

— перпендикулярен плоскости, проходящей через точки OAB;

его модуль численно равен произведению силы на плечо .

—  образует правую тройку с векторами  и  .

Следовательно,
момент силы 
 относительно
точки 
O представляет собой векторное произведение 

       .                                                                                                                                                                                        (2.34)

  

Линейная скорость  точки М твердого тела, вращающегося с
угловой скоростью 
 вокруг
неподвижной оси, определяется формулой
 Эйлера  , O – некоторая неподвижная

точка оси (рис. 2.17).

Пример 2.12. С помощью
векторного произведения найти площадь треугольника ABC, построенного на векторах
 
 , приведенных к одному началу.

Решение. Найдем векторное произведение заданных векторов по
формуле (2.32).

.  Согласно формуле (2.33) модуль векторного
произведения двух неколлинеарных векторов численно равен площади
параллелограмма, построенного на данных векторах как на сторонах, приведенных к
общему началу, то есть 
. Тогда площадь треугольника   
. Следовательно, искомая площадь равна  (единиц
площади)

7. Рассмотрим произведение трех векторов , составленное следующим образом: . Здесь первые два вектора перемножаются векторно, а
результирующий вектор скалярно на третий. Такое произведение 
 называется смешанным
произведением
трех векторов
(векторно–скалярным произведением).

Теорема 2.6. Необходимым и достаточным условием компланарности
трех векторов является равенство нулю их смешанного произведения 

Теорема 2.7. Если три вектора  заданы своими координатами, то их смешанное
произведение представляет собой определитель третьего порядка, составленный из
координат векторов- сомножителей соответственно, то есть

                                                                                                                                                                                 (2.35)

Нетрудно показать, что объем параллелепипеда,
построенного на векторах 
 как на
сторонах, приведенных к общему началу, численно равен модулю смешенного
произведения этих векторов 
.          

Объем треугольной пирамиды, построенной на этих же
векторах, равен

                                                                                                                                                                                       (2.36)

Пример 2.13. Вершинами пирамиды служат точки . Вычислить объем пирамиды.

Решение. Найдем
координаты векторов

 . Вычислим смешанное произведение этих векторов: 

По формуле (2.36) объем пирамиды, построенной на
векторах 
 равен
 
(единиц объема)  

Рассмотрим очень важный вопрос о
разложении вектора по базису. Приведем 
следующие определения.

Система векторов  называется
линейно зависимой, если существуют такие числа 
, хотя бы одно из которых отлично от нуля, что имеет
место равенство

                                                                                                                                                                   (2.37) 

Отсюда всегда можно один из линейно
зависимых векторов выразить через линейную комбинацию остальных. Действительно,
допустим для определенности, что 
. Тогда на это число разделим равенство (2.37), имеем: 

получим выражение вектора  через
остальные векторы 

Линейно независимыми называют векторы, если равенство
(2.37)  выполняется только тогда, когда
все

  В системе векторов  число линейно
независимых векторов равняется рангу матрицы, которая составлена из координат
этих векторов (смотри
  раздел  I.5).

Базисом n – мерного
пространства
En называют любую совокупность  линейно независимых векторов         n – мерного пространства.

Произвольный вектор  n
– мерного пространства можно представить
в виде линейной комбинации векторов базиса 

 таким образом: 

Числа
 
называются координатами
вектора 
 в базисе
векторов 
.

Линейное пространство называется
конечномерным
и имеет размерность n, если в этом
пространстве существует система из n линейно независимых векторов (базис) такая,
что каждое ее расширение приводит к линейной зависимости системы.

Например, в трехмерном пространстве
существует базис единичных орт 
 такой, что любое расширение этой системы
линейно независимых векторов, то есть каждый вектор 
 трехмерного
пространства, приводит к линейной зависимости векторов (является линейной
комбинацией
орт ): Коэффициенты {x1, x2, x3} такого разложения вектора
 по ортам  являются координатами вектора  в трехмерном 
пространстве.

Вопросы для самопроверки 

На чтение 6 мин. Просмотров 1.4k.

Вы узнаете в этой статье что значит разложить вектор по двум неколлинеарным векторам.

Представление вектора vec{c} в виде vec{c}=x vec{a}+y vec{b}, где векторы vec{a} и vec{b} являются неколлинеарными векторами, называется разложением вектора по двум неколлинеарным векторам.

Теорема (о разложении вектора по двум неколлинеарным векторам)

Теорема. Любой вектор с можно единственным образом представить в виде vec{c}=x vec{a}+y vec{b}, где vec{a} и vec{b} — неколлинеарные векторы, х и у — числа.

Коллинеарные вектора vec{m} и vec{n} — это такие вектора, где один из векторов параллелен другому и связан с ним соотношением

vec{m}=kvec{n}

Доказательство:

Пусть даны векторы vec{c}=overrightarrow{AB}, vec{a} и vec{b}. Проведем через точки A и B прямые, параллельные векторам vec{a} и vec{b}, и обозначим точку C их пересечения. Тогда overrightarrow{AB}=overrightarrow{AC}+overrightarrow{CB}.

К теореме о разложении вектора на коллинеарные вектора

К теореме о разложении вектора по двум коллинеарным векторам

Так как векторы vec{a} и overrightarrow{AC} коллинеарные, то существует такое число х, что overrightarrow{AC} =хvec{a}. Векторы vec{b} и overrightarrow{CB} тоже коллинеарные, следовательно, существует такое число у, что overrightarrow{CB} =yvec{b}.

Таким образом, vec{c}=x vec{a}+y vec{b}.

Докажем единственность такого представления вектора с способом от противного. Допустим, что имеется другое разложение вектора, например, такое:

vec{c}=n vec{a}+m vec{b}, тогда два разложения вектора vec{c} можно приравнять:
n vec{a}+m vec{b}=x vec{a}+y vec{b} (если равны левые части равенств, то равны и правые).

Перенесем все в левую часть равенства:

n vec{a}+m vec{b}-x vec{a}-y vec{b}=0
(n-x)vec{a}+(m-y) vec{b}=0
displaystyle vec{a}=frac{y-m}{n-x} vec{b}

То есть векторы vec{a} и vec{b} получаются коллинеарными. А у нас условие — векторы vec{a} и vec{b} — неколлинеарные вектора.

Таким образом, возможно только единственно возможное представление вектора vec{c} в виде vec{c}=x vec{a}+y vec{b}, где векторы vec{a} и vec{b} являются неколлинеарными векторами.

Теорема доказана.

Если вектор vec{c} коллинеарен какому-либо из векторов vec{a} и vec{b}, то либо число x, либо число y равно нулю.

Базис векторов и разложение вектора по базису

В декартовой системе координат Oxy вектор с координатами (x, y) можно разложить по единичным векторам vec{e_1}(1;0) и vec{e_2}(0;1).

Тогда, например, вектор vec{c}(3; -1) можно представить в виде разложения:

vec{c}=x vec{e_1}+y vec{e_2}=3 vec{e_1}-1 vec{e_2}

Действительно:

begin{cases} 3=3 cdot 1+(-1)cdot 0, \ — 1=3 cdot 0+(-1)cdot 1. end{cases}

Система векторов, по которым можно разложить вектор с коэффициентами разложения равными его координатам, называется базисом вектора. Вектора базиса всегда не коллинеарные. Координаты вектора будут верны только в отношении данного базиса.

Однако, это не отменяет тот факт, что вектор можно разложить и по другим векторам, то есть по новому базису. Тогда говорят о переходе к новому базису векторов.

Обычно в декартовой системе координат базисные векторы на плоскости обозначают так: vec{i}(1;0) и vec{j}(0;1).

Базис векторов декартовой системы координат

В пространственной декартовой системе координат базис векторов будет: vec{i}(1; 0; 0), vec{j}(0;1; 0), vec{k}(0;0;1)

Базис векторов в пространственной декартовой системе координат

В то же время на любых векторах можно построить свою систему отсчета, тогда данные вектора будут считаться базисом этой системы и в этой системе можно найти координаты любого вектора. То есть любой вектор можно разложить по базису, конечно, если при этом базисные вектора не являются коллинеарными.

Примеры разложения вектора

Пример 1. Разложить вектор vec{c}(0; 1) по двум векторам vec{a}(3; 6) и vec{b}(4; 9).

Решение:

Для разложения вектора vec{c} запишем:

vec{c}=x vec{a}+y vec{b}

Нам нужно найти коэффициенты разложения x и y, для этого разложим каждую координату вектора vec{c}:

  • Для абсциссы: 0=x cdot 3+y cdot 4
  • Для ординаты: 1=x cdot 6+y cdot 9

Получаем систему из двух уравнений с двумя неизвестными, которую решаем:

begin{cases} 3x+4y=0, \ 6x+9y=1. end{cases}

Решая, получаем: displaystyle x=frac{-4}{3} и y=1
И разложение вектора vec{c} будет иметь вид: displaystyle vec{c}=-frac{4}{3} vec{a}+vec{b}

Пример 2. Найти координаты вектора vec{a} в базисе, если известно разложение вектора по базису vec{e_1} и vec{e_2}:

vec{a}=7 vec{e_1}+5 vec{e_2}

Решение: Координаты вектора в базисе векторов vec{e_1} и vec{e_2} будут равны коэффициентам разложения, то есть vec{a}(7; 5)

Ответ: vec{a}(7; 5)

Пример 3. Разложить вектор vec{b}(1; 2) по базису vec{e_1}(2; 3) и vec{e_2}(2; 5).

Решение:

Запишем разложение вектора по базису:

vec{b}=b_1 vec{e_1}+b_2 vec{e_2}

Получим систему уравнений:

begin{cases} 1=2b_1+4b_2, \ 2=2b_1+5b_2. end{cases}

От второго уравнения системы отнимем первое, получим:

begin{cases} 1=b_2, \ 2=2b_1+5b_2. end{cases}

Тогда:

begin{cases} b_2=1, \ b_1=-1,5. end{cases}

И разложение вектора будет иметь вид: vec{b}=-1,5 vec{e_1}+vec{e_2}

Математика

Тема 5: Метод координат

Урок 4: Координаты вектора. Разложение вектора по двум неколлинеарным векторам

  • Видео
  • Тренажер
  • Теория

Заметили ошибку?

Координаты вектора. Разложение вектора по двум неколлинеарным векторам.

Если векторы a⃗ и b⃗ коллинеарны и a⃗≠0⃗, то существует такое число k, что b⃗=ka⃗.

Пусть a⃗ и b⃗ – два данных вектора. Если вектор p представлен в виде p⃗=xa⃗+yb⃗, где x и y – некоторые числа, то говорят, что вектор p⃗ разложен по векторам a⃗ и b⃗. Числа x и y называются коэффициентами разложения.

Теорема

На плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.

Напомню, что для задания прямоугольной системы координат нужно провести две взаимно перпендикулярные прямые, на каждой из них выбрать направление (оно обозначается стрелкой) и выбрать единицу измерения отрезков. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.

В дальнейшем под длиной отрезка мы будем понимать это число.

Отложим от начала координат O единичные векторы (т.е. векторы, длины которых равны единице) i⃗ и j⃗ так, чтобы направление вектора i⃗совпало с напралением оси Ox, а направление вектора j⃗ – с направлением оси Oy. Векторы i⃗ и j⃗ назовем координатными векторами.

Координатные векторы не коллинеарны, поэтому любой вектор p⃗ можно разложить по координатным векторам, т.е. представить в виде p⃗=xi⃗+yj⃗, причем коэффициенты разложения (числа x и y) определяются единственным образом. Коэффициенты разложения вектора p⃗ по координатным векторамназываются координатными векторамиp⃗ в данной системе координат. Координаты вектора будем записывать в фигурных скобках после обозначения вектора: p⃗{x;y}.

Так как нулевой вектор можно представить в виде 0⃗=0.i⃗+0.j⃗, то его координаты равны нулю: 0⃗{0;0}. Если векторы a⃗=x1i⃗+y1j⃗ и b⃗=x2i⃗+y2j⃗ равны, то x1 = x2 и y1 = y3. Таким образом, координаты равных векторов соответственно равны.

Рассмотрим правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число.

  1. Каждая координата суммы двух или более векторов равна сумме соответствующих координат этих векторов.

    Докажем это утверждение для двух векторов. Рассмотрим векторы a{x1;y1} и b{x2;y2}. Так как a⃗=x1i⃗+y1j⃗ и b ⃗=x2i⃗ +y2j⃗ ,то, пользуясь свойствами сложения векторов и умножения вектора на число, получим:

    a⃗+b⃗=x1i⃗+y1j⃗+x2i⃗+y2j⃗=(x1+x2)i⃗+(y1+y2)j⃗ .

    Следовательно, что координаты вектора a⃗+b⃗ равны {x1+x2; y1+y2}.

    Аналогично доказывается следующее утверждение:

  2. Каждая координата разности двух или более векторов равна разности соответствующих координат этих векторов.

    Иными словами, если a⃗{x1;y1} и b⃗{x2;y2} – данные векторы, то вектор a⃗–b⃗ имеет координаты {x1-x2;y1-y2}.

  3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.

    В самом деле, пусть вектор a⃗ имеет координаты {x;y}. Найдем координаты вектора ka⃗, гдеk – произвольное число. Так как a⃗=xi⃗+yj⃗, то kxi⃗+kyj⃗. Отсюда следует, что координаты вектора ka⃗ равны {kx;ky}.

    Рассмотренные правила позволяют определить координаты любого вектора, представленного в виде алгебраической суммы данных векторов с известными координатами.

    Найти координаты вектора a⃗+b⃗,если a⃗{3;2},b⃗{2;5}

    Чтобы найти координаты вектора суммы, надо сложить соответствующие координаты данных векторов, получим:

    a⃗+b⃗ имеет координаты {3 + 2; 2 + 5}, то есть {5; 7}

    Найти координаты вектора 2a⃗, если a⃗{3;2}

    Значит, вектор 2a⃗ имеет координаты {2 ⋅ 3; 2 ⋅ 2}, то есть {6;4}

Итак, сегодня мы узнали, что любой вектор можно разложить по двум неколлинеарным векторам, ввели понятие координат вектора и рассмотрели правила, позволяющие находить координаты суммы, разности векторов, и произведения вектора на число. А в следующий раз мы найдем связь между координатами вектора и координатами его начала и конца.

Заметили ошибку?

Расскажите нам об ошибке, и мы ее исправим.

В данной публикации мы рассмотрим, каким образом можно разложить вектор по двум базисным векторам, а также разберем пример решения задачи по этой теме.

  • Принцип разложения вектора

  • Пример задачи

Принцип разложения вектора

Для того, чтобы разложить вектор b по базисным векторам a1, …, an, требуется определить такие коэффициенты x1, …, xn, при которых линейная комбинация векторов a1, …, an равняется вектору b, то есть:

x1a1 + … + xnan = b

где x1, …, xn – координаты вектора b в базисе a1, …, an

Пример задачи

Разложим вектор b = {16; 1} по двум базисным векторам m = {2; 1} и n = {1; -3}.

Решение:

1. Векторное уравнение выглядит так:

xm + yn = b

2. Представим его в виде системы линейных уравнений:

Пример системы линейных уравнений

3. Теперь нужно решить систему. Из второго уравнения получаем:
x = 1 + 3y.

Подставляем полученное выражение в первое уравнение:
2 · (1 + 3y) + y = 16
2 + 6y + y = 16
7y = 14
y = 2

Следовательно, x = 1 + 3y = 1 + 2 · 2 = 7.

Ответ: b = 7m + 2n.

Разложить вектор $ overline{x} = (10,3,3) $ по векторам $ overline{p} = (2,3,1) $, $ overline{q} = (3,7,2) $, $ overline{r} = (5,4,2) $

Составим систему линейных уравнений, используя векторы из условия задачи:

$$ begin{cases} 10= 2alpha + 3 beta + 5 gamma \ 3=3 alpha + 7 beta + 4 gamma \ 3 = 1 alpha + 2 beta + 2 gamma end{cases} $$

Запишем систему в привычном виде:

$$ begin{cases} 2alpha + 3 beta + 5 gamma = 10 \ 3 alpha + 7 beta + 4 gamma = 3 \ alpha + 2 beta + 2 gamma = 3 end{cases} $$

Решив систему уравнений любым методом, найдем неизвестные $ alpha, beta, gamma $. К примеру, возьмём метод Крамера.

Найдем главный определитель:

$$ Delta = begin{vmatrix} 2 & 3 & 5 \ 3 & 7 & 4 \ 1 & 2 & 2 end{vmatrix} = $$

$$ = 2 cdot 7 cdot 2 + 3 cdot 4 cdot 1 + 3 cdot 2 cdot 5 — 5 cdot 7 cdot 1 — 4 cdot 2 cdot 2 — 3 cdot 3 cdot 2 = $$

$$ = 28 + 12 + 30 — 35 — 16 — 18 = 1 $$

Так как $ Delta = 1 $ не равно нулю, то СЛАУ имеет единственное решение.

Вычислим дополнительные определители составленные из столбцов главного путём поочередной замены одного из столбцов на свободные члены системы:

$$ Delta_1 = begin{vmatrix} 10 & 3 & 5 \ 3 & 7 & 4 \ 3 & 2 & 2 end{vmatrix} = $$

$$ = 10 cdot 7 cdot 2 + 3 cdot 4 cdot 3 + 3 cdot 2 cdot 5 — 5 cdot 7 cdot 3 — 4 cdot 2 cdot 10 — 3 cdot 3 cdot 2 = $$

$$ = 140 + 36 + 30 — 105 — 80 — 18 = 3 $$

$$ Delta_2 = begin{vmatrix} 2 & 10 & 5 \ 3 & 3 & 4 \ 1 & 3 & 2 end{vmatrix} = $$

$$ = 2 cdot 3 cdot 2 + 10 cdot 4 cdot 1 + 3 cdot 3 cdot 5 — 5 cdot 3 cdot 1 — 4 cdot 3 cdot 2 — 10 cdot 3 cdot 2 = $$

$$ = 12 + 40 + 45 — 15 — 24 — 60 = -2 $$

$$ Delta_3 = begin{vmatrix} 2 & 3 & 10 \ 3 & 7 & 3 \ 1 & 2 & 3 end{vmatrix} = $$

$$ = 2 cdot 7 cdot 3 + 3 cdot 3 cdot 1 + 3 cdot 2 cdot 10 — 10 cdot 7 cdot 1 — 3 cdot 2 cdot 2 — 3 cdot 3 cdot 3 = $$

$$ = 42 + 9 + 60 — 70 — 12 — 27 = 2 $$

Теперь вычислим коэффициенты $ alpha, beta, gamma $:

$$ alpha = frac{Delta_1}{Delta} = frac{3}{1} = 3 $$

$$ beta = frac{Delta_2}{Delta} = frac{-2}{1} = -2 $$

$$ gamma = frac{Delta_3}{Delta} = frac{2}{1} = 2 $$

Зная постоянные $ alpha, beta, gamma $, запишем разложение вектора $ overline{x} $ по векторам $ overline{p}, overline{q}, overline{r} $:

$$ overline{x} = 3overline{p} — 2overline{q} + 2overline{r} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Понравилась статья? Поделить с друзьями:
  • Ошибка е61 в посудомоечной машине bosch как исправить
  • Как составить таблицу ухода за собой
  • Как правильно составить описание статьи
  • Как найти общий знаменатель двух чисел
  • Как найти падеж по окончанию