Как найти величину перемещения заряда

Содержание:

Работа по перемещению заряда в электростатическом поле:

В повседневной жизни мы довольно часто, особенно в сухую погоду, встречаемся с ситуацией, когда, коснувшись какого-либо тела, чувствуем неприятный удар. Как показывает опыт, таких сюрпризов можно ожидать от тел, имеющих высокий потенциал.

Работа по перемещению заряда в однородном электростатическом поле

Если электростатическое поле действует с некоторой силой на электрически заряженные тела, то оно способно совершить работу по перемещению этих тел.

Пусть в однородном электростатическом поле напряженностью Работа по перемещению заряда в электростатическом поле с примерами

Работа по перемещению заряда в электростатическом поле с примерами

Вычислим работу А, которую совершает сила Работа по перемещению заряда в электростатическом поле с примерами, действующая на заряд со стороны электростатического поля. По определению работы: A=Fscosα.

Поле однородное, поэтому сила Работа по перемещению заряда в электростатическом поле с примерами постоянна, ее модуль равен: F=qE, а scosα=d=Работа по перемещению заряда в электростатическом поле с примерамиявляется проекцией вектора перемещения на направление силовых линий поля. Следовательно, работа сил однородного электростатического поля по перемещению электрического заряда q из точки 1 в точку 2 ( Работа по перемещению заряда в электростатическом поле с примерами) равна:

Работа по перемещению заряда в электростатическом поле с примерами

Обратите внимание! Если бы в данном случае заряд перемещался не из точки 1 в точку 2, а наоборот, то знак работы изменился бы на противоположный, то есть работа совершалась бы против сил поля.

Обратите внимание! Формула Работа по перемещению заряда в электростатическом поле с примерами будет справедлива в случаях движения заряда по любой траектории. То есть однородное электростатическое поле является потенциальным.

Потенциальным является любое электростатическое поле: работа электростатических (кулоновских) сил (как и работа гравитационных сил) не зависит от формы траектории, по которой перемещается заряд, а определяется начальным и конечным положениями заряда. Если траектория движения заряда замкнута, работа сил поля равна нулю.

Потенциальная энергия заряженного тела в поле, созданном точечным зарядом

Заряженное тело, помещенное в электростатическое поле, как и тело, находящееся в гравитационном поле Земли, обладает потенциальной энергией. Потенциальную энергию заряда, находящегося в электрическом поле, обычно обозначают символом Работа по перемещению заряда в электростатическом поле с примерами. Согласно теореме о потенциальной энергии изменение потенциальной энергии заряда, взятое с противоположным знаком, равно работе, которую совершает электростатическое поле по перемещению заряда из точки 1 в точку 2 поля:

Работа по перемещению заряда в электростатическом поле с примерами

Потенциальную энергию взаимодействия двух точечных зарядов Q и q, расположенных на расстоянии r друг от друга, определяют по формуле:

Работа по перемещению заряда в электростатическом поле с примерами

Обратите внимание: 1) потенциальная энергия взаимодействия зарядов положительна (Работа по перемещению заряда в электростатическом поле с примерами > 0), если заряды одноименные, и отрицательна (Работа по перемещению заряда в электростатическом поле с примерами < 0), если заряды разноименные; 2) если заряды бесконечно отдалить друг от друга (r → ∞), то Работа по перемещению заряда в электростатическом поле с примерами = 0 (заряды не будут взаимодействовать). Таким образом, потенциальная энергия взаимодействия двух точечных зарядов равна работе, которую должно совершить электростатическое поле для увеличения расстояния между этими зарядами от r до бесконечности.

Что называют потенциалом электростатического поля

Потенциал Работа по перемещению заряда в электростатическом поле с примерами электростатического поля в данной точке — это скалярная физическая величина, которая характеризует энергетические свойства поля и равна отношению потенциальной энергии Работа по перемещению заряда в электростатическом поле с примерами электрического заряда, помещенного в данную точку поля, к значению q этого заряда:

Работа по перемещению заряда в электростатическом поле с примерами

Единица потенциала в Си — вольт: Работа по перемещению заряда в электростатическом поле с примерами

Из определения потенциала следует, что потенциал ϕ поля, созданного точечным зарядом Q, в точках, которые расположены на расстоянии r от данного заряда, можно рассчитать по формуле: Работа по перемещению заряда в электростатическом поле с примерами

Из формулы ( *) видно: 1) если поле создано положительным точечным зарядом (Q > 0), то потенциал этого поля в любой точке является положительным ( ϕ > 0); 2) если поле создано отрицательным точечным зарядом (Q < 0), то потенциал этого поля в любой точке является отрицательным (ϕ < 0). Формула ( *) справедлива и для потенциала поля равномерно заряженной сферы (или шара) на расстояниях, которые больше ее радиуса или равны ему.

Если поле создано несколькими произвольно расположенными зарядами, потенциал ϕ поля в любой точке данного поля равен алгебраической сумме потенциалов Работа по перемещению заряда в электростатическом поле с примерами полей, созданных каждым зарядом:

Работа по перемещению заряда в электростатическом поле с примерами

Как определяют разность потенциалов

Когда в электростатическом поле заряд движется из точки 1 в точку 2, это поле совершает работу, которая равна изменению потенциальной энергии заряда, взятому с противоположным знаком: Работа по перемещению заряда в электростатическом поле с примерами. Поскольку Работа по перемещению заряда в электростатическом поле с примерами то Работа по перемещению заряда в электростатическом поле с примерами Выражение Работа по перемещению заряда в электростатическом поле с примерами называют разностью потенциалов, где Работа по перемещению заряда в электростатическом поле с примерами — значение потенциала в начальной точке траектории движения заряда, Работа по перемещению заряда в электростатическом поле с примерами — значение потенциала в ее конечной точке.

Разность потенциалов — скалярная физическая величина, равная отношению работы сил электростатического поля по перемещению заряда из начальной точки в конечную к значению этого заряда:

Работа по перемещению заряда в электростатическом поле с примерами

Единица разности потенциалов в Си — вольт: Работа по перемещению заряда в электростатическом поле с примерами = 1 В (V).

Разность потенциалов между двумя точками поля равна 1 В, если для перемещения между ними заряда 1 Кл электростатическое поле совершает работу 1 Дж. Обратите внимание: в подобных случаях разность потенциалов Работа по перемещению заряда в электростатическом поле с примерами − также называют напряжением (U). Важно не путать изменение потенциала Работа по перемещению заряда в электростатическом поле с примерами и разность потенциалов (напряжение) Работа по перемещению заряда в электростатическом поле с примерами.

Как связаны напряженность однородного электростатического поля и разность потенциалов

Рассмотрим однородное электростатическое поле на участке между точками 1 и 2, расположенными на расстоянии d друг от друга; пусть из точки 1 в точку 2 под действием поля перемещается заряд q (рис. 42.2).

Работа по перемещению заряда в электростатическом поле с примерами

Совершаемую полем работу можно найти двумя способами: 1) через разность потенциалов между точками 1 и 2:Работа по перемещению заряда в электростатическом поле с примерами; 2) через напряженность поля: Работа по перемещению заряда в электростатическом поле с примерами — проекция вектора Работа по перемещению заряда в электростатическом поле с примерами на ось Ох, проведенную через точки 1 и 2.

Приравняв оба выражения для работы, получим: Работа по перемещению заряда в электростатическом поле с примерами, откуда: Работа по перемещению заряда в электростатическом поле с примерами, илиРабота по перемещению заряда в электростатическом поле с примерами

Если заряд перемещается в направлении напряженности электрического поля (Работа по перемещению заряда в электростатическом поле с примерами) , последняя формула примет вид:

Работа по перемещению заряда в электростатическом поле с примерами

Из последней формулы следует единица напряженности в Си — вольт на метр:

Работа по перемещению заряда в электростатическом поле с примерами

Какие поверхности называют эквипотенциальными

Для визуализации электростатического поля кроме силовых линий используют также эквипотенциальные поверхности.

Эквипотенциальная поверхность — это поверхность, во всех точках которой потенциал электростатического поля имеет одинаковое значение.

Для наглядности следует рассматривать не одну эквипотенциальную поверхность, а их совокупность. Однако графически изобразить совокупность поверхностей сложно, поэтому обычно изображают только линии пересечения эквипотенциальных поверхностей некоторой плоскостью (рис. 42.3).

Эквипотенциальные поверхности тесно связаны с силовыми линиями электростатического поля. Если электрический заряд перемещается по эквипотенциальной поверхности, то работа поля равна нулю, поскольку A=q ( Работа по перемещению заряда в электростатическом поле с примерами), а на эквипотенциальной поверхности Работа по перемещению заряда в электростатическом поле с примерами.

Работу электростатического поля также можно представить через силу Работа по перемещению заряда в электростатическом поле с примерами, действующую на заряд со стороны поля: A F= scosα , где α — угол между векторамиРабота по перемещению заряда в электростатическом поле с примерами и Работа по перемещению заряда в электростатическом поле с примерами. Поскольку A = 0, а F ≠ 0 и s ≠ 0, то cosα = 0, то есть α = 90°. Это означает, что при движении заряда вдоль эквипотенциальной поверхности вектор силы Работа по перемещению заряда в электростатическом поле с примерами, а следовательно, и вектор напряженности Работа по перемещению заряда в электростатическом поле с примерами поля в любой точке перпендикулярны вектору перемещения Работа по перемещению заряда в электростатическом поле с примерами.

Таким образом, силовые линии электростатического поля перпендикулярны эквипотенциальным поверхностям (см. рис. 42.3).

Работа по перемещению заряда в электростатическом поле с примерами

Обратите внимание! Симметрия эквипотенциальных поверхностей повторяет симметрию источников поля. Так, поле точечного заряда сферически симметрично, поэтому эквипотенциальными поверхностями поля точечного заряда являются концентрические сферы; при однородном поле эквипотенциальные поверхности — это система параллельных плоскостей.

  • Заказать решение задач по физике

Пример решения задачи

Электрон, начав движение из состояния покоя, прошел ускоряющую разность потенциалов –300 В. Какую скорость приобрел электрон? Масса электрона Работа по перемещению заряда в электростатическом поле с примерамикг, заряд Работа по перемещению заряда в электростатическом поле с примерами Кл.

Заряд электрона — отрицательный, его начальная скорость Работа по перемещению заряда в электростатическом поле с примерами = 0, поэтому под действием сил поля электрон будет двигаться в направлении, противоположном направлению силовых линий поля, то есть в направлении увеличения потенциала. Поле будет совершать положительную работу, в результате кинетическая энергия электрона и его скорость будут возрастать.

Работа по перемещению заряда в электростатическом поле с примерами

Решение:

Поиск математической модели, решение Согласно теореме о кинетической энергии:

Работа по перемещению заряда в электростатическом поле с примерами— работа сил поля.

Таким образом, Работа по перемещению заряда в электростатическом поле с примерами, отсюда Работа по перемещению заряда в электростатическом поле с примерами .

Проверим единицу, найдем значение искомой величины:

Работа по перемещению заряда в электростатическом поле с примерами

Ответ: Работа по перемещению заряда в электростатическом поле с примерами

Выводы:

  • Закон Ома для однородного участка электрической цепи
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Волновое движение в физике
  • Продольные и поперечные волны в физике
  • Звуковые волны в физике
  • Электрическое поле в физике

Рассмотрим однородное электрическое поле. Оно образуется между заряженными плоскостями, если они параллельны и бесконечно большие. Практически можно считать однородным электрическое поле между конечными параллельными заряженными плоскостями, если размеры их значительно больше, чем расстояние между ними.

При перемещении пробного заряда в таком электростатическом поле электрические силы осуществляют работу.

Определение работы по перемещению заряда

Произвольное электрическое поле напряженностью ЕЕ действует на пробный заряд q0q_0 с силой

F=q0E.F = q_0E.

Смещение этого заряда вдоль определенной траектории сопровождается выполнением работы, элемент которой

dA=F→d=Fdlcos⁡α=q0Edlcos⁡α,dA=overrightarrow{F}d=Fdlcos alpha ={{q}_{0}}Edlcos alpha,

где dldl –вектор элементарного перемещения заряда q0q_0, αα – угол между векторами dldl и dFdF.

Пусть заряд q0q_0 перемещается из точки 1 в точку 2 в поле, созданном заданным точечным зарядом qq (рис. 1).

работаперемещениязаряда1.svg

Рис. 1.

Определим работу такого перемещения А12А_{12}, подставив в формулу для элементарной работы выражение напряженности поля точечного заряда Также учтем, что dlcosα=drdlcosα = dr (рис. 1). Тогда А12А_{12} выразим так:

A12=qq04πε0∫r1r2drr2=qq04πε0[1r1−1r2]{{A}_{12}}=frac{q{{q}_{0}}}{4pi {{varepsilon }_{0}}}intlimits_{{{r}_{1}}}^{{{r}_{2}}}{frac{dr}{{{r}^{2}}}}=frac{q{{q}_{0}}}{4pi {{varepsilon }_{0}}}left[ frac{1}{{{r}_{1}}}-frac{1}{{{r}_{2}}} right]

Проанализируем это выражение по знаку А12А_{12}. Если знаки зарядов qq и q0q_0 одинаковые, то работа А12А_{12} положительная при условии удаления зарядов (r2>r1r_2 > r_1) и отрицательная при их приближении.

Если qq и q0q_0 отличаются знаками, то работа А12А_{12}, наоборот, положительная при приближении зарядов и отрицательная при их удаления, то есть, положительной считают работу, выполненную самым полем.

Определение свойств электростатического поля

По выражению работы $А_{12} видно, что работа не зависит от формы пути перемещения заряда между точками 1-2, а определяется лишь размещением начальной и конечной точек. Такие силовые поля называют потенциальными (консервативными).

Итак, электростатическое поле точечного заряда является потенциальным. Если перемещение происходит вдоль замкнутого контура, то работа равна нулю.

Математическое условие потенциальности поля получают, проинтегрировав вдоль замкнутого контура выражение dA:

A=∮Lq0Edlcos⁡α=q0∮LE→dl→=0A=ointlimits_{L}{{{q}_{0}}Edlcos alpha }={{q}_{0}}ointlimits_{L}{overrightarrow{E}doverrightarrow{l}}=0

Поскольку q0q_0 не равно 00, то циркуляция вектора EE

∮LE→dl→=0ointlimits_{L}{overrightarrow{E}doverrightarrow{l}}=0

Данное уравнение отражает то, что силовые линии электростатического поля незамкнуты. В условиях перемещения пробного точечного заряда вдоль замкнутого контура в таких полях на определенных участках пути работа будет положительной, на других — отрицательной, а полная работа равна нулю.

Тест по теме «Работа перемещения заряда»

Напряженность электрического поля

Главное
свойство электрического поля –
способность действовать на электрические
заряды с некоторой силой, поэтому
естественно охарактеризовать
электрическое
поле с помощью силы, действующей на
точечный положительный заряд, внесенный
в это поле.

Напряженностью
электрического поля в данной точке
называют физическую величину, численно
равную силе, действующей на единичный
положительный заряд, помещенный в данную
точку и имеющей направление этой силы:

. (6.2)

В
частности, напряженность в любой точке
поля, созданного точечным зарядом (как
это следует из закона Кулона), равна

. (6.3)

Напряженность
поля не зависит от величины пробного
заряда, а определяется величиной и
знаком заряда, создающего поле, и
положением (координатой) выбранной
точки поля. Напряженность поля определяет
величину и направление силы, действующей
на заряд, помещенный в данную точку
поля:

(6.4)

Если
поле создано двумя или несколькими
зарядами, то электрическое поле каждого
заряда (как утверждает опыт) не зависит
друг от друга, и напряженность
электрического поля, поэтому определяется
как векторная сумма напряженностей
полей, создаваемых отдельными зарядами
(рис. 6.1). В этом состоит принцип суперпозиции
полей:

. (*)

Для
наглядного (графического) описания
электрических полей используется
понятие силовой линии поля.

Силовой
линией называют линию, проведенную в
электрическом поле так (рис. 6.2), чтобы
касательная в любой ее точке совпадала
с направлением вектора напряженности.
Силовой линии приписывают направление,
совпадающее с направлением вектора
напряженности в каждой ее точке. Так
как каждой точке поля соответствует
вполне определенный вектор напряженности
поля, то силовые линии нигде не
пересекаются.

Условились
при изображении
электрических полей с помощью линий
напряженности, число силовых линий,
проходящих через единичную поверхность,
перпендикулярную к силовым линиям в
данной точке поля, выбирать равным
напряженности поля Е в данной точке (в
этом состоит правило графического
изображения полей с помощью силовых
линий). При таком условии картина силовых
линий электрического поля позволяет
наглядно судить как о направлении, так
и о величине напряженности поля в каждой
точке.

Потенциал электрического поля

Помимо
напряженности электрическое поле
характеризуется еще одной важной
физической величиной – потенциалом.

Рассмотрим
перемещение заряда q
в поле другого точечного заряда q0
из точки 1 в точку 2 (рис. 6.3). Работа силы
F
на элементарном перемещении dl
определяется
соотношением

, (6.5)

но
,
значит.
Подставим сюда вместо силы ее значение
из закона Кулона, получим:

. (6.6)

Для
вычисления работы перемещения заряда
из точки 1 в точку 2 по произвольному
пути 1–2 проинтегрируем (6.6) в пределах
от r1
до r2
, получим

. (6.7)

Из
выражения (6.7) следует, что работа
перемещения электрического заряда не
зависит от формы пути, по которому
перемещается заряд, а зависит только
от начальной и конечной точек. Если
заряд q,
перемещаясь в электрическом поле,
возвращается в исходную точку (r2
= r1),
то работа перемещения заряда по замкнутому
пути в электростатическом поле равна
нулю. Поля, обладающие указанным
свойством, называются потенциальными.

Найдем
отношение работы перемещения заряда к
величине этого заряда:

. (6.8)

Эта
величина не зависит от величины
перемещаемого заряда и от пути, по
которому он перемещается, и поэтому
служит характеристикой поля, созданного
зарядом q0
, и называется разностью потенциалов
или электрическим напряжением.

Разность
потенциалов двух точек 1 и 2 электрического
поля измеряется работой, совершаемой
полем при перемещении единичного
положительного заряда между этими
точками.

Следует
подчеркнуть, что разность потенциалов
имеет смысл характеристики поля потому,
что работа перемещения заряда не зависит
от формы пути. Действительно, если бы
работа перемещения заряда зависела от
пути, то при перемещении одного и того
же заряда между теми же самыми точками
поля, это отношение A
/
q
не являлось бы однозначной характеристикой
этих точек поля.

Если
выбрать какую-либо точку пространства
в качестве начальной точки (точки
отсчета), то любой точке можно сопоставить
разность потенциалов относительно этой
начальной точки.

Для
случая поля точечного заряда наиболее
простое математическое выражение для
потенциала получается, если в качестве
начальной выбрать любую точку, удаленную
на бесконечность. Тогда работа перемещения
положительного заряда q
из бесконечности
в данную точку поля, созданного другим
точечным зарядом q0
, будет равна

. (6.9)

Отношение
работы перемещения положительного
заряда из бесконечности в данную точку
поля к величине этого заряда (работа по
перемещению единичного заряда) называется
потенциалом данной точки поля:

. (6.10)

Знак
минус в этом выражении означает, что в
данном случае работа совершается
внешними силами против сил поля.

Очевидно,
что напряжение U
между произвольными точками 1 и 2
электрического поля и потенциалы этих
точек связаны простым соотношением

. (6.11)

Для поля точечного
заряда

. (6.12)

Потенциал
любой точки поля, созданного положительным
зарядом – положителен и убывает до нуля
по мере удаления от заряда. Напротив –
потенциал поля, созданного отрицательным
зарядом, – отрицательная величина и
растет до нуля по мере удаления от
заряда.

Из
выражения для потенциала (6.12) следует,
что потенциал любой точки сферической
поверхностиS
c
центром в точке расположения заряда
одинаков (рис. 6.4). Такие поверхности
называются поверхностями равного
потенциала или эквипотенциальными
поверхностями.

Работу
перемещения заряда можно выразить через
разность потенциалов

.
(6.13)

Отсюда
следует, что работа перемещения заряда
по эквипотенциальной поверхности равна
нулю. Это значит, что сила, действующая
на заряд, а следовательно, и вектор
напряженности поля Е направлены
перпендикулярно эквипотенциальной
поверхности.

Используя
эквипотенциальные поверхности, можно
также дать графическое изображение
электрического поля.

Результаты,
полученные для поля точечного заряда,
легко распространить на поля, созданные
любым числом точечных зарядов, а так
как любое заряженное тело можно
представить как совокупность точечных
зарядов, то и на поле, созданное любым
заряженным телом.

Поля
точечных зарядов в соответствии с
принципом суперпозиции, накладываясь
друг на друга, не влияют друг на друга.
Поэтому потенциал поля любого числа
зарядов будет равен алгебраической
сумме потенциалов полей, созданных
отдельными зарядами, т. е.:

. (6.14)

Таким
образом, все вышеизложенное в отношении
понятия потенциала справедливо и для
поля, созданного заряженным телом любой
формы, а величину потенциала, в принципе,
можно вычислить по формуле (6.14).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Чем на самом деле является напряжение? Это способ описания и измерения напряженности электрического поля. Само по себе напряжение не может существовать без электронного поля вокруг положительных и отрицательных зарядов. Так же, как магнитное поле окружает Северный и Южный полюса.

По современным понятиям, электроны не оказывают взаимного влияния. Электрическое поле – это нечто, что исходит от одного заряда и его присутствие может ощущаться другим.

О понятии напряженности можно сказать то же самое! Просто это помогает нам представить, как электрическое поле может выглядеть. Честно говоря, оно не обладает ни формой, ни размером, ничем подобным. Но поле функционирует с определённой силой на электроны.

Силы и их действие на заряженную частицу

На заряженный электрон, воздействует сила с некоторым ускорением, заставляя его перемещаться все быстрее и быстрее. Этой силой совершается работа по передвижению электрона.

Работа электрического поля при перемещении заряда

Силовые линии – это воображаемые очертания, которые возникают вокруг зарядов (определяется электрическим полем), и если мы поместим какой-либо заряд в эту область, он испытает силу.

Свойства силовых линий:

  • путешествуют с севера на юг;
  • не имеют взаимных пересечений.

Почему у двух силовых линий не возникает пересечений? Потому что не бывает этого в реальной жизни. То, о чём говорится, является физической моделью и не более. Физики изобрели её для описания поведения и характеристик электрического поля. Модель очень хороша при этом. Но помня, что это всего лишь модель, мы должны знать о том, для чего такие линии нужны.

Силовые линии демонстрируют:

  • направления электрических полей;
  • напряженность. Чем ближе линии, тем больше сила поля и наоборот.

Если нарисованные силовые линии нашей модели пересекутся, расстояние меж ними станет бесконечно малыми. Из-за силы поля, как формы энергии, и из-за фундаментальных законов физики это невозможно.

Что такое потенциал?

Потенциалом называется энергия, которая затрачивается на передвижение заряженной частицы из первой точки, имеющей нулевой потенциал во вторую точку.

Разность потенциалов меж пунктами А и Б – это работа, производимая силами для передвижения некоего положительного электрона по произвольной траектории из А в Б.

Работа электрического поля при перемещении заряда

Чем больший потенциал у электрона, чем больше плотность потока на единицу площади. Такое явление подобно гравитации. Чем больше масса, тем больше потенциал, тем интенсивнее и плотнее гравитационное поле на единицу площади.

Небольшой заряд с низким потенциалом, с прореженной плотностью потока показан на следующем рисунке.

Работа электрического поля при перемещении заряда

А ниже показан заряд с большим потенциалом и плотностью потока.

Работа электрического поля при перемещении заряда

Например: во время грозы электроны истощаются в одной точке и собираются в другой, образуя электрическое поле. Когда сила станет достаточной, чтобы сломать диэлектрическую проницаемость, получается удар молнии (состоящий из электронов). При выравнивании разности потенциалов электрическое поле разрушается.

Электростатическое поле

Это разновидность электрического поля, неизменного повремени, образуемого зарядами, которые не двигаются. Работа передвижения электрона определяется соотношениями,

Работа электрического поля при перемещении заряда

где r1 и r2 – расстояния заряда q до начальной и конечной точки траектории движения. По полученной формуле видно, что работа при перемещении заряда из точки в точку не зависит от траектории, а зависит лишь от начала и конца перемещения.

Работа электрического поля при перемещении заряда

На всякий электрон действует сила, и поэтому при перемещении электрона в поле выполняется определенная работа.

В электростатическом поле работа зависит лишь от конечных пунктов следования, а не от траектории. Поэтому, когда движение происходит по замкнутому контуру, заряд приходит в исходное положение, и величина работы становится равной нулю. Это происходит потому, что падение потенциала нулевое (поскольку электрон возвращается в ту же самую точку). Так как разность потенциалов нулевая, чистая работа будет также нулевой, ведь потенциал падения равен работе, деленной на значение заряда, выраженное в кулонах.

Об однородном электрическом поле

Однородным называется электрическое поле меж двух противоположно заряженных плоских металлических пластин, где линии напряженности параллельны между собой.

Работа электрического поля при перемещении заряда

Почему сила действия на заряд в таком поле всегда одинаковая? Благодаря симметрии. Когда система симметрична и есть только одна вариация измерения, всякая зависимость исчезает. Есть много других фундаментальных причин для ответа, но фактор симметрии – самый простой.

Работа по передвижению положительного заряда

Электрическое поле – это поток электронов от «+» до «-», приводящий к высокой напряженности области.

Работа электрического поля при перемещении заряда

Поток – это количество линий электрического поля, проходящих через него. В каком направлении будут положительные электроны двигаться? Ответ: по направлению электрического поля от положительного (высокого потенциала) к отрицательному (низкому потенциалу). Поэтому положительно заряженная частица будет двигаться именно в этом направлении.

Работа электрического поля при перемещении заряда

Интенсивность поля во всякой точке определяется как сила, воздействующая на положительный заряд, помещенный в эту точку.

Работа заключается в переносе электронных частиц по проводнику. По закону Ома, можно определить работу разными вариациями формул, чтобы провести расчет.

Из закона сохранения энергии следует, что работа – это изменение энергии на отдельном отрезке цепи. Перемещение положительного заряда против электрического поля требует совершения работы и в результате получается выигрыш в потенциальной энергии.

Заключение

Из школьной программы мы помним, что электрическое поле образуется вокруг заряженных частиц. На любой заряд в электрическом поле воздействует сила, и вследствие этого при движении заряда выполняется некоторая работа. Большим зарядом создается больший потенциал, который производит более интенсивное или сильное электрическое поле. Это означает, что возникает больший поток и плотность на единицу площади.

Важный момент заключается в том, что должна быть выполнена определенной силой работа по перемещению заряда от высокого потенциала к низкому. Тем самым уменьшается разница заряда между полюсами. Перемещение электронов от токи до точки требует энергии.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

  • Авторы
  • Резюме
  • Файлы

Иванов Е.М.

Работа перемещения заряда вдоль линии напряженности электростатического поля Aφ = q (φ1 — φ2 ). При перемещении заряда в обратном направлении работа сторонних сил имеет минимум, величина которого зависит от способа приложения сторонней силы.

Рассмотрим движение положительного заряда q в однородном электрическом поле напряженности E плоского конденсатора (рис.1а) в отсутствии сил гравитационного поля.

p  p

Рисунок 1 (а). Движение положительного заряда q в однородном электрическом поле напряженности E плоского конденсатора.

Под действием кулоновской силы f движение заряда из точки 1 потенциальной плоскости f в точку 2 потенциальной плоскости f может происходить только вдоль линии напряженности поля (в данном случае вертикальная линия 1-2). Расстояние между плоскостями f. На основании II закона Ньютона:

 f; f,

где t — время движения заряда. Работу перемещения заряда представим в двух видах:

f             (1)

f (2)

Отметим, что для того, чтобы остановить заряд в точке 2, необходимо затратить работу торможения, равнуюf .

Чтобы вернуть заряд q по тому же пути из точки 2 в точку 1, необходимо приложить стороннюю силу F (рис.1б), которую можно представить в виде суммы f, где f — сила, равная по модулю кулоновской силе f, обеспечивающая равновесие заряда (неподвижность) в электростатическом поле, которую назовем силой левитации.

p  p

Рисунок 1 (б)

Если f, то перемещение заряда вверх не происходит, поскольку f. Если f, то начинает работать II закон Ньютона: ускорение f; f. Время движения вверх

f                     (3)

Запишем баланс импульсов сил:

f                                  (4)

Возведя в квадрат и разделив на 2m обе части равенства, получим баланс энергий (работ):

f       (5)

Или

f               (5а)

где f — работа силы левитации в статическом состоянии, f — обычная работа силы f, вызывающей ускоренное движение, f — работа, связанная с ускоренным движением силы левитации, f — суммарная работа сторонней силы F.

Выразим эти работы через работу f, определяемую выражением (2).

f            (6)

f     (7)

f                      (8)

Таким образом, зависимость между работами f и f имеет гиперболический характер.

f             (9)

Тогда суммарную работу сторонней силы F можно записать так

f                  (10)

Это выражение имеет минимум в случае f, равный f. На графике (рис.2) показана зависимость суммарной работы f от соотношения f.

p

Рисунок 2. Зависимость суммарной работы f от соотношения f

Из графика видно, что даже в самом благоприятном случае работа подъема заряда сторонней силой в 4 раза больше работы кулоновской силы, совершающей перемещение заряда вниз. Здесь необходимо отметить следующее: кулоновская сила препятствует перемещению заряда вверх, т.е. совершает отрицательную работу, но по модулю она не равна f, поскольку движение происходит под действием силы ΔF в течение времени t1, которое связано с временем t формулы (1) соотношением: f. Тогда работа кулоновской силы будет равна

f                                    (11)

Рассмотрим другой вариант перемещения заряда из точки 2 в точку 1 за счет действия мгновенной силы [1,2,3] в виде f, где f — f-функция Дирака. Величину f будем называть единичным импульсом силы. Тогда дифференциальное уравнение движения заряда запишется в виде:

f                       (12)

при нулевых начальных условиях: f и f. H(t) — единичная (ступенчатая) функция Хевисайда, причем f [1,4]. Для решения задачи используем преобразование Лапласа [4]. Получаем:

f;  f                           (13)

Определим работу, совершаемую при перемещении заряда из точки 1 в точку 2:

f          (14)

Вычисляя интегралы, получим

f;

  f                (15)

Под действием мгновенного импульса силы заряд приобретает скорость f, направленную вверх, а под действием кулоновской силы возникает тормозящее ускорение: f. Время движения заряда f или f. Оно равно времени t формулы (1).

f               (16)

Энергия, приобретенная зарядом от единичного импульса силы f, а остальные члены уравнения (15) можно представить в виде:

f;

f

Последний член представляет собой повышение потенциальной энергии при перемещении заряда из точки 2 в точку 1. Таким образом, при движении заряда за счет действия мгновенной силы, заряд должен получить извне начальную энергию A0, равную f.

Рассмотрим третий вариант перемещения заряда из 2 в 1. На заряд действует сторонняя сила, равная кулоновской, но направленная в противоположную сторону (сила левитации): f, а для перемещения заряда вверх ему сообщается единичный импульс силы f за счет действия мгновенной силы f. Дифференциальное уравнение движения примет вид:

f     (17)

при нулевых начальных условиях. Решая уравнение с помощью преобразования Лапласа и вычисляя работу, получим:

Положительная работа:

f                            (18)

Отрицательная работа (противодействующая перемещению заряда):

f                           (19)

Время движения заряда f. В окончательном виде положительная работа (при f):

f;

f           (20)

Это выражение имеет минимум, равный f при значении f. На графике (рис.3) показана зависимость суммарной положительной работы f, выраженной в долях работы Aφ, от величины отношения f.

p

Рисунок 3. Зависимость суммарной положительной работы f, выраженной в долях работыAφ , от величины отношения f.

Отрицательная работа в окончательном виде (при f):

f       (21)

Как следует из графика (рис.4) отрицательная работа (работа кулоновской силы) не является постоянной величиной. Ее можно вычислять по формуле (2) только в том случае, если она является единственной движущей (или тормозящей) силой. Когда же кулоновская сила «соучаствует» со сторонними силами в перемещении заряда, то изменяется время движения заряда и расчет работы кулоновской силы надо проводить с учетом ее взаимодействия с другими силами. При очень большом начальном импульсе (f ) выражение (21) асимптотически стремится к обычному значению работы кулоновской силы: f.

p

Рисунок 4. Работа кулоновской силы

СПИСОК ЛИТЕРАТУРЫ

  1. Арфкен Г. Математические методы в физике. — М.: Атомиздат, 1970.
  2. Иванов Е.М. Дополнительные главы классической механики. — Димитровград: ДИТУД УлГТУ, 2004.
  3. Иванов Е.М. Работа центростремительных и гироскопических сил //Успехи современного естествознания — №9. — 2004.
  4. Дёч Г. Руководство к практическому применению преобразования Лапласа. М.: Наука, 1971.

Библиографическая ссылка

Иванов Е.М. РАБОТА ПЕРЕМЕЩЕНИЯ ЗАРЯДА В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ // Фундаментальные исследования. – 2005. – № 7.
– С. 9-13;

URL: https://fundamental-research.ru/ru/article/view?id=6319 (дата обращения: 27.05.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Понравилась статья? Поделить с друзьями:
  • Как исправить неровности короеда
  • Как найти холки у собак
  • Как исправить микрофон ноутбука
  • Как найти пилотов даргина
  • Формула как найти качество