Как найти величину острого угла между прямыми

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1) направляющий вектор прямой L1, а q2=(m2, p2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (1.3) получим:

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (1.5) имеет направляющий вектор q1=(m1, p1)=(3, 4), а прямая (1.6) − q2=(m2, p2)=(− 3, 1). Для определения угла между прямыми (1.5) и (1.6) подставим значения m1, p1, m2, p2 в (1.4):

Упростим и решим:

Найдем угол φ

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Ответ.

Угол между прямыми равен:

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Сделаем преобразования с выражением (1.7):

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (1.10) имеет направляющий вектор q1=(m1, p1)=(3, 3), а прямая (1.11) − q2=(m2, p2)=(−2, −2). Тогда

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.14) имеет направляющий вектор q1=(m1, p1)=(3, 1), а прямая (1.15) − q2=(m2, p2)=(−2, 6). Тогда

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

и

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Из определения скалярного произведения двух векторов, имеем:

где |n1| и |n2| модули нормальных векторов n1 и n2 соответственно, φ -угол между векторами n1 и n2.

Из уравнения (19) получим

Пример 4. Найти угол между прямыми

и

Решение. Прямая (1.21) имеет нормальный вектор n1=(A1, B1)=(5, −2), а прямая (1.22) − n2=(A2, B2)=(1, 3). Задача определения угла между прямыми L1 и L2 сводится к определению угла между векторами n1 и n2. Из определения скалярного произведения векторов имеем: (n1,n2)=|n1||n2|cosφ. Тогда

Подставляя значения A1, B1, A2, B2 в (1.23), получим:

Упростим и решим:

Найдем угол φ:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

и

Решение. Прямая (1.26) имеет нормальный вектор n1=(A1, B1)=(4, 2), а прямая (1.27) − n2=(A2, B2)=(2, 1). Тогда подставляя значения A1, B1, A2, B2 в (1.24), получим

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.29) имеет нормальный вектор n1=(A1, B1)=(4, −1), а прямая (1.30) − n2=(A2, B2)=(2, 8). Тогда подставляя значения A1, B1, A2, B2 в (28), получим

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1, l1) направляющий вектор прямой L1, а q2=(m2, p2, l2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (2.3) получим:

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (2.5) имеет направляющий вектор q1=(m1, p1, l1)=(1, 1, 3), а прямая (2.6) − q2=(m2, p2, l2)=(− 3, 1, 2). Для определения угла между прямыми (2.5) и (2.6) подставим значения m1, p1, l1, m2, p2, l2 в (2.4):

Упростим и решим:

Найдем угол φ

Ответ.

Угол между прямыми равен:

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Отметим, что любую пропорцию нужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 4), а прямая (2.10) − q2=(m2, p2, l2)=(6, 4, 8). Тогда

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(1, 2, 0), а прямая (2.10) − q2=(m2, p2, l2)=(2, 4, 0). Подставляя значения m1, p1, l1, m2, p2, l2 в (2.8), получим

Выражение (2.13) нужно понимать так:

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (2.16) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 1), а прямая (2.17) − q2=(m2, p2, l2)=(4, −6, 0). Тогда

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Угол между прямыми на плоскости

Определение.
Углом между прямыми называется наименьший
из двух смежных углов, образованных
этими прямыми
.

Для
решения вопроса о нахождении угла между
прямыми достаточно заменить прямые их
направляющими векторами и находить
острый угол между векторами.

Пусть
прямые ℓ1
и ℓ2

заданы общими уравнениями в прямоугольной
декартовой системе координат О
:

1:

= 0,

2:

= 0.

Направляющие
векторы этих прямых имеют координаты

11,
– А
1)
и

22,
– А
2).
Пусть угол между прямыми равен .
Тогда

cos
=

или

cos
=

.
(7)

При
решении задач часто сталкиваемся с
нахождением угла между прямыми, когда
прямые ℓ1
и ℓ2

задаются
уравнениями с угловым коэффициентом
(не забываем, что прямые ℓ1
и ℓ2

не параллельны оси Оу):

1:


,

2:


.

Если
переписать эти уравнения в общем виде,
то получим

1:

= 0,

2:

= 0.

Соответственно,
их направляющие векторы

1(1,
k1)
и

2(1,
k2),
и формула (7) принимает вид:

cos
=

.

Более
интересна формула для угла между прямыми
1
и ℓ2
:

=

.

Действительно,

,

(см. рисунок). Тогда
один из углов между прямыми ℓ1
и ℓ2
:

= |
|.
Так как

=
|

|
= |
|,

то

=

.

Замечание.
Если ℓ1
ℓ2,
то

– не существует и

= –1.

Взаимное расположение двух прямых на плоскости

Пусть
прямые ℓ1
и ℓ2

заданы общими уравнениями в О


:

1:

= 0,

2:

= 0.

Вопрос
о взаимном расположении двух прямых
можно решить алгебраическим путем, а
именно, исследуя решение системы линейных
уравнений

Как
известно, система имеет единственное
решение только в единственно случае,
когда коэффициенты при неизвестных не
пропорциональны


.
Следовательно,

1.
1

2




1

2

.

2.
1||ℓ2

1

2


(


).

3.
1
=
2

=

( прямые совпадают).

Расстояние от точки до прямой

Пусть
прямая ℓ задана общим уравнением в О
:

ℓ:

= 0.

Нормальный
вектор прямой имеет координаты:

.
Выберем произвольно точку М0(
)

и найдем расстояние от точки М0
до прямой ℓ.

Из
точки М0
опустим
перпендикуляр на прямую ℓ
и обозначим
основание
перпендикуляра
М1(
).

Так как М1

ℓ,
то

= 0 и

С
= – (
).
(8)

Искомое
расстояние равно 1М0|.
С другой стороны

||

и, следовательно, угол 
между ними равен или 0, или .

Поэтому:

(
,

)
= |
|
|
|cos
= 
|
|
|
|
= 
|
|
.

Запишем
полученное равенство в координатной
форме.

Имеем:

(
.

Поэтому,
учитывая (8) получим:

(
,

)
=

=

=

.

Учитывая,
что скалярное произведение векторов
может быть отрицательным, будем
рассматривать его по абсолютной величине
и находим

|
|

= |
|,

1М0|
=

.
(9)

Знак
трехчлена
Ах
+ Ву + С

Пусть
прямая ℓ задана общим уравнением в О
:

ℓ:

= 0.

Нормальный
вектор прямой имеет координаты:

.
От произвольной точки

прямой
ℓ откладываем представитель

вектора

.

Как
известно прямая ℓ разбивает плоскость
на две открытые полуплоскости, которые
обозначим 
и ,
причем полуплоскость 
содержит отрезок

.

Тогда,
как нетрудно заметить, если точка М(
)

расположена в полуплоскости ,
то угол между векторами

и

будет острый. Если точка М
расположена в полуплоскости ,
то угол между векторами

и

будет тупой. Рассматривая скалярные
произведения этих векторов, получим:

  1. Если
    точка М
    расположена в полуплоскости ,
    то (
    ,

    )
    > 0.

  2. Если
    точка М
    расположена
    в полуплоскости ,
    то (
    ,

    )
    < 0.

Записывая
1 и 2 в координатной форме, получим:

М



>
0,

М



<
0.

Учитывая,
что точка


ℓ, (см (8)) получим:

М



> 0, (10)

М


< 0. (11)

Таким
образом, строгие неравенства (10), (11)
являются уравнениями открытых
полуплоскостей. Если неравенства
нестрогие, т.е.

0,
(12)

0.
(13),

то
они являются уравнениями полуплоскостей
(вместе с граничной прямой ℓ).

Пример.
В прямоугольной декартовой системе
координат на плоскости заданы точки:
А(2; −1), В(−1;
3), С(4; −5).

1)
Составить уравнения прямой АВ
в канонической,
параметрической и общей формах. Определить
координаты ее нормального вектора.

2)
Определить угловой коэффициент прямой
(АС)
и отрезки, отсекаемые ею на осях координат.

3)
Найти косинус угла между прямыми (АВ)
и (АС).

4)
Найти длину высоты треугольника АВС,
проведенной из вершины С и составить
уравнение прямой, содержащей этот
отрезок.

Решение.
1. Прямую (АВ)
можно задать точкой А(2;
−1)
и вектором

,
тогда каноническое и параметрическое
задания данной прямой будут выглядеть
следующим образом:

(1)

и

где

R.
(2)

Из
канонического уравнения (1) равносильными
переходами получим ее общее уравнение:


,


.
(3)

Из
уравнения (3) найдем координаты нормального
вектора этой прямой:

.

2.
Аналогично пункту (1) можно получить
общее уравнение прямой (АС):
2
x
+
y
− 3 = 0.

Откуда

y
= −2
x
+ 3.

Следовательно,
угловой коэффициент этой прямой k
= − 2.

Уравнение
прямой (АС)
запишем в виде: 2x
+
y
= 3
и, разделив
обе части уравнения на 3, получим


.

Мы
получили уравнение прямой в отрезках.
Отсюда находим точки пересечения прямой
с осями координат:

,
B(0;3)

3.
Для нахождения косинуса угла между
прямыми (АВ)
и (АС)
используем следующую формулу:


,

где

–угл между прямыми,
k1,
k2
– угловые коэффициенты данных прямых.
Во второй части задания мы нашли k2
= −2.

Общее
уравнение прямой (АВ)
получено в первой части задания:

4x
+ 3y
− 5 = 0, откуда

и k1=

.

Следовательно,


.

Итак,

.

4
.

Длину
высоты

можно рассматривать как расстояние от
точки С(4;−5).до прямой (АВ):

.

Т

H

аким образом,

.
Формула расстояния от точки до прямой
известна:


.

Следовательно,

.

Итак,
|
CH|=0,8.

Прямую
(CH)
можно задать точкой С(4;
-5)
и нормальным
вектором

.
Поэтому −3
∙(
x
− 4) + 4 ∙(
y
+5)=0,

3x
— 4
y
– 32 = 0

уравнение прямой (CH).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Определение угла между прямыми

Угол между прямыми

Две прямые называются пересекающимися, если они имеют единственную общую точку. Эта точка называется точкой пересечения прямых. Прямые разбиваются точкой пересечения на лучи, которые образуют четыре неразвернутых угла, среди которых две пары вертикальных углов и четыре пары смежных углов. Если известен размер одного из углов, образованных пересекающимися прямыми, то легко определить размер остальных углов. Если один из углов прямой, то все остальные тоже прямые, а прямые перпендикулярны.

Определение Угол между прямыми — размер наименьшего из углов, образованных этими прямыми.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

Если две прямые заданы уравнениями с угловым коэффициентом

y = k1x + b1,
y = k2x + b2,

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k1·k2 = 0), то прямые перпендикулярны.

Угол между прямыми

Доказательство. Если прямые заданы уравнениями с угловыми коэффициентами, то легко найти углы между этими прямыми и осью OX

tg α = k1
tg β = k2

Соответственно легко найти угол между прямыми

γ = αβ

tg γ = tg (α — β) = tg αtg β1 + tg α ·tg β = k1k21 + k1·k2

Угол между прямыми через направляющие векторы этих прямых

Угол между прямыми

Если a — направляющий вектор первой прямой и b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано параметрически

x = l t + ay = m t + b

то вектор направляющей имеет вид {l; m}

Если уравнение прямой задано как

A x + B y + C = 0

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = -CB значит точка на прямой имеет координаты K(0, -CB), при y = 0 => x = -CA значит точка на прямой имеет координаты M(-CA, 0). Вектор направляющей KM = {-CA; CB}.

Если дано каноническое уравнение прямой

xx0 l = yy0m

то вектор направляющей имеет вид {l; m}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b). Вектор направляющей KM = {1; k}

Угол между прямыми через векторы нормалей этих прямых

Угол между прямыми

Если a — вектор нормали первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано как

A x + B y + C = 0

то вектор нормали имеет вид {A; B}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то вектор нормали имеет вид {1; —k}

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Угол между прямыми

Если a — направляющий вектор первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

sin φ = |a · b||a| · |b|

Примеры задач на вычисления угла между прямыми на плоскости

Угол между прямыми

Пример 1. Найти угол между прямыми y = 2x — 1 и y = -3x + 1.

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ =

k1k21 + k1·k2

=

2 — (-3)1 + 2·(-3)

=

5-5

= 1

Ответ. γ = 45°

Угол между прямыми

Пример 2. Найти угол между прямыми y = 2x — 1 и x = 2t + 1y = t.

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор {1; 2}, для второй прямой направляющий вектор {2; 1}

cos φ =

|1 · 2 + 2 · 1|12 + 22 · 22 + 12

=

45 · 5

= 0.8

Ответ. φ ≈ 36.87°

Пример 3 Найти угол между прямыми 2x + 3y = 0 и

x — 23

=

y4

.

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2x + 3y = 0 => y = -23x   (k1 = -23)

x — 23 = y4 => y = 43x — 83   (k2 = 43)

tg γ =

k1k21 + k1·k2

=

-23 — 431 + (-23)·43

=

-631 — 89

= 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

Если a — направляющий вектор первой прямой, а b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если дано каноническое уравнение прямой

xx0 l = yy0m = zz0n

то направляющий вектор имеет вид {l; m; n}

Если уравнение прямой задано параметрически

x = l t + ay = m t + bz = n t + c

то направляющий вектор имеет вид {l; m; n}

Пример 4. Найти угол между прямыми

x = 2t + 1y = tz = -t — 1

и

x = t + 2y = -2t + 1z = 1

.

Решение: Так как прямые заданы параметрически, то {2; 1; -1} — направляющий вектор первой прямой, {1; -2; 0} направляющий вектор второй прямой.

cos φ =

|2 · 1 + 1 · (-2) + (-1) · 0|22 + 12 + (-1)2 · 12 + (-2)2 + 02

=

06 · 5

= 0

Ответ. φ = 90°

Пример 5 Найти угол между прямыми

x — 23

=

y4

=

z — 35

и —

x — 22

= 1 — 3y =

3z — 52

.

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор {3; 4; 5}.

Преобразуем второе уравнение к каноническому вид.

x — 22 = x — 2-2

1 — 3y = 1 + y-1/3 = y — 1/3-1/3

3z — 52 = z — 5/32/3

Получено уравнение второй прямой в канонической форме

x — 2-2 = y — 1/3-1/3 = z — 5/32/3

{-2; -13; 23} — направляющий вектор второй прямой.

cos φ =

3·(-2) + 4·(-13) + 5·2332 + 42 + 52 · (-2)2 + (-13)2 + (23)2

=

-6 — 43 + 1039 + 16 + 25 · 4 + 19 + 49

=

-450 · 41/9

=

12582

=

682205

Ответ. φ ≈ 74.63°

Определение угла между скрещивающимися прямыми

Пересечение двух линий на плоскости говорит о наличии у них одной общей точки. Она же является центром их пересечения и делит их на лучи. 

Лучи формируют четыре угла, которые являются неразвернутыми. Зная о размере одного из них, можно вычислить значение и остальных. Точно можно утверждать, что если один из них – прямоугольный, то остальные три равнозначны ему, а линии будут перпендикулярными.

1002

Рис. 1 Графическое отображение пересечения прямых


Как найти угол между скрещивающимися прямыми

Для определения угла между двумя скрещивающимися линиями можно воспользоваться специальным онлайн-калькулятором или применить традиционный математический алгоритм для вычислений.

Предположим, что две бесконечные линии задаются уравнениями общего вида:

A1 + B1 + C1 = 0

A2 + B2 + C2 = 0

Искомое значение следует обозначить как φ. Численная величина угла измеряется в градусах от 0 до 90°, т. е. угол будет острым или прямоугольным. Необходимо ввести еще одно понятие– угол ψ между нормальными векторами данных прямых:

500

Если он меньше, либо равен 90°, то непосредственно сам искомый угол будет соответствовать его градусной мере. В случае когда ψ больше 90°, для вычисления φ необходимо применить известную формулу:

φ = 1800 — ψ.

Для обоих вариантов достоверно утверждение, что cos φ = lcos ψl. Выполнив необходимые вычисления, можно рассчитать искомое значение:

502

Если по условию задачи существует некий прямоугольный треугольник с известными сторонами, расположенными на двух прямых, то для вычисления угла между этими прямыми необходимо знать синус, тангенс и косинус искомого угла. 

Для нахождения значения синуса угла, образованного в результате пересечения двух прямых, вычисляют модуль косинуса этого угла, образованного направляющими векторами данных прямых.

Пример решения задачи

На школьных уроках геометрии для решения в классе часто предлагается следующий вид задач по поиску угла между двумя прямыми.

Ниже приведем алгоритм решения задачи, при которой бесконечные линии на плоскости заданы уравнениями общего вида, в которых присутствует угловой коэффициент.

Обозначим прямые как (L1) и (L2). Каждая из них задается уравнением следующего вида:

А1х + В1у + С1 = 0;

А2х + В2у + С2 = 0;

Зная, что нормальные вектора каждой из них имеют вид:

503

Суть задачи сводится к вычислению угла φ, образованного нормальными векторами.

Используем определение скалярного произведения векторов:

504

и координатное выражение их длин, а также их скалярное произведение:

505

В практических задачах по математике часто требуется найти не сам угол между пресекающимися прямыми, а составить уравнение их всех, при условии, что прямые пересекаются между собой.

Так, если прямые заданы уравнениями общего вида с коэффициентами, то

506

Последнее равенство часто называют уравнением биссектрис углов, образованных в результате пересечения прямых. Понятие «биссектриса» в геометрии — это некое геометрическое место точек, которые удалены на одинаковое расстояние от сторон угла.

Если прямые задаются уравнениями, включающими угловой коэффициент, который определяется тангенсом угла, найти значение углов, образованных при их пересечении, достаточно просто:

507

Рис. 2 Углы, образованные пересечением двух прямых на плоскости

tan α = k1;

tan β = k2;

где k1 и k2 – те самые угловые коэффициенты.

Следовательно, чтобы вычислить значение γ, следует применить формулы:

γ = α — β

tan γ = tan (α — β)

Решение очевидно:

510

Данный калькулятор предназначен для вычисления угла между двумя прямыми онлайн.

Две прямые могут иметь три варианта взаимного расположения друг к другу. Они могут совпадать, быть параллельны или же пересекаться. Для определения угла между прямыми наиболее интересным случаем является угол между скрещивающимися (или пересекающимися) прямыми.

Если две прямые имеют одну общую точку, то такие прямые называются пересекающимися. Точка пересечения делит каждую из прямых на два луча. Между лучами пересекающихся прямых образовываются четыре угла (два острых и два тупых). Итак, угол между двумя скрещивающимися прямыми – это наименьший угол (острый), образованный при пересечении этих прямых. Следует отметить, что, если известно значение одного из углов, можно легко найти значения остальных трех углов благодаря свойствам вертикальных и смежных углов.

Для того чтобы найти угол между двумя прямыми с помощью данного калькулятора, необходимо ввести коэффициенты в уравнения прямых и нажать кнопку «Вычислить».

Если прямые заданы следующими уравнениями:

A1x + B1y + C1 = 0 и A2x + B2y + C2 = 0

тогда направляющие векторы этих прямых будут равны:

a1 = (- B1 ; A1) и a2 = (- B2 ; A2)

Воспользуемся формулой скалярного произведения двух векторов:

скалярного произведения двух векторов

из этой формулы получим:

Выразим угол φ :

Из последней формулы получим:

Понравилась статья? Поделить с друзьями:
  • Как найти летнюю одежду
  • Как найти убийцу по днк
  • Как можно найти однокомнатную квартиру снять
  • Как найти интернет заказчика
  • Как в телеге найти человека по никнейму