Как найти вектора точек абсд

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

  • Нахождение координат вектора

  • Примеры задач

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Вектор AB

Формулы для определения координат вектора

Для плоских задач AB = {Bx — Ax; By — Ay}
Для трехмерных задач AB = {Bx — Ax; By — Ay; Bz — Az}
Для n-мерных векторов AB = {B1 — A1; B2 — A2; … Bn — An}

Примеры задач

Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).

Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.

Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).

Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.

Таким образом, B = (8; 19).

Содержание:

  • Формула
  • Примеры нахождения координат вектора по точкам

Формула

Чтобы найти координаты вектора $overline{A B}$ на плоскости, если он задан координатами своих начала $Aleft(x_{1} ; y_{1}right)$ и конца $Bleft(x_{2} ; y_{2}right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть

$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)$$

Чтобы найти координаты вектора $overline{A B}$, заданного в пространстве координатами $Aleft(x_{1} ; y_{1} ; z_{1}right)$ и $Bleft(x_{2} ; y_{2} ; z_{2}right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:

$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)$$

Примеры нахождения координат вектора по точкам

Пример

Задание. Даны точки
$A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline{A B}$ и
$overline{B A}$

Решение. Для вектора $overline{A B}$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline{A B}$ равны

$$overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)$$

Для вектора точка
$B$ является началом, а точка
$A$ — концом. Тогда координаты вектора $overline{B A}$ равны

$$overline{B A}=(4-2 ;-1-1)=(2 ;-2)$$

Ответ. $overline{A B}=(-2 ; 2), overline{B A}=(2 ;-2)$

Пример

Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов
$overline{A B}$,
$overline{A C}$,
$overline{B C}$

Решение. Для искомого вектора
$overline{A B}$ точка
$A$ является началом, а точка
$B$ — концом. Тогда координаты вектора
$overline{A B}$ соответственно равны:

$$overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$

Для вектора $overline{A C}$ точка
$A$ является началом, а точка
$C$ — концом. Тогда его координаты соответственно равны

$$overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)$$

Для вектора $overline{B C}$ точка
$B$ является началом, а точка
$C$ — концом. Его координаты равны

$$overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)$$

Ответ. $overline{A B}=(2 ; 4 ; 1), overline{A C}=(-1 ; 1 ; 0,5), overline{B C}=(-3 ;-3 ;-0,5)$

Читать дальше: как найти сумму векторов.

  • Как найти сумму векторов
  • Как найти скалярное произведение векторов
  • Как найти векторное произведение векторов
  • Как найти смешанное произведение векторов
  • Как найти вектор коллинеарный вектору
  • Как найти вектор перпендикулярный вектору
  • Как найти орт вектора
  • Как найти разность векторов
  • Как найти проекцию вектора
  • Как найти длину вектора
  • Как найти модуль вектора
  • Как найти координаты вектора
  • Как найти направляющие косинусы вектора
  • Как найти угол между векторами
  • Как найти косинус угла между векторами

Нахождение координат вектора через координаты точек

Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .

Векторы i → и j → называют координатными векторами.

Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.

Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .

Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .

Таким образом, координаты равных векторов соответственно равны.

Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.

Изобразим координатную ось.

Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .

O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .

По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .

Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.

Для нахождения координат вектора, необходимо найти разность его точек конца и начала.

Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .

Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.

Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .

Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .

Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .

Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .

По условию известно, что A B → = ( 2 , 0 , — 2 ) .

Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2

Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5

Ответ: B ( 5 , 5 , 5 ) .

1.5.1. Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора. Таким образом, для противоположно направленного вектора формулы запишутся так:

Задача 1

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения важного момента, не поленюсь:

И момент здесь таков:
в чём различие между координатами точек и координатами векторов?

Координаты точек – это обычные координаты в прямоугольной системе координат (единичные векторы тут вообще ни при чём). Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании мы легко можем переобозначить его через и отложить от какой-нибудь другой точки плоскости. Следует отметить, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .
Записи координат точек и координат вектора формально одинаковы, но смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

Задача 2

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно…. Не пропускаем! Решаем письменно и «от руки»! Чертежи делать не нужно (коль скоро, не требовалось). Решения и ответы в конце книги.

Для проверки вычислений удобно использовать Геометрический калькулятор, приложенные к данному курсу. Дабы избежать нелепых ошибок а-ля «2 + 2 = 5». А подобные «затмения» бывают. Даже у профессоров. Отвлёкся – и студентка сбежала :)

Как найти вектор по точкам

Формула

Чтобы найти координаты вектора $overline$ на плоскости, если он задан координатами своих начала $Aleft(x_ <1>; y_<1>right)$ и конца $Bleft(x_ <2>; y_<2>right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть

Чтобы найти координаты вектора $overline$, заданного в пространстве координатами $Aleft(x_ <1>; y_ <1>; z_<1>right)$ и $Bleft(x_ <2>; y_ <2>; z_<2>right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:

Примеры нахождения координат вектора по точкам

Задание. Даны точки $A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline$ и $overline$


Решение. Для вектора $overline$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline$ равны

Для вектора точка $B$ является началом, а точка $A$ — концом. Тогда координаты вектора $overline$ равны


Ответ. $overline=(-2 ; 2), overline=(2 ;-2)$


Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов $overline$, $overline$, $overline$


Решение. Для искомого вектора $overline$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline$ соответственно равны:

$$overline=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$

Для вектора $overline$ точка $A$ является началом, а точка $C$ — концом. Тогда его координаты соответственно равны

Для вектора $overline$ точка $B$ является началом, а точка $C$ — концом. Его координаты равны


Ответ. $overline=(2 ; 4 ; 1), overline=(-1 ; 1 ; 0,5), overline=(-3 ;-3 ;-0,5)$

источники:

http://mathter.pro/angem/1_5_1_kak_nayti_vektor_po_dvum_tochkam.html

http://www.webmath.ru/poleznoe/formules_13_0.php

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
<>0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Обратная матрица А -1

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a<1;2;1>, b<2;-2;1>, c <1;-2;0>и d <0;3;1>. Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 — β*2 — γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b — 3/2c

Пример №2 . Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х»1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х»2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х»3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х»1, x»2, x»3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х»1 = — x’1 + 3x’2 — 2x’3,
х’2 = 6x1 + 7x2 + x3, х»2 = — 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х»3 = 3x’1 — 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 — 1*1) — 6*(3*8 — 1*5) + 9*(3*1 — 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55 -19 -32
-39 -13 26
-57 23 10

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55 -19 -32
-39 -13 26
-57 23 10
* =
75 /182 -1 46 /91 1 9 /13
-13 /14 1 2 /7 -1
5 /182 1 3 /91 -1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид
Решим полученную систему уравнений.

Онлайн калькулятор. Модуль вектора. Длина вектора

Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденный материал.

Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам

Размерность вектора:

Форма представления вектора:

Инструкция использования калькулятора для вычисления длины вектора

Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..

Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Вычисления длины вектора (модуля вектора)

Например, для вектора a = x; ay; az> длина вектора вычисляется cледующим образом:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти вектор по точкам

Формула

Чтобы найти координаты вектора $overline$ на плоскости, если он задан координатами своих начала $Aleft(x_ <1>; y_<1>right)$ и конца $Bleft(x_ <2>; y_<2>right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть

Чтобы найти координаты вектора $overline$, заданного в пространстве координатами $Aleft(x_ <1>; y_ <1>; z_<1>right)$ и $Bleft(x_ <2>; y_ <2>; z_<2>right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:

Примеры нахождения координат вектора по точкам

Задание. Даны точки $A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline$ и $overline$


Решение. Для вектора $overline$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline$ равны

Для вектора точка $B$ является началом, а точка $A$ — концом. Тогда координаты вектора $overline$ равны


Ответ. $overline=(-2 ; 2), overline=(2 ;-2)$


Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов $overline$, $overline$, $overline$


Решение. Для искомого вектора $overline$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline$ соответственно равны:

$$overline=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$

Для вектора $overline$ точка $A$ является началом, а точка $C$ — концом. Тогда его координаты соответственно равны

Для вектора $overline$ точка $B$ является началом, а точка $C$ — концом. Его координаты равны


Ответ. $overline=(2 ; 4 ; 1), overline=(-1 ; 1 ; 0,5), overline=(-3 ;-3 ;-0,5)$

источники:

http://ru.onlinemschool.com/math/assistance/vector/length/

http://www.webmath.ru/poleznoe/formules_13_0.php



1.5.1. Как найти вектор по двум точкам?

Задача 1

Даны две точки плоскости  и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения

важного момента, не поленюсь:

И момент здесь таков:
в чём различие между координатами точек и координатами векторов?

Координаты точек – это обычные координаты в прямоугольной системе координат (единичные векторы тут

вообще ни при чём). Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает

строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании мы легко можем переобозначить

его через  и отложить от какой-нибудь другой точки

плоскости. Следует отметить, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис,

в данном случае ортонормированный базис плоскости .
Записи координат точек  и координат

вектора  формально одинаковы, но смысл

координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и

для пространства.

Дамы и господа, набиваем руку:

Задача 2

а) Даны точки  и . Найти векторы  и .
б) Даны точки  и . Найти векторы  и .
в) Даны точки  и . Найти векторы  и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно…. Не пропускаем! Решаем письменно и «от руки»! Чертежи делать не нужно (коль скоро, не требовалось).

Решения и ответы в конце книги.

Для проверки вычислений удобно использовать Геометрический калькулятор, приложенные к данному

курсу. Дабы избежать нелепых ошибок а-ля «2 + 2 = 5». А подобные «затмения» бывают. Даже у профессоров. Отвлёкся – и

студентка сбежала :)

1.5.2. Как найти длину отрезка?

1.4. Координаты вектора на плоскости и в пространстве

| Оглавление |



Автор: Aлeксaндр Eмeлин

Понравилась статья? Поделить с друзьями:
  • Как найти неизвестный коэффициент уравнения
  • Как найти стерлядь зимой на реке
  • Как найти горизонтальные координаты звезды
  • Как найти уравнение кривой онлайн
  • Как найти плотность металла зная объем