Как найти вектор зная модуль вектора

Модуль вектора

Формула

Чтобы найти модуль вектора по координатам нужно извлечь квадратный корень из суммы квадратов его координат, то есть найти длину вектора.

Если вектор задан на плоскости в виде $ overline{a} = (x;y) $, то вычисляется модуль по формуле: $$ |overline{a}|=sqrt{x^2+y^2} $$

В случае, когда вектор задан в пространстве тремя координатами $ overline{a}= (x;y;z) $, то модуль находится по формуле: $$ |overline{a}|=sqrt{x^2+y^2+z^2} $$

Для нахождения модуля вектора нам понадобится знать:

  1. Координаты вектора
  2. Формулы

Примеры решений

Пример
Найти модуль вектора $ overline{a} = (3;4;0) $
Решение

Зная координаты мы первым делом определяем на плоскости или в пространстве задана задача. В нашем случае координат у вектора три, поэтому в пространстве (было бы две координаты, то на плоскости).

Используем вторую формулу для пространственной задачи:

$$ |overline{a}|=sqrt{x^2+y^2+z^2} $$

Подставляя в формулу в место $ x,y,z $ числа из задания получаем модуль:

$$ |overline{a}|=sqrt{3^2+4^2+0^2} = sqrt{9+16+0} = sqrt{25}=5 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ |overline{a}|= sqrt{25}=5 $$

Как вычислить вектор

Вектор, как направленный отрезок, зависит не только от абсолютной величины (модуля), которая равна его длине. Еще одна важная характеристика – направление вектора. Оно может определяться как координатами, так и углом между вектором и осью координат. Вычисление вектора также производится при нахождении суммы и разности векторов.

Как вычислить вектор

Вам понадобится

  • — определение вектора;
  • — свойства векторов;
  • — калькулятор;
  • — таблица Брадиса или ПК.

Инструкция

Вычислить вектор, можно зная его координаты. Для этого определите координаты начала и конца вектора. Пусть они будут равны (x1;y1) и (x2;y2). Чтобы произвести вычисление вектора, найдите его координаты. Для этого от координат конца вектора отнимите координаты его начала. Они будут равны (x2- x1;y2-y1). Примите x= x2- x1; y= y2-y1, тогда координаты вектора будут равны (x;y).

Определите длину вектора. Это можно сделать просто, измерив ее линейкой. Но если известны координаты вектора, рассчитайте длину. Для этого найдите сумму квадратов координат вектора и извлеките из получившегося числа корень квадратный. Тогда длина вектора будет равна d=√(x²+y²).

После этого найдите направление вектора. Для этого определите угол α между ним и осью ОХ. Тангенс этого угла равен отношению координаты y вектора к координате x (tg α= y/x). Чтобы найти угол, воспользуйтесь в калькуляторе функцией арктангенса, таблицей Брадиса или ПК. Зная длину вектора и его направление относительно оси, можно найти положение в пространстве любого вектора.

Пример:

координаты начала вектора равны (-3;5), а координаты конца (1;7). Найдите координаты вектора (1-(-3);7-5)=(4;2). Тогда его длина составит d=√(4²+2²)=√20≈4,47 линейных единиц. Тангенс угла между вектором и осью ОХ составит tg α=2/4=0,5. Арктангенс этого угла округленно равен 26,6º.

Найдите вектор, который представляет собой сумму двух векторов, координаты которых известны. Для этого сложите соответствующие координаты векторов, которые складываются. Если координаты векторов, которые складываются, равны соответственно(x1;y1) и (x2;y2), то их сумма будет равна вектору с координатами ((x1+x2;y1+y2)). Если нужно найти разность двух векторов, то находите сумму, предварительно умножив координаты вектора, который вычитается на -1.

Если известны длины векторов d1 и d2, и угол между ними α, найдите их сумму, используя теорему косинусов. Для этого найдите сумму квадратов длин векторов, а из получившегося числа вычтите удвоенное произведение этих длин, умноженное на косинус угла между ними. Из получившегося числа извлеките корень квадратный. Это и будет длина вектора, являющегося суммой двух данных векторов (d=√(d1²+d2²-d1∙d2∙Cos(α)).

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

7.3. Разложение вектора по базису. Координаты вектора Модуль вектора. Направляющие косинусы

Пусть

— единичные векторы осей координат, т.е.


и каждый из них одинаково направлен с
координатными осями.
Тройка векторов

называется
координатным

базисом.

Теорема.
Любой вектор пространства можно разложить
по базису
,
т.е. представить
в виде
,
где

— некоторые числа (буквы:

— «мю»,

— «ню»).

Это разложение
единственное.

Доказательство.
Приложим вектор

к началу координат, обозначим его конец

.
Проведем
через точку
плоскости,
перпендикулярные осям координат. Пусть

,
,
точки
пересечения этих плоскостей с осями
координат.

Существует
единственная тройка чисел
,
,
таких, что

.

Формула
называется
разложением вектора по координатному
базису.

Числа
,
,
называются
координатами
вектора


,
т.е. координаты
вектора есть его проекции на соответствующие
координатные оси. В символическом виде
записывают
.

Например, если,
то его
координаты
.

Зная координаты
вектора
,
длину его можно найти по формуле

Если известны
координаты точек
и
,
то координаты вектора равны:
.

Пусть углы вектора
с осями
,
,
соответственно равны
,
,
.
Числа
,
,
называются
направляющими косинусами вектора

.

;
;
;

основное
свойство направляющих косинусов вектора.

7.4. Действия над векторами, заданными координатами

Пусть векторы
и
заданы своими координатами.

При сложении
(вычитании) векторов их одноименные
координаты складываются (вычитаются),
т.е.

При умножении
вектора на число
координаты его умножаются на это число,
т.е.
.

Если вектор
коллинеарен вектору
,
то можно записать
,
где
— некоторое число, т.е.
,
,
.
Отсюда,
,
,
или
— условие коллинеарности векторов.

7.5. Деление отрезка в данном отношении

,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Пусть даны координаты
точек

и
;
и отношение
.

Требуется найти координаты точки
.

Из равенства
векторов следует равенство соответствующих
координат:

.

Аналогично,
;
.

В частном случае:



— середина
отрезка, т. е.
.

Пример.
Дан треугольник
,

где
,

,
.

Найти
координаты точки

пересечения
биссектрисы угла
со стороной
.


,
,

,
.

.

Ответ:
.

§ 8. Скалярное
произведение векторов

8.1. Определение
скалярного произведения

Определение.
Скалярным произведением вектора

на вектор

называется число
(скаляр)
,
равное произведению длин этих векторов
на косинус угла между ними.

Обозначается:
или
.

Найдем
проекцию вектора
на вектор


.

Из геометрии
известно
.

Умножим и разделим
левую часть на
:

,
аналогично находим
.

8.2. Свойства
скалярного произведения

1.


Доказательство.
. 

2.
.

3.
.

4.
.

Определение:
Число, равное

,
называется скалярным
квадратом

вектора
.

5.
Скалярный квадрат вектора равен
квадрату его длины
.

Доказательство.
.

6.
Скалярное произведение базисных
векторов:

,
.

8.3. Вычисление
скалярного произведения векторов через
координаты

Теорема. Если
,
,
то
.

Доказательство.
Запишем векторы
и
в виде разложения по базису, т.е.
и
.

Тогда

По свойству
скалярного произведения базисных
векторов
:

Таким образом,
.

8.4. Приложения
скалярного произведения векторов

  1. Установление
    перпендикулярности ненулевых векторов:

.

Если
, то


условие перпендикулярности
векторов.

2. Вычисление
проекции вектора на вектор:

и
.

3. Определение
угла между векторами:

,
т.е.
.

4. Работа постоянной
силы.

Если
точка перемещается прямолинейно из
положения
в положение
под действием силы
,
то работа по перемещению равна:

.

Пример 1.
К точке
приложены три силы
.

Вычислить
работу по перемещению точки
в точку
.


— равнодействующая
трех сил.

.

.

Пример 2.
Дано:
,
,
,
.

Найти угол между
векторами
и
.

 Так как
или
.

,

,

Таким образом,
.

Пример 3.
Найти длину вектора
,
если
,
,.

«Вектор. Модуль вектора. Равенство векторов. Координаты вектора. Сложение векторов.»

Министерство образования, науки и молодежной политики Краснодарского края государственное бюджетное профессиональное образовательное учреждение Краснодарского края

«Лабинский социально-технический техникум»

Методическая разработка

урока математики

по теме:

«Вектор. Модуль вектора. Равенство векторов. Координаты вектора. Сложение векторов.»

Подготовила:

преподаватель математики

Пятакова З.В.

Лабинск, 2015

Вектор. Модуль вектора. Равенство векторов. Координаты вектора. Сложение векторов.

Цели урока

Образовательные:Изучить, что такое “вектор в пространстве», как определяются координаты, вектора, если известны координаты его начала и конца, научится решать задачи, связанные с векторами.

Развивающие: расширение кругозора учащихся, формирование умений применять приёмы сравнивания, обобщения, выделения главного, переноса знаний в новую ситуацию, развитие мышления, речи, умение комментировать, развитие учебно-познавательных компетенций учащихся

Воспитательные: воспитывать трудолюбие, чувство товарищества и взаимопомощи, привитие навыков самооценки, умения работать в коллективе, умения правильно оценивать работуодногруппников,прививать интерес к предмету.

План урока:

  1. Организационный момент.

  2. Актуализация знаний.

  3. Изучение нового материала.

  4. Закрепление знаний.

  5. Итоги урока.

  6. Самостоятельная подготовка.

Оборудование: Интерактивная доска

Тип урока: Комбинированный.

Ход урока:

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Актуализация знаний

3. Изучение нового материала

Рассказ преподавателя:

ВЕКТОР. КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ

В пространстве, как и на плоскости, вектором называется величина, которая задается своей длиной и направлением. Вектор изображатеся направленным отрезком, длина которого равна длине вектора.

(Слайд 2)

Буквально так же, как и на плоскости, определяются основные понятия для векторов в пространстве: абсолютная величина вектора, направление вектора, равенство векторов.

Но это не простое повторение, а обобщение, распространение свойств двумерной геометрии на трехмерную. Если в планиметрии для задания вектора достаточно указать две его координаты, то в стереометрии — три координаты.

Определение. Координатами вектора , начало которого точка A(x1,y1,z1), а конец — точкаВ(х2, у2, z2), называются числа a1= х2- x1, a2=y2-y1, a3=z2-z1.

Записывают такой вектор, указывая его координаты:  (a1 а2, а3) или  (a1 а2, а3).

(Слайд 3)

Например, если точки А(4; 0; 3) и B(0; 6; 4) — начало и конец направленного отрезка , тогда

а1 = 0 — 4 = -4, а2 = 6 — 0 = 6, а3 = 4 — 3 = 1.

Значит, направленному отрезку  соответствует вектор  (-4; 6; 1) (рис. 67).

(Слайд 4)

Так же, как и на плоскости, равные векторы имеют соответственно равные координаты и, обратно, векторы с соответственно равными координатами равны. Это дает основание говорить о том, что любой вектор можно отложить от любой точки пространства.

(слайд 5)

Длину вектора  (a1 а2, а3) можно выразить через его координаты. Отложим вектор  от начала координат (рис. 68). Тогда четырехугольник OPAN — прямоугольник. Его стороны равны аи а2, поэтому ОАz2 = а12 + а22. В прямоугольном треугольнике ОАА второй катет Аz А = а3 и ОА2 = ОА2г + а32 = а12 + а22+ а32. Отсюда | | = 

Длина любого ненулевого вектора — число положительное. Длина нулевого вектора равна нулю.

Вспомним, что два вектора, лежащих на одной прямой или параллельных прямых, называютколлинеарными. Коллинеарные векторы бывают сонаправлены   b) или противоположно направлены   b). Если векторы ON и ОМ коллинеарны, то точки О, N, М лежат на одной прямой. Нулевые векторы не имеют направлений и считаются коллинеарными к любому вектору.

ДЕЙСТВИЯ НАД ВЕКТОРАМИ В КООРДИНАТАХ

Действия над векторами в пространстве осуществляются аналогично тому, как они определялись для векторов на плоскости.

Определение. Суммой векторов a (a1 а2, а3) и b(b1 b2, b3называется вектор а + с координатами (а1 + b1; а2 + b2 ; а3 + b3)

Для любых векторов а , b и с справедливы равенства:

  1. а+b=b+а — переместительный закон сложения;

  2. а + (b + с) = (а+ b) + с — сочетательный закон сложения.

Чтобы доказать эти свойства, достаточно сравнить соответствующие

координаты левой и правой частей каждого векторного равенства.

Для любых трех точек А, В, С в пространстве имеет место векторное равенство  +  = .

Действительно, для любых трех точек A(a1 а2, а3), B(b1 b2, b3), C(c1с2, с3)  (b1 – а1; b2 — а2;b3 — а3) и  (с1 — bг; с2 — b2, с3 — b3).

Отсюда  +  =  (с1 – а1; с2 — а2; с3 — а3).

Геометрически сумму двух векторов пространства можно находить, пользуясь правилам треугольника(рис. 69).

Также применяется и правило параллелограмма. Оно часто используется в физике.

Если ABCD — параллелограмм (рис. 70), то  +  =  .

Чтобы найти сумму нескольких векторов, используем правило многоугольника. Например, если в пространстве даны точки А, В, С, D, Е, F, то всегда

АВ + ВС +CD + DE + EF = AF.

(слайд 6)

Определение. Два вектора, сумма которых равна нулевому вектору, называютсяпротивоположными.

Из определения следует, что у противоположных векторов соответствующие координаты имеют противоположные знаки.

Определение. Разностью векторов а и b называется такой вектор с , который в сумме с вектором bдает вектор а .

Если а (а1; а2; а3) и b( b1; b2; b3), то  —  (а1 –b1; а2 — b2; а3 – b3).

  1. Закрепление знаний

Работа студентов по слайдам. Решение задач у доски по желанию.

(слайд7)

(слайд 8)

(слайд9)

(слайд10)

5.Итоги урока.

Комментирование ответов и решений задач. Выставление отметок.

  1. Самостоятельная подготовка.

Составить краткий опорный конспект.

Графическое представление векторов с полярными единичными векторами без преобразования в декартовы координаты

Есть две вещи, которые делают это запутанным. Во-первых, хотя вы можете быть знакомы с математикой, где есть одна декартова система координат и одна полярная система координат, с хорошо известными формулами преобразования из одной системы координат в другую, люди используют не только эти плоские системы координат.
Во-вторых, люди иногда используют одни и те же буквы для обозначения очень разных вещей, в зависимости от таких вещей, как наличие или отсутствие «шапки» над буквой.

В полярных координатах можно записать вектор положения $vec r$
$vec r = (r, theta).$ Этими координатами нельзя манипулировать, как декартовыми координатами вектора.
Декартовы координаты $(x,y)$ соответствуют векторной сумме с коэффициентами $x$ и $y,$, а именно
$x hat imath + y hat jmath$, где $hatimath$ и $hatjmath$ — единичные векторы в направлениях $x$ и $y$,
но нет общего способа записать $vec r$ в виде векторной суммы с коэффициентами $r$ и $theta.$

Однако иногда люди интересуются описанием точки в полярных координатах, а также хотят ответить на определенные вопросы о том, что происходит в этой точке, например, о скорости или ускорении частицы, находящейся там в какой-то момент. во время.
Что они иногда делают, так это создают декартову систему координат.
«заказные» для этой точки плоскости:
вместо использования обычных единичных векторов $hatimath$ и $hatjmath$, параллельных осям $x$ и $y$,
они смотрят на вектор $vec r$ от начала своих полярных координат до конкретной интересующей точки,
и они образуют единичный вектор $hat r$ в том же направлении, что и $vec r.

$
Затем они делают другой единичный вектор $hat theta$ перпендикулярным $hat r,$
обычно указывая в направлении возрастания полярной координаты $theta$.

Итак, рассматриваемая точка на расстоянии и в направлении $vec r$ от начала координат
уже имеет полярные координаты $(r,theta),$ и мы знаем, как получить из них второй набор координат, а именно декартовы координаты
$x = r costheta,$ $y = r sintheta$;
но теперь кто-то ввел третью систему координат , отличную от любой из этих.

Новая система координат является другой декартовой системой координат, но в общем случае она не ориентирована так же, как система координат $(x,y)$
(если только $theta$ не равно нулю или другому целому кратному $2pi$),
и мы обычно не считаем, что оно имеет то же начало, что и координаты $(x,y)$ или координаты $(r,theta)$.
Если мы вообще подумаем о его происхождении как о точке на плоскости,
мы, скорее всего, будем думать о точке $(r,theta)$ как о начале этой новой системы.

Было бы очень странно захотеть записать вектор координат , такой как вектор позиции $vec r$ в этой новой системе координат; обычно это не то, для чего предназначена новая система. Но очень вероятно, что в этой новой системе координат желательно записать вектор скорости или вектор ускорения.
Я был бы удивлен, увидев такое уравнение, как
$vec r = 10hat r + 30hat theta$ написано в книге, потому что $vec r$ обычно является вектором положения, а вещь в правой части уравнения — нет;
но я бы совсем не удивился, увидев вектор скорости, написанный
$vec v = 10шляпа r + 30шляпа тета.$


Таким образом, когда вы видите выражение вроде $10hat r + 30hat theta,$
вы не ищете способ записи вектора с использованием полярных координат.
Вы смотрите на набор декартовых координат в специальной декартовой системе координат.
Поскольку эти координаты действительно декартовы, вы можете использовать обычные правила декартовых координат, чтобы добавить их (просто добавляя координаты)
или найти величину вектора (используя теорему Пифагора).
И вам точно стоит


а не попытка скопировать полярные координаты
любой точки в эту систему координат; то есть вообще
$$ (r = a,theta = b) neq a hat r + btheta$$
(точка с полярными координатами $(r,theta) = (a,b)$ не находится путем построения векторной суммы $a hat r + btheta$).

Как найти величину и направление вектора0003

Учебное пособие по физике I для чайников с онлайн-практикой

Изучить книгу Купить на Amazon

В физике, когда вам даны векторные компоненты, такие как (3, 4), вы можете легко преобразовать их в величину/угол. вектора с помощью тригонометрии.

Например, взгляните на вектор на изображении.

Предположим, вам известны координаты конца вектора и вы хотите найти его величину v и угол тета. Благодаря вашим познаниям в тригонометрии вы знаете

Где тангенс тета — тангенс угла. Это значит, что

тета = тангенс –1 ( y / x )

Предположим, что координаты вектора равны (3, 4). Вы можете найти угол тета как тангенс –1 (4/3) = 53 градуса.

Вы можете использовать теорему Пифагора, чтобы найти гипотенузу — величину, v — треугольника, образованного x, y, и v:

Подставьте числа для этого примера, чтобы получить

Итак, если у вас есть вектор, заданный координатами (3, 4), его величина равна 5, а угол равен 53 градусам.

Пример вопроса

  1. Преобразование вектора, заданного координатами (1.0, 5.0), в формат величина/угол.

    Правильный ответ: звездная величина 5,1, угол 79 градусов.

    1. Примените теорему Пифагора, чтобы найти величину. Подставьте числа, чтобы получить 5.1.


    2. Применить уравнение тета=тангенс –1 ( y / x ), чтобы найти угол. Подставьте числа, чтобы получить тангенс –1 (5,0/1,0) = 79 градусов.




Практические вопросы

  1. Преобразование вектора (5.0, 7.0) в форму величины/угла.

  2. Преобразование вектора (13.0, 13.0) в форму величины/угла.

  3. Преобразование вектора (–1,0, 1,0) в форму величины/угла.

  4. Преобразование вектора (–5,0, –7,0) в форму величины/угла.

Ниже приведены ответы на практические вопросы:

  1. Величина 8,6, угол 54 градуса

    1. Применить уравнение

    , чтобы найти звездную величину, которая равна 8,6.

    1. Примените уравнение theta = tan –1 ( y / x ), чтобы найти угол: tan –1 (7,0/5,0) = 54 градуса.

  2. Величина 18,4, угол 45 градусов

    1. Применить уравнение

    , чтобы найти звездную величину, которая равна 18,4.

    1. Примените уравнение theta = tan –1 ( y / x ), чтобы найти угол: tan –1 (13,0/13,0) = 45 градусов.

  3. Величина 1,4, угол 135 градусов

    1. Применить уравнение

      , чтобы найти звездную величину, которая равна 1,4.

    2. Примените уравнение тета = тангенс –1 ( y / x ), чтобы найти угол: tan –1 (1,0/–1,0) = –45 градусов.

      Однако обратите внимание, что угол действительно должен быть между 90 и 180 градусами, потому что первая составляющая вектора отрицательна, а вторая положительна.

Нахождение длины вектора, примеры и решения

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Длина вектора — основные формулы

Время чтения: 16 минут

Основные понятия вектора

Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

Вектор — это отрезок с определённой длиной и направлением.

Графическое изображение вектора — отрезок который имеет указание направления в виде стрелки.

Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

  • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
  • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.

  • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
  • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
  • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

Как найти длину вектора

Модуль вектора а будем обозначать .

Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора , через известные нам координаты aₓ и aᵧ.

На взятой системе координат, от её начала отложим вектор
В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора получаем

Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

Когда вектор дан в формате разложения по координатным векторам , то вычислить его можно по той же формуле , в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат , в данной системе координат.

Чтобы рассчитать длину = (3, √x), расположенного в прямоугольной системе координат.

Чтобы найти модуль вектора используем ранее приведённую формулу

Ответ:

Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор =(aₓ ; aᵧ ; a )

В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО — диагональ прямоугольного параллелепипеда), поэтому

из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OA=a , а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

Ответ:

Длина вектора через координаты точек начала и конца

Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

При этом формула вычисления длины вектора для трёхмерного пространства, с координатами и ), будет следующей:

Для прямой системы координат, найти длину вектора ( overrightarrow) , где A(1,√3) B(-3,1)

Решение
Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:


Существует второй вариант решения, где формулы применяются по очереди:


Ответ:

Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

В первую очередь представим длину вектора в виде формулы.
( left|vecright|=sqrt<left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2>)
(=sqrt <left ( 5-0 right )^2+ left ( 2-1 right )^2 + left ( lambda^2 -2right )^2>= sqrt<26 + left ( lambda^2 -2right )^2>)
Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.
( sqrt<26+left(lambda^2-2right)^2>=sqrt <30>)
( 26+left(lambda^2-2right)^2=30 )
( left(lambda^2-2right)^2=4 )
( lambda^2-2=2 ) или ( lambda^2-2=-2 ) ( lambda_1=-2, lambda_2=2, lambda_3=0. )
Ответ: ( lambda_1=-2, lambda_2=2, lambda_3=0. )

Длина вектора по теореме косинусов

Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

К примеру, нам известны длины двух векторов (overrightarrow) и (overrightarrow) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

Даны длины двух векторов ( overrightarrow) и ( overrightarrow) 2 и 4 соответственно, а угол между ними равен ( frac<pi> <3>) . необходимо найти длину ( overrightarrow).

В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
( KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac<pi><3>)
(=2^2+4^2-2cdot2cdot4cdotcosfrac<pi><3>)
(=4+16-16cosfrac<pi><3>)
(=20-8=12 )
Получается (KM=sqrt <12>)
Ответ: ( left|overrightarrowright|=sqrt <12>)

Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

длина вектора формула для трёхмерного пространства;

длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vecright|=sqrt<left ( b_z-a_z right )^2+ left ( b_y-a_y right )^2>) если известны координаты начала и конца вектора на плоскости.

Существует также формула длины вектора перемещения: ( left|vecright|=sqrt< s_x^2+s_y^2>) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

Применение векторов в других сферах

Понятие и вычисление вектора важно не только в математике, но и других науках:

  • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
  • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
  • в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
  • географии. Вектором обозначается движение воздушных масс, или течение реки;

Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.

Модуль вектора. Длина вектора.

Определение длины вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.

Формулы длины вектора

Формула длины вектора для плоских задач

В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:

Формула длины вектора для пространственных задач

В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:

Формула длины n -мерного вектора

В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:

| a | = ( n ai 2 ) 1/2
Σ
i =1

Примеры задач на вычисление длины вектора

Примеры вычисления длины вектора для плоских задачи

Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .

Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.

Примеры вычисления длины вектора для пространственных задачи

Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.

Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .

Примеры вычисления длины вектора для пространств с размерностью большей 3

Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5

Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

источники:

http://www.napishem.ru/spravochnik/matematika/dlina-vektora-osnovnye-formuly.html

http://ru.onlinemschool.com/math/library/vector/length/

Содержание:

  • Формула
  • Примеры вычисления модуля вектора

Формула

Чтобы найти модуль вектора, заданного своими координатами, нужно найти его длину, то есть извлечь корень из суммы
квадратов его координат. Если вектор задан на плоскости и имеет координаты $bar{a}=left(a_{x} ; a_{y}right)$, то его модуль вычисляется по формуле

$$|bar{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}$$

То есть модуль вектора равен корню квадратному из суммы квадратов координат.

Если вектор задан в пространстве координатами
, то его модуль вычисляется по формуле

$$bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$$

Примеры вычисления модуля вектора

Пример

Задание. Найти модуль вектора $bar{a}=(-1 ; 1)$

Решение. Для нахождения модуля вектора, заданного на плоскости воспользуемся формулой:

$$|bar{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}$$

Подставляя в неё координаты заданного вектора, будем иметь:

$$|bar{a}|=sqrt{(-1)^{2}+1^{2}}=sqrt{1+1}=sqrt{2}$$

Ответ. $|bar{a}|=sqrt{2}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В пространстве заданны точки
$A(2 ;-4 ; 1)$ и $B(-2 ; 0 ; 3)$. Найти модуль вектора
$overline{A B}$

Решение. Найдем координаты вектора $overline{A B}$. Для этого из координат конца
(точки $B$ ) вычтем соответствующие координаты начала (точки
$A$ ):

$$overline{A B}=(-2-2 ; 0-(-4) ; 3-1)=(-4 ; 4 ; 2)$$

Далее для нахождения модуля вектора $overline{A B}$ воспользуемся формулой:

$|overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$

Подставляя координаты вектора $overline{A B}$, получим:

$$|overrightarrow{A B}|=sqrt{(-4)^{2}+4^{2}+2^{2}}=sqrt{16+16+4}=sqrt{36}=6$$

Ответ. $|overrightarrow{A B}|=6$

Читать дальше: как найти координаты вектора.

Понравилась статья? Поделить с друзьями:
  • Допустимые параметры настройки ip как исправить
  • Как найти трек гугл
  • Как найти свою машину в киберпанк 2077
  • Как найти фрагмент текста в ворде
  • Как найти медведя людоеда