Как найти величину угла описанного около окружности

Центральные и вписанные углы

О чем эта статья:

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

ㄥBAC + ㄥBDC = 180°

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Углы, связанные с окружностью

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Фигура Рисунок Теорема
Вписанный угол
Вписанный угол Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный угол Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный угол Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный угол Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольника

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Фигура Рисунок Теорема Формула
Угол, образованный пересекающимися хордами
Угол, образованный секущими, которые пересекаются вне круга
Угол, образованный касательной и хордой, проходящей через точку касания
Угол, образованный касательной и секущей
Угол, образованный двумя касательными к окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Угол, образованный пересекающимися хордами хордами
Формула:
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула:

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Формула:
Угол, образованный касательной и секущей касательной и секущей
Формула:

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы:

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Как найти угол описанной окружности

Центральные и вписанные углы

О чем эта статья:

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

ㄥBAC + ㄥBDC = 180°

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Углы, связанные с окружностью

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Теоремы о вписанных и центральных углах

Фигура Рисунок Теорема
Вписанный угол

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанный угол Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный угол Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный угол Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный угол Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольника

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника
Фигура Рисунок Теорема Формула
Угол, образованный пересекающимися хордами

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Угол, образованный секущими, которые пересекаются вне круга

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой, проходящей через точку касания

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол, образованный касательной и секущей

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными к окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Как найти угол описанной окружности

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.
  • Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

  • Вокруг любого треугольника можно описать окружность, и только одну.
  • В любом треугольнике сторона равна произведению диаметра описанной окружности и синуса противолежащего угла.
  • Площадь треугольника равна отношению произведения длин всех его сторон к учетверенному радиусу окружности, описанной около этого треугольника: $$R =frac $$, где S — площадь треугольника.
  • Центр вневписанной окружности лежит на пересечении биссектрис внешних углов, при вершинах касаемой стороны, и биссектрисы угла при третей вершине.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

  • Центр описанной окружности совпадает с серединой гипотенузы.
  • Радиус равен половине гипотенузы: $$R = frac $$.
  • Радиус равен медиане, проведенной к гипотенузе: $$R = m_ $$.

Четырехугольник, вписанный в окружность

  • Четырехугольник можно вписать в окружность, если сумма противолежащих углов равна $$180^circ: alpha + beta + gamma +delta = 180^circ$$.
  • Если четырехугольник вписан в окружность, то суммы противолежащих углов равны $$180^circ$$.
  • Сумма произведений противолежащих сторон четырехугольника ABCD равна произведению диагоналей: $$ABcdot DC + AD cdot BC = BD cdot AC$$.
  • Площадь: $$S = sqrt $$, где $$p = frac $$ — полупериметр четырехугольника.

Окружность, вписанная в ромб

  • В любой ромб можно вписать окружность.
  • Радиус r вписанной окружности: $$r = frac $$, где h — высота ромба или $$r = frac cdot d_ > $$, где a — сторона ромба, d1 и d2 — диагонали ромба.
источники:

http://www.resolventa.ru/spr/planimetry/cangle.htm

http://b4.cooksy.ru/articles/kak-nayti-ugol-opisannoy-okruzhnosti

Угол, образованный пересекающимися хордами хордами
Формула:
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула:
Угол, образованный касательной и хордой хордой , проходящей через точку касания
Формула:
Угол, образованный касательной и секущей касательной и секущей
Формула:
Угол, образованный двумя касательными касательными к окружности
Формулы:

План урока:

Центральный угол и градусная мера дуги

Вписанный угол

Углы между хордами и секущими

Теорема о произведении отрезков хорд

Задачи на квадратной решетке

Центральный угол и градусная мера дуги

Любые две точки на окружности разбивают ее на две дуги. Чтобы отличать эти дуги, на каждой из них ставят точку, которую и указывают в обозначении дуги:

1 Ugly v okruzhnosti

Здесь красным цветом показана⋃АСВ, а синим – ⋃ADB. Однако иногда для простоты указывают только концы дуги, то есть используют обозначение ⋃AВ. Это делается тогда, когда ясно, о какой дуге окружности идет речь. Обычно всегда подразумевается та дуга, которая меньше.

Можно заметить, что дуги отличаются по размеру, поэтому возникает потребность их измерения. Для этого используют такое понятие, как градусная мера дуги.

Для ее определения необходимо соединить концы дуги с центром окруж-ти. В результате получаются радиусы, которые пересекаются в центре окружности. Угол между ними именуется центральным углом окруж-ти.

2 Ugly v okruzhnosti

Для каждой дуги можно построить единственный центральный угол, поэтому логично измерять дугу с помощью такого угла. Правда, обратное неверно. На рисунке видно, что центральному углу ∠АОВ соответствует сразу две дуги: ⋃АСВ и ⋃АDB:

3 Ugly v okruzhnosti

Поэтому условно считают, градусная мера той из двух дуг, которая меньше, как раз и равна центральному углу:

4 Ugly v okruzhnosti

Дуги, также как отрезки или углы, можно складывать или вычитать. Например, пусть есть две дуги, ⋃AВ и ⋃ВС, чьи градусные меры составляют 40° и 30°.

5 Ugly v okruzhnosti

Как найти ⋃АС? Ей соответствует центральный угол ∠АОС, который в свою очередь равен сумме ∠АОВ и ∠ВОС:

6 Ugly v okruzhnosti

Диаметр делит окруж-ть на две равные друг другу дуги, которые называются полуокружностями. При этом диаметр окружности можно рассматривать как угол между двумя радиусами, равный 180°. Получается, что градусная мера полуокружности составляет 180°:

7 Ugly v okruzhnosti

Вместе две полуокружности образуют полную окруж-ть. Получается, что градусная мера всей окруж-ти составляет 180° + 180° = 360°.

8 Ugly v okruzhnosti

Этот факт известен и из жизни – когда кто-то делает полный оборот вокруг своей оси, говорят, что он повернулся на 360°. Теперь мы можем вернуться к случаю, когда две точки делят окруж-ть на две неравные друг другу дуги. Градусная мера меньшей из них будет равна величине соответствующего центрального угла (обозначим его как α). В сумме две дуги должны дать 360°. Значит, градусная мера большей дуги будет составлять 360° – α:

9 Ugly v okruzhnosti

Задание. Точки А, В, С и D лежат на одной окруж-ти. Известно, что ⋃АСВ составляет 107°. Какова величина ADB?

10 Ugly v okruzhnosti

Решение. Вместе дуги ⋃АСВ и ⋃АDВ образуют полную окруж-ть, поэтому их сумма равна 360°. Это позволяет составить уравнение и найти из него ⋃АDB:

11 Ugly v okruzhnosti

Задание. Найдите величину ∠АОС на рисунке, если известны ⋃AВ и ⋃ВС:

12 Ugly v okruzhnosti

Решение. Сначала найдем ⋃АС, учтя, что все три дуги, показанные на рисунке, в сумме составляют 360°:

13 Ugly v okruzhnosti

Для доказательства построим две одинаковые хорды AВ и СD в окруж-ти и соединим их концы с центром:

14 Ugly v okruzhnosti

В результате получились ∆АОВ и ∆ОСD. У них равны все три стороны, значит, сами эти треугольники равны. Тогда 

∠COD = ∠AOB

Но эти углы – центральные для дуг ⋃AВ и ⋃CD. Получается, что у этих дуг одинаковы их градусные меры, поэтому они также равны, ч. т. д.

Примечание. Всякая хорда окружности разбивает ее на две дуги – большую и меньшую. В данном правиле говорится именно равенстве меньших дуг.

Задание. На окруж-ти отмечены точки А, В и С так, что хорды AВ, ВС и АС равны. Найдите угол между радиусами окружности АО и ВО.

Решение.

15 Ugly v okruzhnosti

Дуги ⋃AВ, ⋃ВС и ⋃АС стянуты равными хордами AВ, ВС и АС. Значит, они одинаковы. Но в сумме эти три дуги образуют окруж-ть величиной в 360°. Значит, каждая из этих дуг втрое меньше:

⋃AВ = ⋃BC = ⋃AC = 360°:3 = 120°

∠АОВ – центральный для ⋃AВ, значит, он равен ее градусной мере, то есть он составляет 120°.

Ответ: 120°.

Вписанный угол

В окруж-ти можно построить ещё один угол, который именуют вписанным углом. Его отличие от центрального заключается в том, что его вершина лежит на окруж-ти, а не в ее центре. Сторонами же вписанного угла являются хорды окруж-ти.

16 Ugly v okruzhnosti

Здесь дуга ⋃ВС находится внутри угла, а ее концы лежат на его сторонах. В таких случаях говорят, что ∠ВАС опирается на дугу ВС. Оказывается, что между величиной вписанного угла и дугой, на которую он опирается, есть взаимосвязь.

17 Ugly v okruzhnosti

Обозначим вписанный угол ∠СAВ буквой α. Так как радиусы АО и ОС одинаковы, то ∆АОС – равнобедренный, и тогда углы при его основании будут одинаковы:

∠OCA = ∠OAC = α

∠СОВ – внешний для ∆АОС. Напомним, что такой угол равен сумме тех 2 углов треуг-ка, которые с ним не смежны. В частности, в данном случае можно записать

∠СОВ = ∠OCA = ∠OAC = α + α = 2α

Но этот же угол – центральный, и его величина равна ⋃ВС:

⋃BC = 2α

Получается, что дуга вдвое больше вписанного угла.

Далее рассмотрим случай, когда диаметр, проведенный из вершины вписанного угла, делит его на две части:

18 Ugly v okruzhnosti

В этом случае вписанный угол ∠СAВ можно представить как сумму углов ∠САD (обозначен как α)и ∠ВАD (обозначен как β). Мы уже доказали, что дуги, на которые опираются эти углы, вдвое больше самих углов:

19 Ugly v okruzhnosti

Осталось рассмотреть третий случай, при котором обе стороны вписанного угла ∠ВАС лежат по одну сторону от диаметра:

20 Ugly v okruzhnosti

Если здесь обозначить ∠САD как α, а ∠ВАD как β, то интересующий нас ∠СAВ можно представить как их разность:

21 Ugly v okruzhnosti

Итак, во всех трех возможных случаях вписанный угол оказывается вдвое меньше дуги, на которую он опирается.

Задание. Найдите ∠ВАС на рисунке:

22 Ugly v okruzhnosti

Задание. Найдите вписанный ∠AВС, сели прилегающие к нему дуги ⋃AВ и ⋃ВС равны 100° и 128°.

23 Ugly v okruzhnosti

Решение. В сумме дуги ⋃АС, ⋃ВС и ⋃AВ образуют окруж-ть, поэтому их сумма составляет 360°. Тогда можно найти ⋃АС:

24 Ugly v okruzhnosti

Задание. Найдите дугу SM на рисунке:

25 Ugly v okruzhnosti

Решение. Сначала найдем дугу ⋃MN, она вдвое больше соответствующего ей вписанного угла:

⋃NM = 2*NSM = 2*35° = 70°

Заметим, что ⋃SN– это полуокружность, то есть она составляет 180°. При этом ⋃SM и ⋃MN вместе как раз образуют эту полуокружность, то есть их сумма также составляет 180°. Значит, ⋃МS можно найти, вычтя из полуокружности ⋃MN:

⋃MS = ⋃SN — ⋃MN = 180° — 70° = 110°

Ответ: 110°.

Заметим, что для одной дуги можно построить несколько вписанных углов. Каждый из них будет равен половине дуги, то есть все эти углы окажутся одинаковыми.

26 Ugly v okruzhnosti

Задание. Найдите ∠АСD на рисунке:

27 Ugly v okruzhnosti

Решение. Так как ∠ACD и ∠ABD опираются на одну дугу ⋃AD, то они должны быть одинаковыми:

∠ACD = ∠ABD = 63°

Ответ: 63°.

Задание. Докажите, что две дуги, находящиеся между двумя параллельными секущими окруж-ти, равны друг другу.

Решение.

28 Ugly v okruzhnosti

Нам надо доказать, что ⋃AВ и ⋃CD равны, если АС||BD. Проведем секущую ВС:

29 Ugly v okruzhnosti

∠СВD и ∠АСВ равны, ведь они накрест лежащие. Получается, что ⋃AВ и ⋃CD являются основаниями равных вписанных углов. Отсюда вытекает, что эти дуги должны быть равными.

Напомним, что диаметр разбивает окруж-ть на две дуги по 180°. Отсюда можно сделать вывод – любой угол, опирающийся на полуокружность, должен составлять 180°:2 = 90°:

30 Ugly v okruzhnosti

Задание. Диаметр окруж-ти AВ равен 17. Хорда ВС имеет длину 8. Какова длина хорды АС?

Решение.

31 Ugly v okruzhnosti

Так как ∠АСВ опирается на диаметр AВ, то он прямой. Значит, и ∆АСВ – прямоугольный, причем диаметр AВ в нем – гипотенуза. Неизвестный катет можно найти по теореме Пифагора:

32 Ugly v okruzhnosti

Задание. Окруж-ть разбита на две дуги, ⋃AВС и ⋃СDA. Известно, что ∠AВС = 72°. Найдите ADC.

Решение.

33 Ugly v okruzhnosti

Зная ∠AВС, мы легко найдем дугу ⋃ADC, она вдвое больше опирающегося на нее вписанного угла:

34 Ugly v okruzhnosti

Углы между хордами и секущими

До этого мы рассматривали простые углы в окруж-ти, вершины которых лежали либо на самой окруж-ти, либо в ее центре. Однако иногда хорды и секущие пересекаются в другой точке, либо внутри, либо вне окруж-ти. Рассмотрим подобные задачи.

Более прост случай, когда необходимо найти угол между двумя пересекающимися хордами. Пусть хорды при пересечении образовали дуги ⋃AВ и ⋃СD величиной α и β. Каков угол между ними?

35 Ugly v okruzhnosti

Проведем ещё одну хорду АD. В результате получим вписанные ∠САD и ∠ADB, которые будут равны половинам от соответствующих дуг, то есть α/2 и β/2. Интересующий нас ∠СPD оказывается внешним для ∆APD, и потому равен сумме двух углов в ∆APD (тех, которые с ним не смежны), то есть он составляет величину α/2 + β/2:

36 Ugly v okruzhnosti

Величину α/2 + β/2 можно записать и иначе, вынеся множитель 1/2 за скобки:

α/2 + β/2 = (α + β)/2

Эту величину можно назвать полусуммой дуг, на которые опирается интересующий нас угол.

37 Ugly v okruzhnosti

Задание. Найдите ∠МКВ на рисунке:

38 Ugly v okruzhnosti

Решение. Интересующий нас угол опирается на хорды величиной 38° и 42°. Значит, он равен половине от их суммы:

∠MKB = (42° + 38°)/2 = 80°/2 = 40°

Ответ: 40°.

В более сложном случае необходимо найти угол между секущими, которые пересекаются вне окруж-ти. При этом известны дуги, образованные этими секущими:

39 Ugly v okruzhnosti

Снова проведем хорду АD, чтобы у нас получились два вписанных угла, ∠ADB и ∠СAD, которые соответственно будут иметь величину β/2 и α/2:

40 Ugly v okruzhnosti

Теперь уже ∠САD оказывается внешним для ∆ADK, а потому он является суммой двух других углов:

41 Ugly v okruzhnosti

В итоге получили, что угол между секущими составляет половину от разности дуг, которые они отсекают от окруж-ти.

42 Ugly v okruzhnosti

Задание. Найдите на рисунке величину∠К, если ⋃AВ и ⋃СD соответственно равны 42° и 130°:

43 Ugly v okruzhnosti

Решение. В этой задаче просто используем доказанную теорему об углах между секущими. Искомый угол составляет половину от разности дуг, заключенных между секущими:

∠K = (130° — 42°):2 = 88°/2 = 44°

Ответ: 44°.

Теорема о произведении отрезков хорд

Можно заметить, что при пересечении двух хорд образуется пара подобных треугольников. Пусть хорды ADи ВС пересекаются в точке K. Добавим хорды AВ и СD и получим ∆AВК и ∆КСD:

44 Ugly v okruzhnosti

На дугу ⋃BD опираются вписанные углы∠А и ∠С, значит, они одинаковы. Также на одну дугу АС опираются ∠D и∠В, поэтому и они одинаково. Равенство двух углов уже означает, что треугольники подобны по первому признаку подобия (дополнительно можно заметить, что ∠АКВ и ∠СКD равны как вертикальные углы).

Из подобия ∆AВК и ∆СКD вытекает пропорция между их сторонами:

45 Ugly v okruzhnosti

Перемножив члены пропорции крест накрест, получим соотношение:

AK*KD = CK*BK

В результате нам удалось доказать следующее утверждение:

46 Ugly v okruzhnosti

Задание. Хорды AВ и CD пересекаются в точке М. Известны, что АМ = 9, МВ = 3, МС = 2. Какова длина отрезка МD?

Решение.

47 Ugly v okruzhnosti

Хорда AВ разбивается на отрезки АМ и МВ, а хорда CD – на отрезки СМ и МD. Произведения этих отрезков одинаковы:

AM*MB = CM*MD

Подставим в это равенство известные величины

48 Ugly v okruzhnosti

Рассмотрим ещё одну геометрическую конструкцию. Пусть из некоторой точки А к окруж-ти проведена как касательная к окружности АК, так и секущая, пересекающая окруж-ть в точках В и С:

49 Ugly v okruzhnosti

Какие здесь есть взаимосвязи между углами и длинами отрезков? Для начала проведем хорды ВК и СК, а также радиусы ОК и ОВ. Обозначим буквой α угол ∠ВСК. Он вписанный, поэтому дуга, на которую он опирается (это ⋃ВК), вдвое больше и равна 2α. Тогда и центральный угол ∠ВОК также составляет 2α:

50 Ugly v okruzhnosti

Теперь исследуем ∆ВОК. Он равнобедренный (ВО и ОК – одинаковые радиусы), поэтому углы при его основании совпадают:

51 Ugly v okruzhnosti

Итак, углы при основании ∆ОВК, в частности ∠ОКВ, равны 90° – α. Заметим, что ∠ОКА – прямой, так как образован радиусом ОК и касательной АК, при этом он состоит из двух углов, ∠АКВ и ∠ВКО. Это позволяет найти ∠АКВ:

52 Ugly v okruzhnosti

В результате мы получили важный промежуточный результат – угол между касательной и хордой, проведенной из точки касания, вдвое меньше образующейся при этом дуги.

53 Ugly v okruzhnosti

Вернемся к картинке с секущей. Изначально как α мы обозначили ∠ВСК, но в результате получили, что и ∠АКВ = α.

54 Ugly v okruzhnosti

Рассмотрим ∆AВК и ∆САК. У них есть общий∠А, а также одинаковые ∠AКВ и ∠ВСК, которые отмечены буквой α. Значит, ∆AВК и ∆САК подобны, поэтому мы имеем право записать пропорцию между его сторонами:

55 Ugly v okruzhnosti

Здесь отрезок АС можно назвать секущей, а AВ – ее внешней частью. Тогда выведенное отношение можно сформулировать так:

56 Ugly v okruzhnosti

Решение. Сначала находим длину всей секущей, пользуясь доказанной теоремой:

57 Ugly v okruzhnosti

Решение. Проведем из точки А ещё и касательную АК к окруж-ти:

58 Ugly v okruzhnosti

Величину квадрата касательной АК можно найти, используя секущую АС. Сначала вычислим длину АС:

59 Ugly v okruzhnosti

Ответ: 3,8.

Задачи на квадратной решетке

Рассмотрим несколько несложных задач, часто встречающихся на экзаменах.

Задание. Найдите ∠AВС на рисунке:

60 Ugly v okruzhnosti

Решение. Здесь следует заметить, что расстояние между А и С составляет 8 клеток, при этом в окруж-ть как раз можно вписать квадрат со стороной 8.

61 Ugly v okruzhnosti

Такой квадрат разобьет окруж-ть на 4 дуги, причем так как эти дуги опираются на хорды одинаковой длины, то они и сами равны. Вся окруж-ть составляет 360°, значит, каждая из этих дуг составляет 360°:4 = 90°. ∠AВС – вписанный, то есть он составляет половину дуги, на которую он опирается, а это⋃АС, равная 90°. Тогда

∠ABC = 90°:2 = 45°

Ответ: 45°.

Задание. Найдите ∠AВС, используя рисунок:

62 Ugly v okruzhnosti

Решение. Используя рассуждения из предыдущей задачи, легко определить, что∠А составляет 45°.При этом ∆AВС – равнобедренный, и ВС – его основание. Это следует хотя бы из того факта, что высота АН делит сторону ВН пополам.

63 Ugly v okruzhnosti

Углы∠В и ∠С одинаковы, так как лежат при основании равнобедренного треуг-ка. Найдем их, используя тот факт, что все 3 угла в ∆AВС составляют в сумме 180°:

64 Ugly v okruzhnosti

Задание. Вычислите ∠AВС:

65 Ugly v okruzhnosti

Решение. Снова в окруж-ть можно вписать квадрат со стороной 8 клеток. Из этого следует что ⋃АВС составляет 90° (показана фиолетовым цветом):

66 Ugly v okruzhnosti

Но ∠АВС опирается на синюю дугу. Так как вместе фиолетовая и синяя дуга составляют окружность, равную 360°, то синяя дуга должна быть равна 360° – 90° = 270°. ∠АВС как вписанный будет вдвое меньше, то есть он равен 270°:2 = 135°.

Ответ: 135°.

Задание. Чему равен ∠AВС на рисунке?

67 Ugly v okruzhnosti

Решение.

Если вписать в окруж-ть квадрат то он разобьет окруж-ти на дуги по 90°. В свою очередь точка А является серединой такой дуги, то есть она разбивает ее на две дуги по 45°.

68 Ugly v okruzhnosti

∠AВС как вписанный будет вдвое меньше, то есть он равен 22,5°.

Решаем задачи по геометрии: углы в окружностях

Основные теоремы

Определение 1. Угловой величиной дуги называется отношение длины этой дуги к длине окружности, умноженное на 2π.

Теорема 1. Величина центрального угла равна угловой величине дуги, на которую он опирается.

Теорема 2. Величина вписанного угла равна половине угловой величины дуги, на которую он опирается.
Следствие. Вписанные углы, опирающиеся на одну и ту же дугу или на равные дуги одной окружности, равны.

Теорема 3. Угол между касательной и хордой, выходящими из одной точки окружности, измеряется половиной угловой величины дуги, заключенной внутри этого угла (рис. 1).

Теорема 4. Угол, вершина которого расположена вне круга, измеряется полуразностью угловых величин дуг окружности этого круга, заключенных внутри угла (рис. 2).

Теорема 5. Угол, вершина которого расположена внутри круга, измеряется полусуммой угловых величин дуг, которые высекают из окружности круга стороны угла и их продолжения (рис. 3).

Теорема 6. Сумма противоположных углов четырехугольника, вписанного в окружность, равна π, и наоборот, если сумма противоположных углов выпуклого четырехугольника равна π, то вокруг этого четырехугольника можно описать окружность.

Теорема 7. Произведения длин отрезков двух пересекающихся хорд равны (см. рис. 3).

Теорема 8. Произведение длины отрезка секущей на длину ее внешней части есть величина постоянная, и она равна квадрату длины касательной, проведенной к окружности из той же точки (рис. 4).

Доказательства некоторых теорем

Доказательство теоремы 4. Рассмотрим сначала случай, когда лучи, образующие данный угол, пересекают окружность каждый в двух различных точках (рис. 5).

Обозначим через O вершину угла, а точки пересечения лучей и окружности через A, B, C и D (A между O и B, C между O и D). Тогда

Первое равенство верно, так как в треугольнике OBC внешний угол BCD равен сумме двух внутренних углов, с ним не смежных.
Пусть теперь один из лучей (например, OA) касается окружности в точке A, а другой пересекает ее в точках B и C; B между O и C (рис. 6).

Тогда

И наконец, пусть оба луча OA и OB касаются окружности в точках A и B (рис. 7).

Тогда треугольник OAB является равнобедренным, и

где дуга ACB — большая из дуг окружности, заключенных между точками A и B.

Доказательство теоремы 5. Пусть хорды AB и CD окружности пересекаются в точке O (рис. 8). Так как в треугольнике OBD внешний угол AOD равен сумме двух внутренних углов, с ним не смежных, то

Доказательство теоремы 8. Докажем сначала первую часть теоремы. Пусть OB и OD — две секущие к окружности, а OA и OC — соответственно их внешние части. Так как углы ABC и ADC равны (как вписанные, опирающиеся на одну и ту же дугу), то треугольники AOD и BOC подобны (по двум углам). Следовательно,

Пусть теперь OK — касательная к окружности, а OB — секущая (OA ее внешняя часть) (рис. 9).

Так как угол OKA равен половине угловой величины дуги KA (как угол между касательной и хордой), а угол KBA равен половине угловой величины дуги KA (как вписанный, опирающийся на эту дугу), то ∠OKA = ∠KBA, и треугольник OKA подобен треугольнику KOB (по двум углам). Имеем:

Решения задач

Задача 1. Правильный треугольник ABC со стороной, равной 3, вписан в окружность. Точка D лежит на окружности, причем длина хорды AD равна (рис. 10). Найти длины хорд BD и CD.

Решение.

Легко видеть, что радиус окружности, описанной около правильного треугольника со стороной a, равен
начит, радиус данной окружности равен . Пусть O — центр данной окружности. В треугольнике AOD все стороны равны. Поэтому ∠DAO = 60°. Кроме того, так как треугольник ABC — правильный, то ∠OAC = 30°.
Значит, ∠DAC = 90°, и треугольник DAC — прямоугольный. Следовательно, CD — диаметр окружности, и Значит, и треугольник BCD прямоугольный, откуда по теореме Пифагора находим, что Ясно, что при переобозначении точек B и C получим, что

Ответ: и

Задача 2. Окружность радиуса R проходит через вершины A и B треугольника ABC и касается прямой AC в точке A (рис. 11). Найти площадь треугольника ABC, зная, что ∠ABC = β, ∠CAB = α.

Решение. Угол α между касательной AC и хордой AB, выходящими из точки A окружности, равен половине угловой величины дуги AB и, значит, равен любому вписанному углу, опирающемуся на ту же дугу. Поэтому мы можем применить теорему синусов: AB = 2Rsin α.
Рассмотрим треугольник ABC, к которому также применим теорему синусов:

Следовательно,

Ответ:

Задача 3. Вокруг треугольника ABC описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке E (рис. 12). Известно, что AB + AD = DE, угол BAD равен 60° и AE = 6. Найти площадь треугольника ABC.

Решение. Пусть AB = x, AD = y, тогда, согласно условию задачи, DE = x + y. Так как в окружности произведения отрезков двух пересекающихся хорд равны, имеем:
AD∙DE = BD∙DC ⇔
Применим к треугольнику ABD теорему косинусов:
BD2 = AB2 + AD2 – 2AB∙AD∙cos ∠BAD ⇔
⇔ x2 = 2xy ⇔ x = 2y.
Условие AE = 6 дает равенство x + 2y = 6. Подставляя в него x = 2y, находим: x = 3. Искомая площадь равна

Ответ:

Задача 4. На стороне AC остроугольного треугольника ABC взята точка D так, что AD = 1,
DC = 2 и BD является высотой треугольника ABC. Окружность радиуса 2, проходящая через точки A и D, касается в точке D окружности, описанной около треугольника BDC (рис. 13). Найти площадь треугольника ABC.

Решение. Треугольник BCD — прямоугольный, поэтому центр описанной около него окружности есть середина M стороны BC. Пусть O — центр окружности радиуса 2, проходящей через A и D. Так как данные окружности касаются, то точки O, D, M лежат на одной прямой. А из равенства углов ADO и CDM, в силу равнобедренности треугольников ADO и CDM, следует подобие этих треугольников. Значит, DM = 4 и BC = 2 DM = 8.Применив теорему Пифагора к треугольнику BCD, получим, что Следовательно,

Ответ:

Задача 5. Дан треугольник ABC, в котором
BC = 5. Окружность проходит через вершины B и C и пересекает сторону AC в точке K так, что
CK = 3, KA = 1. Известно, что косинус угла ACB равен (рис. 14). Найти отношение радиуса данной окружности к радиусу окружности, вписанной в треугольник ABK.

Решение. Применим к треугольнику ABC теорему косинусов:
AB2 = BC2 + AC2 – 2BC∙AC∙cos ∠ACB = 9 ⇒
⇒ AB = 3.
Следовательно, треугольник ABC — прямоугольный (так как его стороны равны 3, 4, 5). Треугольник ABK также прямоугольный, применив к нему теорему Пифагора, получим, что Значит, радиус вписанной в треугольник ABK окружности равен

Статья опубликована при
поддержке учебного центра «НП МАЭБ» в Санкт-Петербурге. Организация работы службы охраны труда и производственной безопасности, обучение профессионалов в этой области. Программы пожарно-технического минимума для руководителей и специалистов, стропальщики, лифтеры, машинисты подъемника, рабочие по работе с баллонами со сжиженными углеводородными газами и др. Узнать подробнее о центре, цены, контакты и оставить заявку Вы сможете на сайте, который располагается по адресу: http://www.maeb.ru/.

Окружность, данная в условии задачи, описана около треугольника BCK. По теореме синусов ее радиус равен

Тогда искомое отношение равно

Ответ:

Задача 6. В треугольнике ABC известны стороны AB = 6, BC = 4, AC = 8. Биссектриса угла C
пересекает сторону AB в точке D. Через точки A, D, C проведена окружность, пересекающая сторону BC в точке E (рис. 15). Найти площадь треугольника ADE.

Решение. Биссектриса CD угла ACB делит сторону AB на отрезки, пропорциональные прилежащим сторонам, поэтому AD = 4 и BD = 2. Далее, углы DAE и DCE равны, как опирающиеся на одну и ту же дугу, и аналогично равны углы AED и ACD. Но ∠ACD = ∠DCE, поэтому все четыре названных угла равны. Следовательно, треугольник ADE — равнобедренный и DE = 4.
Найдем синус угла ADE. Так как четырехугольник ADEC вписан в окружность, то
∠ADE + ∠ACE = 180°, sin ∠ADE = sin ∠ACE.
Применим к треугольнику ABC теорему косинусов:

Значит,

Ответ:

Задача 7. Вокруг треугольника ABC со сторонами AC = 20 и углом B, равным 45°, описана окружность. Через точку C проведена касательная к окружности, пересекающая продолжение стороны AB за точку A в точке D (рис. 16). Найти площадь треугольника BCD.

Решение. Угол ABC равен половине угловой величины дуги AC, как вписанный угол, опирающийся на эту дугу. Угол ACD также равен половине угловой величины дуги AC, как угол между касательной и хордой. Следовательно, эти углы равны, и треугольники DBC и DCA подобны по двум углам. Площади этих треугольников относятся как квадрат коэффициента подобия. Найдем этот коэффициент, он равен BC : AC. Пусть BC = 10x, тогда, применив к треугольнику ABC теорему косинусов, получим:


Значит,

Поэтому

С другой стороны, легко вычислить

Значит,

Ответ:

Задача 8. В окружность радиуса 17 вписан четырехугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности (рис. 17). Найти длины сторон четырехугольника.

Решение. Обозначим исходный четырех­угольник через ABCD таким образом, чтобы точка B лежала на меньшей дуге AC, а точка A лежала на меньшей дуге BD. Пусть O — центр окружности, OQ и OP — перпендикуляры, опущенные из центра окружности на хорды AC и BD соответственно, M — точка пересечения
AC и BD. Тогда AQ = QC, BP = PD, OQMP — прямоугольник со сторонами OQ = PM = 8 и
OP = QM = 9. Применим к треугольнику COQ теорему Пифагора:


Аналогично из треугольника ODP получим, что

Значит,

Находим стороны четырехугольника ABCD, пользуясь теоремой Пифагора:

Ответ:

Задача 9. Пятиугольник ABCDE вписан в окружность единичного радиуса (рис. 18).
Известно, что и BC = CD. Чему равна площадь пятиугольника?

Решение. Пусть O — центр данной окружности. Так как стороны треугольника AOB равны 1, 1 и то этот треугольник прямоугольный, и угол AOB равен . Поскольку угол ABE равен , то угол AOE также равен , и BE — диаметр окружности. Угол EBD равен  следовательно, угол EOD равен  а так как BC = CD, то
Итак, пятиугольник ABCDE состоит из двух прямоугольных и трех равносторонних треугольников. Его площадь равна

Ответ:

Задача 10. Выпуклый четырехугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K (рис. 19). Найти длину отрезка KC, если BC = 4, а AK = 6.

Решение. Так как AC — биссектриса угла BAD, то угол BAC равен углу CAD. С другой стороны, углы CAD и CBD равны (как вписанные, опирающиеся на одну и ту же дугу). Значит, угол BAC равен углу CBK. Следовательно, треугольник ABC подобен треугольнику BCK (по двум углам). Имеем:

Ответ: 2.

Задачи для самостоятельного решения

С-1. В треугольнике ABC имеем: AB = 20,
AC = 24. Известно, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой находится на стороне AC. Найдите радиус описанной около треугольника ABC окружности.
С-2. Дан прямоугольный треугольник ABC
с прямым углом при вершине C. Угол CAB равен α.
Биссектриса угла ABC пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.
С-3. На плоскости даны две пересекающиеся окружности. Первая имеет центр в точке O1 и радиус, равный 4, вторая — центр в точке O2 и радиус, равный  Отрезок O1O2 пересекает обе окружности, а угол KO1O2 равен 30° (где K — одна из точек пересечения окружностей). Вершина A равностороннего треугольника ABC является точкой пересечения второй окружности и отрезка O1O2, а сторона BC — хордой первой окружности, перпендикулярной к прямой O1O2. Найдите площадь треугольника ABC, если известно, что AB < 4.
С-4. В окружность вписан четырехугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к AB, пересекает сторону CD в точке M. Докажите, что EM — медиана треугольника CED, и найдите ее длину, если AD = 8, AB = 4 и ∠CDB = α.
С-5. Трапеция ABCD вписана в окружность (BC C AD). На дуге CD взята точка E и соединена со всеми вершинами трапеции. Кроме того, известно, что ∠CED = 120° и ∠ABE – ∠BAE = α. Для треугольника ABE найдите отношение периметра к радиусу вписанной окружности.
С-6. В треугольнике ABC известно, что  BC = 4. Кроме того центр окружности, проведенной через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.
С-7. В треугольнике ABC на сторонах AB и AC выбраны соответственно точки B1 и C1 таким образом, что AB1 : AB = 1 : 3 и AC1 : AC = 1 : 2. Через точки A, B1 и C1 проведена окружность. Через точку B1 проведена прямая, пересекающая отрезок AC1 в точке D, а окружность — в точке E.
Найдите площадь треугольника B1C1E, если
AC1 = 4, AD = 1, DE = 2, а площадь треугольника ABC равна 12.
С-8. Диагонали четырехугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причем ∠DME = 80°, ∠ABD = 60°, ∠CBD = 70°. Где находится точка M: на диагонали или на ее продолжении? Ответ обоснуйте.
С-9. Через центр окружности, описанной около треугольника ABC, проведены прямые, перпендикулярные сторонам AC и BC. Эти прямые пересекают высоту CH треугольника или ее продолжение в точках P и Q. Известно, что CP = p, CQ = q. Найдите радиус окружности, описанной около треугольника ABC.
С-10. На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника ABC пополам и образует с прямой AB угол 15°. Найдите углы треугольника ABC.
С-11. Окружность касается сторон угла с вершиной O в точках A и B. На этой окружности внутри треугольника AOB взята точка C. Расстоя­ния от точки C до прямых OA и OB равны соответственно a и b. Найдите расстояние от точки C до хорды AB.
С-12. В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Вокруг треугольника ECB описана окружность, а касательная к этой окружности, проведенная в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что AF = a,
AD = b. Найдите EF.
С-13. В четырехугольнике ABCD диагонали AC и BD перпендикулярны и пересекаются в точке P. Длина отрезка, соединяющего вершину C с точкой M, являющейся серединой отрезка AD, равна  Расстояние от точки P до отрезка BC равно  и AP = 1. Найдите длину отрезка AD, если известно, что вокруг четырехугольника ABCD можно описать окружность.
С-14. В окружности проведены диаметр MN и хорда AB, параллельная диаметру MN. Касательная к окружности в точке M пересекает прямые NA и NB соответственно в точках P и Q. Известно, что MP = p, MQ = q. Найдите MN.
С-15. Через вершины A и B треугольника ABC проведена окружность, пересекающая стороны BC и AC в точках D и E соответственно. Площадь треугольника CDE в 7 раз меньше площади четырехугольника ABDE. Найдите DE и радиус окружности, если AB = 4 и ∠C = 45°.
С-16. Через точку L окружности проведена касательная и хорда LM длины 5. Хорда MN параллельна касательной и равна 6. Найдите радиус окружности.
С-17. Диагонали вписанного в окружность четырехугольника ABCD пересекаются в точке E, причем  BD = 6 и AD∙CE = DC∙AE. Найдите площадь четырехугольника ABCD.
С-18. В треугольнике ABC известно, что длина AB равна 3,  Хорда KN окружности, описанной около треугольника ABC, пересекает отрезки AC и BC в точках M и L соответственно. При этом ∠ABC = ∠CML, площадь четырехугольника ABLM равна 2, а длина LM равна 1. Найдите высоту треугольника KNC, опущенную из вершины C, и его площадь.
С-19. В треугольнике ABC точка D лежит на стороне BC, прямая AD пересекается с биссектрисой угла ACB в точке O. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC : AB = 3 : 2, а величина угла DAC в три раза больше величины угла DAB. Найдите косинус угла ACB.
С-20. Окружность, вписанная в равнобедренный треугольник ABC, касается основания AC в точке D и боковой стороны AB в точке E. Точка F — середина стороны AB, а точка G — точка пересечения окружности и отрезка FD, отличная от D. Касательная к данной окружности, проходящая через точку G, пересекает сторону AB в точке H. Найдите угол BCA, если известно, что FH : HE = 2 : 3.
С-21. На отрезке AB взята точка C и на отрезках AB и CB как на диаметрах построены окружности. Хорда AM большей окружности касается меньшей окружности в точке D. Прямая BD пересекает большую окружность в точке N. Известно, что ∠DAB = a, AB = 2R. Найдите площадь четырехугольника ABMN.
С-22. В треугольнике ABC биссектрисы AD и BL пересекаются в точке F. Величина угла LFA равна 60°.
1) Найдите величину угла ACB.
2) Вычислите площадь треугольника ABC, если ∠CLD = 45° и AB = 2.
С-23. Две окружности пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AD, если AB = 15, AC = 20 и AE = 24.
С-24. В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причем точка K
лежит на основании AD. В каком отношении прямая LN делит сторону AB, а прямая MK — сторону BC? Найдите отношение MN : KL, если LM : KN = 3 : 7.

Ответы:

Садовничий Ю.

Ключевые слова:         угол,   окружность,   хорда,    дуга,   центральный угол,    вписанный угол,    касательная,   секущая,    теорема о секущих,   теорема о касательной и секущей,   градусная мера дуги,    угол опирается на хорду,    угол опирается на дугу,   дуга стягивает хорду,    угол между хордой и касательной,    внутренный угол окружности,    внешний угол окружности.

Центральные и вписанные углы в окружности    

Центральный угол     в   окружности — угол с вершиной в ее центре и сторонами-радиусами.

Дуга окружности ,    соответствующей центральному углу — часть окружности внутри плоского угла.

Градусная мера     дуги окружности — градусная мера соответствующего центрального угла.

Вписанный угол — вершина которого лежит на окружности, а стороны пересекают эту окружность (хорды).

  • Вписанный угол опирается на хорду , которая соединяет точки пересечения сторон угла и окружности.
  • Вписанный угол опирается на дугу, заключенную между его сторонами.
  • Обозначение:   $AB^o$ — градусная мера дуги    $AB$   ,     равна центральному    углу   $AOB$.

_____________________________________________________________________________________

Теорема    Вписанный угол равен   половине   центрального    угла, что опирается    на ту же дугу.

Теорема$angle BAC=frac{angle BOC}{2}=frac{BC^o}{2}$       $angle BAD=frac{angle BOD}{2}=frac{BD^o}{2}$       $angle DAC=frac{angle DOC}{2}=frac{DC^o}{2}$

_____________________________________________________________________________________

               

Случай 1:       Точка   $O$ принадлежит лучу   $AC$.

  • Пусть   $angle A = alpha$    ,   тогда   и    $angle B = alpha$ ,   ведь      $bigtriangleup AOB$   равнобедренный, его стороны    $OB=OA$   как радиусы.   
  • $angle BOC$   является внешним для треугольника , а значит равен сумме двух других углов:       $alpha+alpha=2alpha$     
  • угловое измерение дуги   $BC$   есть    $2alpha$       $Rightarrow$      вписанный угол   равен    половине дуги,    на которую он опирается.

Случай 2:       Точка   $O$ лежит   внутри   вписанного угла $angle BAC$ .   

  • Проведем диаметр    $AD$, обозначим      $angle BAD = alpha$    и тогда    дуга $BD$   равна   $2alpha$   (см. случай 1).
  • Обозначим $angle BAD$   за    $beta$ ,   тогда    дуга    $DC$   равна   $2beta$   ( так же из-за случая 1)          
  • $Rightarrow$         вся дуга     $BC = 2alpha + 2beta = 2left(alpha+betaright)$.    Но     $angle BAC$   ,   в свою очередь, равен     $alpha + beta$            
  • $Rightarrow$       вписанный угол   равен    половине дуги,   на которую он опирается.

Случай 3:       Точка   $O$   находится   вне   вписанного угла .     

  • Проведем диаметр   $AD$, обозначим   угол   $angle BAD$   через    $alpha$ ,   тогда   дуга    $BD$   равна   $2alpha$   (из-за случай 1).
  • $angle CAD$   обозначим через    $beta$ ,   тогда   дуга   $DC = 2beta$ (из-за случай 1).
  • Дуга     $BC$    является разностью большой   дуги   $BD$    и    дуги    $DC$       :       $BC=BD-DC=2alpha-2beta=2left(alpha-betaright)$
  • $Rightarrow$        Вписанный угол     $angle BAD = alpha — beta$. … вписанный угол   равен    половине дуги опирания.

Следствия теоремы о вписанном угле:

  1. Все вписанные углы,   стороны   которых проходят через $A$ и $B$, вершины лежат по одну сторону от прямой $AB$ , равны.
  2. Все вписанные углы, опирающиеся на одну и ту же дугу, равны меж собой.
  3. Вписанные углы,   опирающиеся на диаметр,   равны   90° , являются прямыми углами….центральный угол   180° .

             

Задача 1:        Точки   $A$,   $B$,    $C$   находятся на окружности   и делят ее на три дуги, градусные величины которых относятся как 1 : 3 : 5.               Найдите больший   угол   треугольника    $ABC$   в градусах.

  • Решение:      Пусть   меньшая   дуга   окружности   равна   $x$ ,    тогда     $x + 3x + 5x = 360^o$    ,     $9x = 360^o$    ,     $x = 40^o$           
  • Больший   угол    $bigtriangleup ABC$     опирается   на   большую дугу   и   равен    $5cdot40^o$    ,   для окружности   он   является   вписанным           
  • и   значит равен половине этой дуги   $frac{200}{2}$.                                   Ответ:     $100^o$

            

Задача 2:        В треугольнике   $ABC$     угол $B$    равен   $25^o$   .    Найти   угол   между   радиусом   описанной окружности   и   противоположной   стороной   $AC$.

  • Решение:          Обозначим   $angle ABC$     за   $x$   . Он вписанный     и     опирается на дугу   $AC$ , на   которую   так же опирается   центральный   угол   $AOC$.   
  • Вписанный   угол в два раза   меньше    центрального         $Rightarrow$       $angle AOC = 2x$.                 
  • $bigtriangleup AOC$       равнобедренный, т.к.   две его   стороны   являются радиусами ,
  • значит   углы   при    основании — хорде      $AC$ равны     и     $OAC=OCA=frac{180-2x}{2}=90-x=90-25=65$    .
  • Кстати, угол    $HOC=ABC=x$.          Ответ:     $65^o$

Задача 3:        Отрезки $AC$   и   $BD$ — диаметры окружности с центром   $O$ ,   образовали меж собой   угол   $COD$   равный    $58^o$.   Найти     $angle ACB$.

  • Решение:          Углы    $BOA$    и       $COD$      равны    как   вертикальные ,     поэтому      $angle BOA = 58^o$ .   
  • Искомый угол   $ACB$   — вписанный   и   он   опирается на   ту же дугу , что и центральный угол   $BOA$   .
  • По теореме о вписанных и центральных углах     $ACB=frac{1}{2}BOA=frac{1}{2}cdot58=29$            Ответ:     $angle ACB = 29^o$

Задача 4:        Найдите     $angle DEF$,     если градусные меры дуг $DE$ и   $EF$   равны    $161^o$   и   $53^o$    соответственно.                        

  • Решение:   $angle DEF$ — вписанный,   его градусная   мера   равна половине дуги, на которую он опирается.
  • Дуга    $FD = 360° – (161° + 53°) = 146°$         $Rightarrow$         $angle$ $DEF=frac{1}{2}146=73$                        Ответ:     $73^o$

Задача 5:        Найдите градусную меру   $angle ACB$ , если известно, что   $BC$ является диаметром окружности, а градусная мера центрального $angle AOC$    равна $96^o$.

  • Решение:          $angle ACB$ — вписанный, опирается на дугу    $AB$   и   равен   её половине. Найдем дугу $AB$.        
  • $BC$ — диаметр окружности,   дуга   $CAB$ равна   $180^o$.    $angle AOC$ — центральный угол.     По условию   $angle AOC = 96^o$ .   
  • $Rightarrow$       дуга   $AC = 96^o$ ,   а дуга    $AB = 180^o — 96^o = 84^o$ ,    тогда     $angle$ $ACB=frac{1}{2}84=42$.   Ответ:             $angle ACB = 42^o$

              

Задача 6:        Сторона   $AC$    треугольника   $ABC$   содержит   центр описанной около него окружности.   Найдите $angle C$,   если $angle A = 69^o$.

  • Решение: Важное свойство: вписанный     $angle В$ , опирающийся   на   диаметр     $AC$ ,    равен   $90^o$ .
  • Любой диаметр — развернутый центральный угол — опирается на   дугу   $180^o$           $Rightarrow$       $bigtriangleup ABC$        прямоугольный.
  • По свойству прямоугольного треугольника   сумма острых углов   равна      $90^o$    $Rightarrow$     $angle C=90^o-angle A=90^o — 69^o=21^o$ .
  • Ответ:     $angle C = 21^o$

Задача 7:         $AC$   и    $BD$ — диаметры окружности с центром   $O$.      $angle ACB$    равен     $57^o$.     Найдите    $angle AOD$ .

  • Решение:   $angle ACB$    является     вписанным     углом ,    значит     равен     половине    дуги,    на    которую    опирается …
  • градусная мера   дуги    $AB= 2B = 2cdot57^o=114^o$ .           $O$ — центр окружности лежит на    $BD$   ,     значит $BAD = 180^o$,        
  • тогда    дуга    $AD = 180^o — 114^o= 66^o$.     $angle AOD$ — центральный    и опирается    на    дугу   $AD$ ,
  • значит их градусные меры совпадают.           $Rightarrow$                  Ответ:     $angle AOD = 66^o$

                 

Задача 8:         В   окружности с   центром в   точке     $O$ проведены   диаметры    $AD$   и     $BC$ , угол    $OCD$   равен    $41^o$.     Найдите величину   $angle OAB$   .

  • Решение:   $angle OCD$       и     $angle OAB$ — вписанные    и    опираются на одну и ту же дугу     $DB$ , тогда …
  • … по свойству вписанных углов    они равны.      Таким образом,   $angle OAB$   то же    равен     $41^o$.         Ответ:     $angle OAB = 41^o$

Задача 9:        Диаметр    $AB$,    угол   $CDA$   равен   38°.        Найдите    величину     угла     $CAB$.

  • Решение: угол   $CDA$ —   вписанный,    значит     его   дуга     $AC^o=2cdot38^o=76^o$.         Тогда дуга     $BCD$    равна     $180 — 76 = 104^o$ ,
  • но на   нее опирается   вписанный угол   $CAB$        $Rightarrow$          $CAB=frac{1}{2}104^o$            Ответ:     $CAB = 52^o$   

О главном по теме:   Центральные и вписанные углы в окружности.            1.   Центральный угол     в   окружности — угол с вершиной в ее центре и сторонами-радиусами.         2.   Дуга окружности ,    соответствующей центральному углу — часть окружности внутри плоского угла.         3.   Градусная мера     дуги окружности — градусная мера соответствующего центрального угла.   4.   Вписанный угол — вершина которого лежит на окружности, а стороны пересекают эту окружность (хорды).   ….     Вписанный угол опирается на хорду , которая соединяет точки пересечения сторон угла и окружности. …. Вписанный угол опирается на дугу, заключенную между его сторонами.     Теорема    Вписанный угол равен   половине того центрального    угла, которая опирается    на ту же дугу.

Интерактивные Упражнения:

Задача 21:   Угол АВС равен 66. Найти все что можно. (Т)

Задачи из сайта https://resh.edu.ru :

Задача 22: Градусные меры дуг окружности относятся как 3 : 2 : 2 : 5. Найдите градусную меру большей из этих дуг.

Задача 23: Точки А, В, С, D отметили на окружности в порядке следования их в латинском алфавите. При этом оказалось, что дуга ВСD в 3 раза больше дуги BАD. Найдите градусную меру дуги BCD.

Задача 24: В окружности с центром О проведены две равные хорды MK и PN. Найдите градусную меру большей из дуг с концами M и K, если угол PON равен 110°

Задача 25: Вписанный угол CBA равен 80°, где AB – диаметр. Найдите угол CAB.

Задача 26: На окружности с центром в точке O взяли последовательно точки A, B, C так, что ∠AOC = 150°. Найдите градусную меру угла ABC.

Задача 27: Точки А, В и С лежат на окружности с центром О, ∠ВАС – вписанный угол. Про градусные меры дуг известно, что ∪AB : ∪BC : ∪AC = 3 : 1 : 2. Найдите АВС.

Задача 28: В окружности проведен диаметр AB и равные хорды AC и AD так, что ∠DAB = 40°. Найдите градусную меру угла CBD.

Задача 29: Три точки A,B,C делят окружность на части так, что ∪AB : ∪BC : ∪AC = 3 : 4 : 5. Найдите градусные меры из этих дуг.

Задача 30: Дана окружность с центром в точке О. На окружности взяты точки N, P, Q так, что угол РОQ в 2 раза меньше угла PON и в 3 раза меньше угла QON. Найдите градусную меру дуги PQ, которая не содержит точку N.

Задача 31: Вписанный угол ВСD равен 25°, дуга ВС имеет градусную меру 80°. Найдите градусную меру дуги CD.

Задача 32: На окружности взяли последовательно точки A, B, C, D так, что ∠ABC = 120°. Найдите градусную меру угла ADC.

Задача 33: На окружности с центром в точке О взяты точки K, М, N так, что MK – диаметр, а угол КОN равен 80°. Найдите угол КМN.

Треугольник описанный около окружности

Определение

Треугольник, описанный около окружности — это треугольник,
который находится около окружности и соприкасается
с ней всеми тремя сторонами.

На рисунке ниже изображена окружность, вписанная в треугольник;
и треугольник, описанный около окружности.

△ ABC — треугольник, описанный около окружности;
A, B, C — вершины треугольника, описанного около окружности;
F, D, E — точки касания треугольника, описанного около окружности;
O — центр окружности, вписанной в треугольник;
OD = OF = OE — радиусы треугольника, описанного около окружности;
AB, BC, CA — касательные;
FA = AE, EC = CD, FB = BD — отрезки касательных;
OF ⟂ AB, OD ⟂ BC, OE ⟂ AC;

Треугольник ABC имеет три точки, где соприкасаются
стороны и сама окружность, эти точки называют точками
касания
. У данного треугольника их всего три.

В любой треугольник можно вписать окружность, причем
только одну. Треугольник, в который вписана окружность
называется треугольником описанным около окружности.

Треугольники, описанные около окружности, обладают рядом
рядом отличительных свойств, характерных признаков, уникальными
терминами, а также формулам, по которым можно найти разные величины.

Формулы радиуса вписанной окружности, радиуса описанной окружности,
диаметра, средней линии, периметра, площади стороны позволяют выразить
одни величины через другие, рассчитать длину величины, узнать во сколько
раз одна величина отличается от другой, какая прослеживается взаимосвязь.

Длина любой величины произвольного
треугольника может измеряется в мм, см, м, км.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности треугольника, описанного около окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности треугольника, описанного около окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника, описанного около окружности.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac<1><2>ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника, описанного около окружности.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника, описанного около окружности.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника, описанного около окружности.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известны две стороны, ни одна из них не является
основанием, и косинус угла между ними:

Высота треугольника

h — высота треугольника, описанного около окружности.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

Свойства треугольника, описанного около окружности,
а также окружности, вписанной в треугольник, медиан,
высот, биссектрис, радиусов-перпендикуляров.

Свойство 1. Окружность, можно вписать
в любой треугольник, только один раз.

Свойство 2. Центр окружности, вписанной в треугольник —
точка пересечения биссектрис, центр окружности.

Свойство 3. Центр окружности, описанной около треугольника —
точка пересечения серединных перпендикуляров.

Свойство 4. Центры вписанной и описанной окружностей
равностороннего треугольника, описанного около
окружности совпадают, имеют одну общую точку.

Свойство 5. Отрезок, проведенный из центра треугольника,
описанного около окружности, к любой из сторон,
является радиусом.

Свойство 6. У любого треугольника центр
вписанной окружности находится только внутри.

Свойство 7. Окружность находящаяся внутри
треугольника, описанного около окружности,
касается всех его сторон.

Свойство 8. Вписанная окружность и треугольник,
описанный около окружности, имеют три общие точки,
которые лежат на трех сторонах треугольника.

Свойство 9. Формула радиуса вписанной окружности
у треугольника, описанного около окружности, и четырехугольника,
у которого суммы противоположных равны, совпадает.

Свойство 10. Радиус описанной около треугольника окружности,
можно выразить и рассчитать через Теорему Синусов.

Свойство 11. У треугольника, описанного около
окружности, радиус вписанной окружности, можно
рассчитать через площадь и полупериметр.

Свойство 12. Радиус в точку касания есть перпендикуляр.

Свойство 13. Окружность, вписанная в треугольник, разделяет
стороны треугольника на 3 пары равных отрезков.

Свойство 14. Стороны треугольника, описанного около
окружности, можно также называть касательными.

Свойство 15. Отрезки, которые проведены из центра вписанной
окружности, к точкам касания, перпендикулярны сторонам.

Свойство 16. Сумма углов треугольника, описанного
около окружности, равна 180 градусам.

Свойство 17. Центр вписанной окружности
равноудален от всех сторон треугольника.

Свойство 18. Центр вписанной в треугольник окружности в научных
кругах называется замечательной точкой треугольника, либо инцентром.

Свойство 19. Правильный треугольник, описанный около
окружности, имеет точки касания с окружность, в серединах сторон.

Свойство 20. Равнобедренный, прямоугольный, равносторонний
треугольники, описанные около окружности, в точке пересечения
биссектрис и центре окружности, имеют одну общую точку.

Признаки существования

Признак 1. Центр вписанной окружности —
это точка пересечения биссектрис.

Признак 2. На сторонах треугольника лежат
три точки касания вписанной окружности.

Признак 3. Вписанная окружность делит смежные
стороны треугольника на равные отрезки касательных.

Признак 4. У вписанной окружности три радиуса в точку касания быть перпендикулярами.

Исходя из вышеперечисленных признаков, исходных
данных, внешнего вида, можно определить является ли
треугольник описанным около окружности или же нет.

Признаки равенства

Признак 1. По двум сторонам и углу между ними.

Если две стороны и угол между ними одного треугольника, описанного
около окружности, равны двум сторонам и углу между ними другого
треугольника, описанного около окружности, то такие треугольники равны.

Признак 2. По стороне и двум прилежащим к ней углам.

Если сторона и два прилежащих к ней угла одного треугольника, описанного
около окружности, равны стороне и двум прилежащим к ней углам другого
треугольника, описанного около окружности, то такие треугольники равны.

Признак 3. По трем сторонам.

Если три стороны одного треугольника, описанного
около окружности, равны трем сторонам другого
треугольника, описанного около окружности.

Как мы знаем, любой треугольник может быть описан около
окружности, исходя из этого можно сказать, что около
окружности, могут быть описаны следующие виды треугольников:

  1. Разносторонний треугольник
  2. Равносторонний / правильный треугольник
  3. Прямоугольный треугольник
  4. Равнобедренный треугольник
  5. Равнобедренныйпрямоугольный треугольник
  • Прямоугольный треугольник, описанный около окружности

Характерные признаки: один из углов прямой,
длину сторон можно найти через Теорему
Пифагора, сумма острых углов 90 градусов.

Основные формулы:

  • Равнобедренный треугольник, описанный около окружности

Характерные признаки: два угла равны,
две стороны равны, третий угол можно
найти зная два других.

Основные формулы:

  • Равносторонний треугольник, описанный около треугольника

Характерные признаки: три угла и три стороны равны, точки пересечения медиан, высот, биссектрис совпадают.

Основные формулы:

Термины

Точка касания — это точка, где соприкасается вписанная
окружность с треугольником; это общая точка, для окружности
и треугольника, которая лежит на любой из сторон треугольника.

Инцентр — это точка, где пересекаются три биссектрисы
треугольника; это центр вписанной окружности в треугольник;
это одна из замечательных точек в геометрии.

Касательная — это сторона треугольника, которая имеет с
вписанной окружностью одну общую точку — точку касания.

Ортоцентр — точка, где пересекаются высоты треугольника.

Ось симметрии — это прямая, которая делит
треугольник на равные половины.

Замечательная точка — это точка пересечения медиан,
высот, биссектрис, серединных перпендикуляров.

Отрезок касательной — это отрезок, который берет начало
у одной из вершин треугольника, и имеет конец в точке касания.

Углы, связанные с окружностью

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Фигура Рисунок Теорема
Вписанный угол
Вписанный угол Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный угол Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный угол Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный угол Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольника

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Фигура Рисунок Теорема Формула
Угол, образованный пересекающимися хордами
Угол, образованный секущими, которые пересекаются вне круга
Угол, образованный касательной и хордой, проходящей через точку касания
Угол, образованный касательной и секущей
Угол, образованный двумя касательными к окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол, образованный пересекающимися хордами хордами
Формула:
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула:

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Формула:
Угол, образованный касательной и секущей касательной и секущей
Формула:

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы:

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

источники:

http://www.resolventa.ru/spr/planimetry/cangle.htm

http://ege-study.ru/ru/ege/materialy/matematika/vpisannyj-i-opisannyj-treugolnik-vpisannaya-i-opisannaya-okruzhnost/

Понравилась статья? Поделить с друзьями:
  • Как составить рассказ описание животного
  • Как составить рацион питания для щенка
  • Как найти центр круга при помощи циркуля
  • Как найти производную основу слова
  • Рекламный текст как его составить