Как найти величину изгибающего момента

Определение поперечных сил и изгибающих моментов.

Как уже было сказано, при плоском
поперечном изгибе в поперечном сечении
балки возникают два внутренних силовых
фактора
и.

Перед определением
иопределяют реакции опор балки (рис. 6.3,
а), составляя уравнения равновесия
статики.

Для определения
иприменим метод сечений. В интересующем
нас месте сделаем мысленный разрез
балки, например, на расстоянииот левой опоры. Отбросим одну из частей
балки, например правую, и рассмотрим
равновесие левой части (рис. 6.3, б).
Взаимодействие частей балки заменим
внутренними усилиямии.

Установим следующие правила знаков для
и:

  • Поперечная сила
    в сечении положительна, если ее векторы
    стремятся вращать рассматриваемое
    сечение по часовой стрелке;

  • Изгибающий момент
    в сечении положителен, если он вызывает
    сжатие верхних волокон.

Рис. 6.3

Для определения данных усилий используем
два уравнения равновесия:

1.
;;.

2.
;

;

Таким образом,

а) поперечная сила
в поперечном сечении балки численно
равна алгебраической сумме проекций
на поперечную ось сечениявсех внешних сил, действующих по одну
сторону от сечения;

б) изгибающий момент в поперечном сечении
балки численно равен алгебраической
сумме моментов (вычисленных относительно
центра тяжести сечения) внешних сил,
действующих по одну сторону от данного
сечения.

При практическом вычислении руководствуются
обычно следующим:

  1. Если внешняя нагрузка стремится
    повернуть балку относительно
    рассматриваемого сечения по часовой
    стрелке, (рис. 6.4, б) то в выражении для
    она дает положительное слагаемое.

  2. Если внешняя нагрузка создает относительно
    рассматриваемого сечения момент,
    вызывающий сжатие верхних волокон
    балки (рис. 6.4, а), то в выражении для
    в этом сечении она дает положительное
    слагаемое.

Рис. 6.4

Построение эпюр ив балках.

Рассмотрим двухопорную балку
(рис. 6.5, а). На балку действует в точкесосредоточенный момент,
в точке— сосредоточенная силаи на участке— равномерно распределенная нагрузка
интенсивностью.

Определим опорные реакции
и(рис. 6.5, б).
Равнодействующая распределенной
нагрузки равна,
а линия действия ее проходит через центр
участка.
Составим уравнения моментов относительно
точеки.

Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки А(рис. 6.5, в).
Расстояниеможет изменяться в пределах ().

Значение поперечной силы не зависит
от координаты сечения
,
следовательно, во всех сечениях участкапоперечные силы одинаковы и эпюраимеет вид прямоугольника.

Изгибающий момент изменяется по
линейному закону

Для построения эпюры вычисляем ординаты
на границах участка.

При
:

При

Рис. 6.5

Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки(рис. 6.5, г).Расстояниеможет изменяться в пределах ().

Значение поперечной силы не зависит от
координаты сечения
,
следовательно, во всех сечениях участкапоперечные силы одинаковы и эпюраимеет вид прямоугольника. Изгибающий
момент

Изгибающий момент изменяется по линейному
закону. Определим ординаты эпюры для
границ участка.

Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки(рис. 6.5, д).Расстояниеможет изменяться в пределах ().

Поперечная сила изменяется по линейному
закону. Определим для границ участка.

Изгибающий момент

.

Эпюра изгибающих моментов на этом
участке будет параболической.

Чтобы определить экстремальное значение
изгибающего момента, приравниваем к
нулю производную от изгибающего момента
по абсциссе сечения
:

Отсюда

Для сечения с координатой
значение изгибающего момента будет
составлять

В результате получаем эпюры поперечных
сил (рис. 6.5, е) и изгибающих
моментов(рис. 6.5, ж).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

From Wikipedia, the free encyclopedia

In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend.[1][2] The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple or fixed). In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.

The internal reaction loads in a cross-section of the structural element can be resolved into a resultant force and a resultant couple.[3] For equilibrium, the moment created by external forces/moments must be balanced by the couple induced by the internal loads. The resultant internal couple is called the bending moment while the resultant internal force is called the shear force (if it is transverse to the plane of element) or the normal force (if it is along the plane of the element). Normal force is also termed as axial force.

The bending moment at a section through a structural element may be defined as the sum of the moments about that section of all external forces acting to one side of that section. The forces and moments on either side of the section must be equal in order to counteract each other and maintain a state of equilibrium so the same bending moment will result from summing the moments, regardless of which side of the section is selected. If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause «hogging», and a positive moment will cause «sagging». It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.

Moments and torques are measured as a force multiplied by a distance so they have as unit newton-metres (N·m), or pound-foot (lb·ft). The concept of bending moment is very important in engineering (particularly in civil and mechanical engineering) and physics.

Background[edit]

Tensile and compressive stresses increase proportionally with bending moment, but are also dependent on the second moment of area of the cross-section of a beam (that is, the shape of the cross-section, such as a circle, square or I-beam being common structural shapes). Failure in bending will occur when the bending moment is sufficient to induce tensile/compressive stresses greater than the yield stress of the material throughout the entire cross-section. In structural analysis, this bending failure is called a plastic hinge, since the full load carrying ability of the structural element is not reached until the full cross-section is past the yield stress. It is possible that failure of a structural element in shear may occur before failure in bending, however the mechanics of failure in shear and in bending are different.

Moments are calculated by multiplying the external vector forces (loads or reactions) by the vector distance at which they are applied. When analysing an entire element, it is sensible to calculate moments at both ends of the element, at the beginning, centre and end of any uniformly distributed loads, and directly underneath any point loads. Of course any «pin-joints» within a structure allow free rotation, and so zero moment occurs at these points as there is no way of transmitting turning forces from one side to the other.

It is more common to use the convention that a clockwise bending moment to the left of the point under consideration is taken as positive. This then corresponds to the second derivative of a function which, when positive, indicates a curvature that is ‘lower at the centre’ i.e. sagging. When defining moments and curvatures in this way calculus can be more readily used to find slopes and deflections.

Critical values within the beam are most commonly annotated using a bending moment diagram, where negative moments are plotted to scale above a horizontal line and positive below. Bending moment varies linearly over unloaded sections, and parabolically over uniformly loaded sections.

Engineering descriptions of the computation of bending moments can be confusing because of unexplained sign conventions and implicit assumptions. The descriptions below use vector mechanics to compute moments of force and bending moments in an attempt to explain, from first principles, why particular sign conventions are chosen.

Computing the moment of force[edit]

Computing the moment of force in a beam.

An important part of determining bending moments in practical problems is the computation of moments of force.
Let mathbf {F} be a force vector acting at a point A in a body. The moment of this force about a reference point (O) is defined as[2]

mathbf {M} =mathbf {r} times mathbf {F}

where mathbf {M} is the moment vector and mathbf {r} is the position vector from the reference point (O) to the point of application of the force (A). The times symbol indicates the vector cross product. For many problems, it is more convenient to compute the moment of force about an axis that passes through the reference point O. If the unit vector along the axis is mathbf {e} , the moment of force about the axis is defined as

M=mathbf {e} cdot mathbf {M} =mathbf {e} cdot (mathbf {r} times mathbf {F} )

where cdot indicates the vector dot product.

Example[edit]

The adjacent figure shows a beam that is acted upon by a force F. If the coordinate system is defined by the three unit vectors mathbf {e} _{x},mathbf {e} _{y},mathbf {e} _{z}, we have the following


   mathbf{F} = 0,mathbf{e}_x - F,mathbf{e}_y + 0,mathbf{e}_z
   quad text{and} quad mathbf{r} = x,mathbf{e}_x + 0,mathbf{e}_y + 0,mathbf{e}_z ,.

Therefore,


   mathbf{M} = mathbf{r}timesmathbf{F} = left|begin{matrix}mathbf{e}_x &  mathbf{e}_y &  mathbf{e}_z \ x & 0 & 0 \ 0 & -F & 0 
         end{matrix}right| = -Fx,mathbf{e}_z ,.

The moment about the axis mathbf{e}_z is then


   M_z = mathbf{e}_zcdotmathbf{M} = -Fx ,.

Sign conventions[edit]

The negative value suggests that a moment that tends to rotate a body clockwise around an axis should have a negative sign. However, the actual sign depends on the choice of the three axes mathbf {e} _{x},mathbf {e} _{y},mathbf {e} _{z}. For instance, if we choose another right handed coordinate system with mathbf{E}_x = mathbf{e}_x, mathbf{E}_y = -mathbf{e}_z, mathbf{E}_z = mathbf{e}_y, we have


   mathbf{F} = 0,mathbf{E}_x + 0,mathbf{E}_y -F,mathbf{E}_z
   quad text{and} quad mathbf{r} = x,mathbf{E}_x + 0,mathbf{E}_y + 0,mathbf{E}_z ,.

Then,


   mathbf{M} = mathbf{r}timesmathbf{F} = left|begin{matrix}mathbf{E}_x &  mathbf{E}_y &  mathbf{E}_z \ x & 0 & 0 \ 0 & 0 & -F 
         end{matrix}right| = Fx,mathbf{E}_y 
   quad text{and} quad M_y = mathbf{E}_ycdotmathbf{M} = Fx ,.

For this new choice of axes, a positive moment tends to rotate body clockwise around an axis.

Computing the bending moment[edit]

In a rigid body or in an unconstrained deformable body, the application of a moment of force causes a pure rotation. But if a deformable body is constrained, it develops internal forces in response to the external force so that equilibrium is maintained. An example is shown in the figure below. These internal forces will cause local deformations in the body.

For equilibrium, the sum of the internal force vectors is equal to the negative of the sum of the applied external forces, and the sum of the moment vectors created by the internal forces is equal to the negative of the moment of the external force. The internal force and moment vectors are oriented in such a way that the total force (internal + external) and moment (external + internal) of the system is zero. The internal moment vector is called the bending moment.[1]

Though bending moments have been used to determine the stress states in arbitrary shaped structures, the physical interpretation of the computed stresses is problematic. However, physical interpretations of bending moments in beams and plates have a straightforward interpretation as the stress resultants in a cross-section of the structural element. For example, in a beam in the figure, the bending moment vector due to stresses in the cross-section A perpendicular to the x-axis is given by


   mathbf{M}_x = int_A mathbf{r} times (sigma_{xx} mathbf{e}_x + sigma_{xy} mathbf{e}_y + sigma_{xz} mathbf{e}_z), dA 
   quad text{where} quad 
    mathbf{r} = y,mathbf{e}_y + z,mathbf{e}_z ,.

Expanding this expression we have,


   mathbf{M}_x = int_A left(-ysigma_{xx}mathbf{e}_z + ysigma_{xz}mathbf{e}_x + zsigma_{xx}mathbf{e}_y - zsigma_{xy}mathbf{e}_xright)dA =: M_{xx},mathbf{e}_x + M_{xy},mathbf{e}_y + M_{xz},mathbf{e}_z,.

We define the bending moment components as


  begin{bmatrix} M_{xx} \ M_{xy} \M_{xz} end{bmatrix}
    := int_A begin{bmatrix} ysigma_{xz} - zsigma_{xy} \ zsigma_{xx} \ -ysigma_{xx} end{bmatrix},dA ,.

The internal moments are computed about an origin that is at the neutral axis of the beam or plate and the integration is through the thickness (h)

Example[edit]

Computing the bending moment in a beam.

In the beam shown in the adjacent figure, the external forces are the applied force at point A (-Fmathbf{e}_y) and the reactions at the two support points O and B (mathbf{R}_O = R_Omathbf{e}_y and  mathbf{R}_B = R_Bmathbf{e}_y).
For this situation, the only non-zero component of the bending moment is

{displaystyle mathbf {M} _{xz}=-left[int _{z}left[int _{0}^{h}y,sigma _{xx},dyright],dzright]mathbf {e} _{z},.}

where h is the height in the y direction of the beam. The minus sign is included to satisfy the sign convention.

In order to calculate {displaystyle mathbf {M} _{xz}}, we begin by balancing the forces, which gives one equation with the two unknown reactions,

{displaystyle R_{O}+R_{B}-F=0,.}

To obtain each reaction a second equation is required. Balancing the moments about any arbitrary point X would give us a second equation we can use to solve for R_{0} and R_{B} in terms of F. Balancing about the point O is simplest but let’s balance about point A just to illustrate the point, i.e.

{displaystyle -mathbf {r} _{A}times mathbf {R} _{O}+(mathbf {r} _{B}-mathbf {r} _{A})times mathbf {R} _{B}=mathbf {0} ,.}

If L is the length of the beam, we have

{displaystyle mathbf {r} _{A}=x_{A}mathbf {e} _{x}quad {text{and}}quad mathbf {r} _{B}=Lmathbf {e} _{x},.}

Evaluating the cross-products:

{displaystyle left|{begin{matrix}mathbf {e} _{x}&mathbf {e} _{y}&mathbf {e} _{z}\-x_{A}&0&0\0&R_{0}&0end{matrix}}right|+left|{begin{matrix}mathbf {e} _{x}&mathbf {e} _{y}&mathbf {e} _{z}\L-x_{A}&0&0\0&R_{B}&0end{matrix}}right|=-x_{A}R_{0},mathbf {e} _{z}+(L-x_{A})R_{B},mathbf {e} _{z}=0,.}

If we solve for the reactions we have


   R_O = left(1 - frac{x_A}{L}right) F quad text{and} quad R_B = frac{x_A}{L},F ,.

Now to obtain the internal bending moment at X we sum all the moments about the point X due to all the external forces to the right of X (on the positive x side), and there is only one contribution in this case,

{displaystyle mathbf {M} _{xz}=(mathbf {r} _{B}-mathbf {r} _{X})times mathbf {R} _{B}=left|{begin{matrix}mathbf {e} _{x}&mathbf {e} _{y}&mathbf {e} _{z}\L-x&0&0\0&R_{B}&0end{matrix}}right|={frac {Fx_{A}}{L}}(L-x),mathbf {e} _{z},.}

We can check this answer by looking at the free body diagram and the part of the beam to the left of point X, and the total moment due to these external forces is

{displaystyle mathbf {M} =(mathbf {r} _{A}-mathbf {r} _{X})times mathbf {F} +(-mathbf {r} _{X})times mathbf {R} _{O}=left[(x_{A}-x)mathbf {e} _{x}right]times left(-Fmathbf {e} _{y}right)+left(-xmathbf {e} _{x}right)times left(R_{O}mathbf {e} _{y}right),.}

If we compute the cross products, we have

{displaystyle mathbf {M} =left|{begin{matrix}mathbf {e} _{x}&mathbf {e} _{y}&mathbf {e} _{z}\x_{A}-x&0&0\0&-F&0end{matrix}}right|+left|{begin{matrix}mathbf {e} _{x}&mathbf {e} _{y}&mathbf {e} _{z}\-x&0&0\0&R_{0}&0end{matrix}}right|=F(x-x_{A}),mathbf {e} _{z}-R_{0}x,mathbf {e} _{z}=-{frac {Fx_{A}}{L}}(L-x),mathbf {e} _{z},.}

Thanks to the equilibrium, the internal bending moment due to external forces to the left of X must be exactly balanced by the internal turning force obtained by considering the part of the beam to the right of X

{displaystyle mathbf {M} +mathbf {M} _{xz}=mathbf {0} ,.}

which is clearly the case.

Sign convention[edit]

In the above discussion, it is implicitly assumed that the bending moment is positive when the top of the beam is compressed. That can be seen if we consider a linear distribution of stress in the beam and find the resulting bending moment. Let the top of the beam be in compression with a stress -sigma_0 and let the bottom of the beam have a stress sigma _{0}. Then the stress distribution in the beam is sigma_{xx}(y) = -ysigma_0. The bending moment due to these stresses is


   M_{xz} = -left[int_zint_{-h/2}^{h/2} y,(-ysigma_0),dy,dzright] = sigma_0,I

where I is the area moment of inertia of the cross-section of the beam. Therefore, the bending moment is positive when the top of the beam is in compression.

Many authors follow a different convention in which the stress resultant M_{xz} is defined as


    mathbf{M}_{xz} = left[int_zint_{-h/2}^{h/2} y,sigma_{xx},dy,dzright]mathbf{e}_z ,.

In that case, positive bending moments imply that the top of the beam is in tension. Of course, the definition of top depends on the coordinate system being used. In the examples above, the top is the location with the largest y-coordinate.

See also[edit]

  • Buckling
  • Deflection including deflection of a beam
  • Twisting moment
  • Shear and moment diagrams
  • Stress resultants
  • First moment of area
  • Influence line
  • Second moment of area
  • List of area moments of inertia
  • Wing bending relief

References[edit]

  1. ^ a b Gere, J.M.; Timoshenko, S.P. (1996), Mechanics of Materials:Forth edition, Nelson Engineering, ISBN 0534934293
  2. ^ a b Beer, F.; Johnston, E.R. (1984), Vector mechanics for engineers: statics, McGraw Hill, pp. 62–76
  3. ^ Baker, Daniel W.; Haynes, William. Statics: Internal Loads.

External links[edit]

  • Stress resultants for beams
  • Free online Calculation tools for bending moment

Содержание: Изгибающий момент

  1. Определение изгибающего момента
  2. Уравнение изгибающего момента
  3. Связь между интенсивностью нагрузки, поперечной силой и изгибающим моментом
  4. Единица измерения изгибающего момента
  5. Изгибающий момент балки
  6. Соглашение о знаках изгибающего момента
  7. Диаграмма усилия сдвига и изгибающего момента
  8. Типы опор и нагрузок
  9. Вопрос и ответ

Определение изгибающего момента

В механике твердого тела изгибающий момент представляет собой реакцию, возникающую внутри элемента конструкции, когда к нему прикладывается внешняя сила или момент, вызывающие изгиб элемента. Самым передовым, стандартным и простейшим элементом конструкции, подверженным изгибающим моментам, является балка. Если момент, приложенный к балке, пытается изогнуть балку в плоскости стержня, это называется изгибающим моментом. В случае простого изгиба, если изгибающий момент применяется к определенному поперечному сечению, возникающие напряжения называются изгибающим или изгибающим напряжением. Он изменяется линейно от нейтральной оси по поперечному сечению балки.

Уравнение изгибающего момента

Алгебраическая сумма моментов по конкретному поперечному сечению балки, возникающих из-за моментов по часовой или против часовой стрелки, называется изгибающим моментом в этой точке.

 Пусть W — вектор силы, действующий в точке A тела. Момент этой силы относительно реперной точки (O) определяется как

M = W xp

Где M = Момент вектор, р = вектор положения от опорной точки (О) до точки приложения силы А.  символ обозначает векторное произведение. легко вычислить момент силы вокруг оси, которая проходит через опорную точку O. Если единичный вектор вдоль оси равен «i», момент силы вокруг оси определяется как

M = я. (Вт xp)

где [.]представляют собой точечное произведение вектора.

Математическая связь между интенсивностью нагрузки, поперечной силой и изгибающим моментом

Соотношения: Пусть f = интенсивность нагрузки

    Q = поперечная сила

    M = изгибающий момент

Скорость изменения поперечной силы даст интенсивность распределенной нагрузки.

Скорость изменения изгибающего момента даст силу сдвига только в этой точке.

Единица измерения изгибающего момента

Изгибающий момент имеет единицу, аналогичную паре как Нм.

Изгибающий момент балки

Предполагая, что балка AB определенной длины подвержена изгибающему моменту M, Если верхнее волокно балки, то есть выше нейтральной оси, находится в состоянии сжатия, это называется положительным изгибающим моментом или прогибающим изгибающим моментом. Точно так же, если верхнее волокно балки, то есть выше нейтральной оси, находится в напряжении, это называется отрицательным изгибающим моментом или изгибающим моментом изгиба.

Изгибающий момент

Провисание и заедание балки

Соглашение о знаках изгибающего момента

При определении максимального изгибающего момента, вытяжки и BMD соблюдается соглашение о конкретных знаках.

  1. Если мы начнем вычислять изгибающий момент с правая сторона или правый конец луч, Момент по часовой стрелке принимается как отрицательный Противодействующий момент принимается как Положительно.
  2. Если мы начнем вычислять изгибающий момент с Левая сторона или левый конец балки, Момент по часовой стрелке принимается как Положительный, и Момент против часовой стрелки принимается как Negative.
  3. Если мы начнем вычислять поперечную силу с правая сторона или правый конец луч, Сила, действующая вверх принимается как Отрицательный Сила, действующая вниз принимается как Положительно.
  4. Если мы начнем вычислять поперечную силу с Левая сторона или левый конец балки, Сила, действующая вверх принимается как Положительный, и Сила, действующая вниз принимается как Negative.

Диаграмма усилия сдвига и изгибающего момента

Сдвигающая сила представляет собой алгебраическую сумму сил, параллельных поперечному сечению по конкретному поперечному сечению балки, возникающих из-за сил действия и противодействия. Сила сдвига пытается срезать поперечное сечение балки перпендикулярно оси балки, и из-за этого развитое распределение напряжения сдвига является параболическим по отношению к нейтральной оси балки. Изгибающий момент представляет собой сумму моментов в определенном поперечном сечении балки, обусловленных моментами по часовой стрелке и против часовой стрелки. Это пытается изогнуть балку в плоскости элемента, и из-за передачи его по поперечному сечению балки распределение развиваемого изгибающего напряжения является линейным относительно нейтральной оси балки.

Диаграмма усилия сдвига — это графическое изображение изменения поперечной силы в поперечном сечении по длине балки. С помощью диаграммы силы сдвига мы можем определить критические секции, подверженные сдвигу, и внести поправки в конструкцию, чтобы избежать разрушения.

Кроме того, Диаграмма изгибающего момента — графическое представление изменения изгибающего момента в поперечном сечении по длине балки. С помощью диаграммы B. M мы можем определить критические секции, подлежащие изгибу, и внести изменения в конструкцию, чтобы избежать отказа. При построении диаграммы поперечных сил [SFD], при построении диаграммы изгибающих моментов [BMD] происходит резкое повышение или резкое падение из-за точечной нагрузки, действующей на балку; происходит внезапный подъем или резкое падение из-за воздействия пар на балку.

Типы опор и нагрузок

Фиксированная поддержка: Он может предложить три реакции в плоскости элемента (1 горизонтальная реакция, 1 вертикальная реакция, 1 моментная реакция).

Поддержка контактов: Он может предложить две реакции в плоскости элемента (1 горизонтальная реакция, 1 вертикальная реакция).

Роликовая опора: Он может предложить только одну реакцию в плоскости члена (1 вертикальная реакция).

Концентрированная или точечная нагрузка: При этом вся интенсивность нагрузки ограничена конечной площадью или точкой.

Равномерно распределенная нагрузка [UDL]:  При этом вся интенсивность нагрузки постоянна по длине балки.

Равномерно изменяющаяся нагрузка [UVL]:  При этом вся интенсивность нагрузки изменяется линейно по длине балки.

Типы опор и нагрузок

Диаграмма усилия сдвига и диаграмма изгибающего момента только для балки, несущей точечную нагрузку.

Учитывайте только опорную балку, показанную на рисунке ниже, несущую только точечные нагрузки. В балке с простой опорой один конец опирается на штифт, а другой конец — на роликовую опору.

Схема свободного тела для балки с опорой, подверженной нагрузке F

Значение реакции в точках A и B можно рассчитать, применяя условия равновесия

Для вертикального равновесия

RA + RB=Ф…………[1]

Принимая момент относительно A, положительный момент по часовой стрелке и отрицательный момент против часовой стрелки.

ДалекоB*L=0

RB=Фа/л

Ставя ценность RB в [1] получаем

RA =FRB

RA =F – Фа/л

RA =F(La)/L=Fb/L

Таким образом, РA =Fb/L

Пусть XX — интересующий участок на расстоянии x от конца A.

В соответствии с обсуждавшимся ранее соглашением о знаках, если мы начнем вычислять поперечную силу с Левая сторона или левый конец балки, Сила, действующая вверх принимается как Положительный, и Сила, действующая вниз принимается как Negative.

Сила сдвига в точке А

Мы знаем, что поперечная сила остается постоянной между точками приложения точечных нагрузок.

Сила сдвига при C

СФ=РA=Fb/L

Сдвигающая сила в области XX равна

СФ=РA-F

СФ=Фб/Л-Ф

=F(бл)/л

SF=-Fa/L

Сила сдвига в точке B

СФ=РB=-Фа/л

Для диаграммы изгибающего момента, если мы начнем расчет BM с Левая сторона или левый конец балки, Момент по часовой стрелке воспринимается как положительный. Момент против часовой стрелки принимается как Negative.

  • при A = 0
  • при B = 0
  • в C

BMC=-RA*a

BMC=-Fb/L*a

BMC=-Fab/л

Диаграмма поперечной силы и изгибающего момента для Просто поддерживаемый луч с точечной нагрузкой

Сдвигающая сила [SFD] и диаграмма изгибающего момента [BMD] только для консольной балки с равномерно распределенной нагрузкой (UDL).

Рассмотрим только консольную балку, показанную на рисунке ниже UDL. В консольной балке один конец зафиксирован, а другой конец может двигаться.

Консольная балка подвергается равномерно распределенной нагрузке

Результирующая нагрузка, действующая на балку из-за UDL, может быть определена как

W = Площадь прямоугольника

Ш = Д * ш

W = wL

Эквивалентная точечная нагрузка wL будет действовать в центре луча. т.е. при L / 2

Диаграмма свободного тела луча становится

Схема свободного тела балки

Значение реакции в точке А можно рассчитать, применив условия равновесия.

Для горизонтального равновесия

ΣFx=0

RHA=0

Для вертикального равновесия

ΣFy=0

RVA-wL=0

RVA=wL

Принимая момент относительно A, положительный момент по часовой стрелке и отрицательный момент против часовой стрелки.

шл*л/2-мA=0

MA=wL2/2

Пусть XX — интересующий участок на расстоянии x от свободного конца.

В соответствии с обсуждавшимся ранее соглашением о знаках, если мы начнем вычислять поперечную силу с Левая сторона или левый конец балки, Сила, действующая вверх принимается как Положительный, и Сила, действующая вниз принимается как Negative.

Сила сдвига в точке A составляет 

SFA=RVA=wL

в районе ХХ

SFX=RVA-w[Lx]

SFX=wL-wL+wx=wx

Сила сдвига в точке B составляет

СФ=РVA-wL

SFB=wL-wL=0

Значения силы сдвига в точках A и B показывают, что сила сдвига изменяется линейно от фиксированного конца к свободному концу.

Для BMD, если мы начнем вычислять изгибающий момент с Левая сторона или левый конец балки, Момент по часовой стрелке принимается как Положительный и Момент против часовой стрелки принимается как Negative.

BM в A

BMA=MA=wL2 /2

BM в X

BMX=[МA-w][Lx]2/2

BMX=wL2 /2-ш(Дх)2 /2

BMX=wx(Lx/2)

BM в B

BMB=MA-wL2 /2

BMB=wL2/2- л2/ 2 = 0

Диаграмма SFD и BMD для консольная балка с равномерно распределенной нагрузкой

4-точечная диаграмма изгибающего момента и уравнения

Рассмотрим балку с простой опорой, у которой две равные нагрузки W действуют на расстоянии a от обоих концов.

FBD для 4-точечной диаграммы изгиба

Значение реакции в точках A и B можно рассчитать, применив условия равновесия.

Для вертикального равновесия

RA + RB=2Вт…………[1]

Принимая момент относительно A, положительный момент по часовой стрелке и отрицательный момент против часовой стрелки.

Ва+В[Ла]=РBL

RB=W

Из [1] получаем

RA =2W-W=W

Согласно описанному ранее соглашению о знаках, если мы начинаем вычислять поперечную силу с левой стороны или с левого конца балки, сила, действующая вверх, принимается как положительная, а сила, действующая вниз, принимается как отрицательная. Для построения диаграммы BMD, если мы начнем вычислять изгибающий момент с Левая сторона или левый конец балки, Момент по часовой стрелке принимается как Положительный и Момент против часовой стрелки принимается как Negative.

Сила сдвига в точке A составляет

SFA =RA =W

Сила сдвига в C составляет

SFC=W

Сила сдвига в D составляет

SFD=0

Сила сдвига в точке B составляет

SFB=0-W=-W

Для диаграммы изгибающего момента

Б. M при A = 0

B. M в C

BMC=RA*a

BMC=Ва

BM в D

BMD=WL-Wa-WL+2Wa

BMD=Ва

B. M при B = 0

Диаграммы SFD и BMD для 4-точечной диаграммы изгиба

Вопрос и ответ изгибающего момента

В.1) В чем разница между моментом и изгибающим моментом?

Ответ: Момент можно определить как произведение силы и длины линии, проходящей через точку опоры и перпендикулярной силе. Изгибающий момент — это реакция, возникающая внутри элемента конструкции, когда к нему прикладывается внешняя сила или момент, вызывающие изгиб элемента.

Q.2) Что такое определение диаграммы изгибающего момента?

Ответ: Диаграмма изгибающего момента — Графическое изображение изменения BM по поперечному сечению по длине балки. С помощью этой схемы мы можем определить критические участки, подлежащие изгибу, и внести изменения в конструкцию, чтобы избежать сбоев.

В.3) Какова формула напряжения изгиба?

Ответ: изгиб Напряжение можно определить как сопротивление, вызванное изгибающим моментом или двумя равными и противоположными парами в плоскости элемента. Его формула дается

M/I=σ/y=E/R

Где M = приложенный изгибающий момент по поперечному сечению балки.

I = Второй момент инерции площади

σ = изгибное напряжение, вызванное в стержне

y = расстояние по вертикали между нейтральной осью луча и желаемым волокном или элементом в мм

E = модуль Юнга в МПа

R = радиус кривизны в мм

Знать о прочности материала нажмите здесь.

Подборка формул для расчета балок и рам на изгиб и решения задач сопротивления материалов по расчету внутренних сил, напряжений, деформаций и перемещений при изгибе.

Обозначения:

σ — нормальные напряжения,
τ — касательные напряжения,
Qy – внутренняя поперечная сила,
Mx – внутренний изгибающий момент,
Ix – осевой момент инерции сечения балки,
Wx – осевой момент сопротивления сечения,
A — площадь поперечного сечения,
[σ], [τ] – соответствующие допустимые напряжения,
E – модуль упругости I рода (модуль Юнга),
y — расстояние от оси x до рассматриваемой точки сечения балки.

Расчет внутренних поперечных сил и изгибающих моментов

Выражения для расчета поперечных сил и изгибающих моментов

Формула кривизны балки в заданном сечении

Кривизна балки в заданном сечении

Расчет нормальных напряжений в произвольной точке сечения балки при изгибе

Формула расчета нормальных напряжений в точках сечения балки при изгибе

Условие прочности по нормальным напряжениям при изгибе (проверочный расчет)

Условие прочности по нормальным напряжениям (формула)

Осевые моменты инерции I и сопротивления W

Касательные напряжения в произвольной точке сечения при изгибе определяются по формуле Журавского:

Формула для расчета касательных напряжений в произвольной точке сечения

Здесь:

Sx* — статический момент относительно оси x отсеченной части сечения

b — ширина сечения на уровне рассматриваемой точки

Другие видео

Условие прочности балки по касательным напряжениям

Условие прочности по касательным напряжениям (формула)

Дифференциальное уравнение линии изогнутой оси балки

Дифференциальное уравнение изогнутой оси балки

Уравнения метода начальных параметров (МНП)

Уравнения метода начальных параметров

θz, yz — соответственно угол наклона и прогиб сечения балки на расстоянии z от начала координат,
θ0, y0 — соответственно угол наклона и прогиб сечения балки в начале координат,
m, F, q — соответственно все изгибающие моменты, сосредоточенные силы и распределенные нагрузки приложенные к балке,
a, b — расстояние от начала координат до сечений где приложены моменты и силы соответственно,
c — расстояние от начала координат до начала распределенной нагрузки q.

Пример расчета перемещений в балке методом начальных параметров >

Другие формулы >
Примеры решения задач >
Краткая теория >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Понравилась статья? Поделить с друзьями:
  • Как составить свою программу самосовершенствования
  • Как найти свою вики страницу
  • Как составить схему малых групп в нашем классе
  • Как найти сдачу квартир
  • Как найти картинку по отрывку