Как найти величины для поля точечного заряда

Поле точечного заряда


Поле точечного заряда

4.5

Средняя оценка: 4.5

Всего получено оценок: 64.

4.5

Средняя оценка: 4.5

Всего получено оценок: 64.

Конфигурация электрического поля определяется распределением зарядов. Поэтому самый простой вид электрического поля — это поле точечного заряда. Кратко рассмотрим строение такого поля.

Описание поля с помощью силовых линий

Проявление электрического поля состоит в возникновении силы, действующей на заряды, внесенные в это поле. Поскольку эта сила зависит от величины заряда, то характеристикой поля является специальный параметр — напряженность, которая равна отношению этой силы к величине пробного заряда:

$$overrightarrow E = {overrightarrow F over q}$$

Напряженность электрического поля

Рис. 1. Напряженность электрического поля.

Для полного описания электрического поля необходимо знать модуль и направление вектора напряженности в любой точке.

Чтобы наглядно представить картину электрического поля, удобно нарисовать много векторов напряженности в рассматриваемой области. При этом векторы сольются в непрерывные линии. Такие линии называются силовыми линиями электрического поля, они всегда начинаются на положительном заряде, а заканчиваются на отрицательном. Информацию о модуле векторов в точке можно видеть из густоты этих линий.

Поле точечного заряда

Поскольку поле порождается электрическим зарядом, простейшим является поле точечного заряда. Строго говоря, в природе точечных зарядов нет: носителями заряда являются реальные элементарные частицы или тела, которые всегда занимают какой-то объем. Однако, если рассматриваемая область гораздо больше величины носителя заряда, то такой заряд с известной долей приближения можно считать точечным.

Сила, действующая на заряд, определяется формулой закона Кулона, известной в 10 классе:

$$F =k {q_1q_2 over R^2}$$

Напряженность такого поля, следовательно, равна:

$$E = {F over q}=k{q over R^2}$$

Она направлена по прямой, лежащей между зарядами. Следовательно, для того чтобы изобразить поле точечного заряда, необходимо помещать в различные точки пространства вокруг этого заряда пробный заряд и откладывать вектор кулоновской силы в этих точках.

Поскольку других зарядов в рассматриваемой ситуации нет — только точечный и пробный (он тоже точечный, с гораздо меньшей величиной) — то вектор силы, действующей на пробный заряд, будет всегда направлен по прямой, проходящей через исходный точечный заряд. Если таких векторов будет много, они сольются во множество радиальных линий.

При этом заметим, что по закону Кулона сила, действующая на пробный заряд, с увеличением расстояния падает. То есть густота силовых линий по мере удаления от точечного заряда должна уменьшаться. Для радиальных линий это так и есть.

Таким образом, электрическое поле точечного заряда представляет собой множество радиальных линий, расходящихся во все стороны от заряда. Если заряд положительный, то линии выходят из него, и уходят в бесконечность. Если заряд отрицательный — линии приходят из бесконечности в заряд.

Рис. 2. Поле точечного заряда.

Отметим, что описанный принцип построения силовых линий используется не только когда поле однородно, но и для полей, потенциал которых распределен в пространстве по сложному закону. В любом случае находятся векторы сил, действующих на пробный заряд, и по этим векторам строятся силовые линии. Поскольку на пробный заряд действуют сразу все рассматриваемые поля, для нахождения результирующей силы используется принцип суперпозиции полей (результирующая сила, действующая на пробный заряд, равна векторной сумме сил каждого отдельного поля, действующего на этот заряд).

Например, если рядом находятся два разноименных заряда, то картина электрического поля выглядит следующим образом:

Рис. 3. Поле электрического диполя.

Заключение

Что мы узнали?

Электрическое поле изображается в виде картины силовых линий. Их направление совпадает с направлением вектора напряженности, а густота характеризует его модуль. Электрическое поле точечного заряда представляет собой множество радиальных линий, выходящих из заряда и уходящих в бесконечность.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Виктор Лисицкий

    9/10

Оценка доклада

4.5

Средняя оценка: 4.5

Всего получено оценок: 64.


А какая ваша оценка?

Преподаватель который помогает студентам и школьникам в учёбе.

Потенциал поля точечного заряда в физике — формулы и определение с примерами

Потенциал поля точечного заряда:

Чтобы определить силу электрического поля, мы ввели в него пробный заряд и определили силу воздействия поля на этот заряд.

Напряженность электрического поля является характеристикой силы поля.

Потенциал поля точечного заряда в физике - формулы и определение с примерами

При введении пробного заряда в поле, оно оказывает сопротивление (рис. 7.7). Для преодоления сопротивления необходимо проделать определенную работу.
Как определяется эта выполненная работа?

Эта работа превращается в потенциальную энергию взаимодействия основного заряда и введенного пробного заряда:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Знак минус в формуле показывает, что между зарядами действует сила притяжения.

Потенциальная энергия Потенциал поля точечного заряда в физике - формулы и определение с примерами заряда, расположенного на расстоянии Потенциал поля точечного заряда в физике - формулы и определение с примерами от положительного неподвижного заряда Потенциал поля точечного заряда в физике - формулы и определение с примерами, определяется следующим выражением

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Положительный знак в формуле показывает, что между зарядами действует сила отталкивания.

Согласно формуле потенциальная энергия равняется нулю, когда расчет производится для бесконечного расстояния. На таких расстояниях заряды не взаимодействуют.

Таким образом, электрическое поле с приобретением характеристики силы будет иметь и энергетическую характеристику. Энергетическая характеристика поля определяется величиной, которая называется потенциалом поля.

Потенциалом электрического поля точечного заряда называется величина, измеряемая отношением потенциальной энергии взаимодействия основного и введенного в поле пробного заряда к величине пробного заряда:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Потенциал точечного заряда Потенциал поля точечного заряда в физике - формулы и определение с примерами определяется следующим образом:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Пользуясь понятием потенциала найдем работу, совершаемую при перемещении заряда Потенциал поля точечного заряда в физике - формулы и определение с примерами с расстояния Потенциал поля точечного заряда в физике - формулы и определение с примерами на расстояние Потенциал поля точечного заряда в физике - формулы и определение с примерами от заряда Потенциал поля точечного заряда в физике - формулы и определение с примерами, создающего электрическое поле:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

В этом выражении разница Потенциал поля точечного заряда в физике - формулы и определение с примерами является разницей потенциалов между точками, называется электрическим напряжением и записывается следующим образом:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Единица измерения потенциала и разность потенциалов называется Вольт (В) в честь итальянского ученого Вольта. Из формулы Потенциал поля точечного заряда в физике - формулы и определение с примерами следует, что Потенциал поля точечного заряда в физике - формулы и определение с примерами.

Это значит, что разность потенциалов точек равняется 1 вольту, когда заряд, равный 1 кулону, при перемещении из одной точки электрического поля в другую выполняет работу, равную 1 Дж.

Потенциалы точек, расположенных на одинаковых расстояниях от точечного заряда, равны. Если эти точки соединить между собой, образуется поверхность, которая называется эквипотенциальной поверхностью

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Эквипотенциальная поверхность точечного заряда располагается вокруг заряда в виде сконцентрированных кругов (рис. 7.8). Силовые линии поля проходят перпендикулярно к эквипотенциальной поверхности.

Межу напряженностью электрического поля и разностью потенциалов существует следующее соотношение:
 Потенциал поля точечного заряда в физике - формулы и определение с примерами

где Потенциал поля точечного заряда в физике - формулы и определение с примерами –расстояние между точками, потенциал которых равен Потенциал поля точечного заряда в физике - формулы и определение с примерами и Потенциал поля точечного заряда в физике - формулы и определение с примерами.
Отсюда получаем единицу измерения напряженности поля Потенциал поля точечного заряда в физике - формулы и определение с примерами.

Образец решения задачи:

В металлическую сферу радиусом 5 см, висящую в воздухе, подали заряд 30 нКл. Нужно найти потенциалы поля в точках, находящихся в 2 см от центра заряженной сферы, на поверхности сферы и удаленной от поверхности на расстояние 5 см.

Дано:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Найти:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Формула:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Решение:

Потенциал поля точечного заряда в физике - формулы и определение с примерами

Потенциал поля точечного заряда в физике - формулы и определение с примерамиПотенциал поля точечного заряда в физике - формулы и определение с примерами
Единица измерения: Потенциал поля точечного заряда в физике - формулы и определение с примерами

Ответ: 5400 В; 2700 В.

  • Работа электрического поля при перемещении заряда в физике
  • Энергия электрического поля
  • Электрическое поле заряженных неподвижных тел
  • Напряженность электрического поля
  • Электростатика
  • Закон сохранения заряда в физике 
  • Электрическое поле заряженного шара
  • Электрические явления в физике

Электростатика – раздел электродинамики,
изучающий взаимодействие неподвижных
электрических зарядов.

Электрический заряд – физическая
величина, определяющая силу электромагнитного
взаимодействия. Заряд обозначается
буквой q, измеряется
в кулонах (Кл).

В природе существует два вида
электрических зарядов
, которые условно
назвали «положительный» и «отрицательный».
Заряды одного знака отталкиваются,
разных знаков – притягиваются.

Электрический заряд всегда связан с
частицей. Существуют частицы без заряда,
но не существует заряда без частицы.
Величина электрического заряда не
зависит от скорости движения частицы.

Минимальный заряд, встречающийся в
природе, называется элементарным.
Величина элементарного заряда е =
1,6
10-19
Кл.
Заряды электрона, протона, позитрона
(античастица для электрона) равны по
модулю элементарному. Заряд любого
макроскопического тела кратен
элементарному, т. е. электрический заряд
– дискретная величина.

Все вещества состоят из атомов или
молекул. Атом состоит из положительно
заряженного ядра и отрицательно
заряженных электронов, движущихся
вокруг ядра. Поэтому любое макроскопическое
тело содержит электрически заряженные
частицы. Если суммарный заряд тела равен
нулю, то говорят что тело электрически
нейтральное или незаряженное. Электрический
заряд любой системы равен алгебраической
сумме зарядов тел, входящих в систему.
Заряды могут перераспределятся между
телами системы. Если система тел
электрически изолирована (через границу
системы не проникают другие заряды), то
в ней выполняется закон сохранения
заряда
:

алгебраическая сумма зарядов электрически
изолированной системы постоянна:

q1
+ q
2
+ … + q
n
= const.

Электризация – это процесс получения
электрически заряженных тел из
нейтральных.

При электризации трением одни вещества
отдают электроны, а другие их присоединяют.
Причина этого явления — в различии
энергии связи электронов с атомами в
этих веществах. Атом, потерявший электрон
называется положительным ионом,
присоединивший к себе электрон –
отрицательным ионом.

Точечный заряд – это заряженное
тело, размер которого много меньше
расстояния его возможного действия на
другие тела.

Закон Кулона (1875 г.): Сила взаимодействия
между двумя неподвижными точечными
зарядами, находящимися в вакууме, прямо
пропорциональна произведению модулей
зарядов, обратно пропорциональна
квадрату расстояния между ними и
направлена по прямой, соединяющей
заряды:
.

Коэффициент k, входящий
в закон Кулона, зависит от выбора системы
единиц. В системе СИ
.
Здесь

— электрическая постоянная.

Закон Кулона был получен экспериментально.
Он справедлив только для точечных
зарядов или равномерно заряженных
шаров. Электростатические взаимодействия
осуществляются посредством
электростатического поля.

Электростатическое поле это вид
материи который образуется неподвижными
электрическими зарядами и его можно
обнаружить по его действию на неподвижные
электрические заряды.

Силовой характеристикой электростатического
поля является напряженность
векторная физическая величина, численно
равная силе с которой поле действует
на единичный пробный положительный
заряд, помещенный в заданной точке поля.
.
Направление вектора напряженности
совпадает с направлением вектора силы,
действующей на положительный заряд,
помещенный в данной точке поля. Из закона
Кулона на основании определения
напряженности поля получаем формулу
для напряженности поля точечного заряда
на расстоянии r от него:

.

Для наглядности электростатическое
поле представляют непрерывными линиями
напряженности
– касательные к которым
в каждой точке совпадают по направлению
с направлением вектора напряженности
электростатического поля в данной
точке.

Линии напряженности не пересекаются
(в противном поле напряженность поля в
точке пересечения не имела бы определенного
значения); начинаются на положительных
зарядах (источники поля) и стекаются к
отрицательным зарядам (стоки). Модуль
вектора напряженности пропорционален
числу линий напряженности на густоте
линий напряженности можно судить о
модуле вектора напряженности на единицу
поверхности (густоте линий напряженности).

Электростатическое поле, векторы
напряженности которого одинаковы во
всех точках пространства, называется
однородным.

Принцип суперпозиции электрических
полей
: напряженность поля системы
зарядов в данной точке равна векторной
сумме напряженностей полей, созданным
в этой точке каждым зарядом в отдельности:
.

Теорема Гаусса.

Потоком вектора напряженности через
замкнутый контур площадью S
называется произведение проекции
вектора напряженности на нормаль к
контуру на площадь контура:
.

Поток вектора напряженности через
произвольную замкнутую поверхность
равен алгебраической сумме зарядов,
расположенных внутри этой поверхности,
деленной на электрическую постоянную:
.

Напряженность поля точечного заряда.

Для
определения напряженности проведем
сферическую поверхность S
радиусом r с центром
совпадающим с зарядом и воспользуемся
теоремой Гаусса. Так как внутри указанной
области находится только один заряд q,
то согласно указанной теореме получим
равенство:

(1), где En
— нормальная составляющая напряженности
электрического поля. Из соображений
симметрии нормальная составляющая
должна быть равна самой напряженности
и постоянна для всех точек сферической
поверхности, поэтому E=En=const.
Поэтому ее можно вынести за знак суммы.
Тогда равенство (1) примет вид
,
что и было получено из закона Кулона и
определения напряженности электрического
поля.

Электрическое поле заряженной сферы

Если
сфера проводящая, то весь заряд находится
на поверхности. Рассмотрим две области
I – внутри сферы радиуса
R с зарядом q
и вне сферы область II.

Для определения напряженности в области
I проведем сферическую
поверхность S1
радиусом r1 (0<r1<R)
и воспользуемся теоремой Гаусса. Так
как внутри указанной области зарядов
нет, то согласно указанной теореме
получим равенство:

(1), где En
— нормальная составляющая напряженности
электрического поля. Из соображений
симметрии нормальная составляющая
должна быть равна самой напряженности
и постоянна для всех точек сферической
поверхности, поэтому E1=En=const.
Поэтому ее можно вынести за знак суммы.
Тогда равенство (1) примет вид
.
Т. к. площадь сферы не равна нулю, то Е1=0
(во всех точках области I)
– внутри проводника зарядов нет и
напряженность поля равна нулю.

В области II Rr2
проведем сферическую поверхность S2
радиусом r2 и
воспользуемся теоремой Гаусса:


(2), 

— напряженность поля вне сферы
рассчитывается по той же формуле, что
и напряженность поля точечного заряда.

Электрическое поле заряженного шара

Заряд равномерно распределен по всему
объему шара, поэтому введем понятие
объемной плотности заряда:
.
Рассмотрим две области I
– внутри сферы радиуса R
с зарядом q и вне сферы
область II.

Для определения напряженности в области
I проведем сферическую
поверхность S1
радиусом r1 (0<r1<R)
и воспользуемся теоремой Гаусса:

— напряженность поля внутри шара
увеличивается прямо пропорционально
расстоянию до центра шара.

В области II R
 r2
проведем сферическую поверхность S2
радиусом r2 и
воспользуемся теоремой Гаусса:


(2), 

— напряженность поля вне шара рассчитывается
по той же формуле, что и напряженность
поля точечного заряда.

Электрическое поле заряженной нити

Для
равномерно заряженной нити введем
понятие линейной плотности заряда.
Для определения напряженности окружим
участок проволоки длиной ℓ
цилиндрической поверхностью S
радиусом r с осью совпадающей
с проволокой и воспользуемся теоремой
Гаусса. При этом весь поток вектора
напряженности будет проходить только
через боковую поверхность цилиндра,
площадь которой
,
т.к. поток через оба основания цилиндра
равен нулю. Тогда

— напряженность поля нити убывает обратно
пропорционально расстоянию.

Напряженность поля заряженной плоскости

Если
плоскость бесконечна и заряжена
равномерно, т. е. поверхностная плотность
заряда  = q/S
одинакова в любом ее месте, то линии
напряженности электрического поля в
любой точке перпендикулярны этой
плоскости. Такое же направление они
сохраняют и на любом расстоянии от
плоскости, т.е. поле заряженной плоскости
однородное.

Для нахождения напряженности электрического
поля заряженной плоскости мысленно
выделим в пространстве цилиндр, ось
которого перпендикулярна заряженной
плоскости, а основания параллельны ей
и одно из оснований проходит через
интересующую нас точку поля. Цилиндр
вырезает из заряженной плоскости участок
площадью S, и такую же
площадь имеют основания цилиндра,
расположенные по разные стороны от
плоскости (рис.). Согласно теореме Гаусса
поток Ф вектора напряженности
электрического поля через поверхность
цилиндра связан с электрическим зарядом
внутри цилиндра выражением
.
С другой стороны, так как линии
напряженности пересекают лишь основания
цилиндра, поток вектора напряженности
можно выразить через напряженность
электрического поля у обоих оснований
цилиндра:
.
В самом деле, поток через боковую
поверхность цилиндра (см. рис.), равен
нулю, поскольку линии напряженности
параллельны боковой поверхности
цилиндра.

Из двух выражений для потока вектора
напряженности получим:
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #

§ 2. Закон Кулона. Поле точечного заряда. Силовые линии электрического поля

Опытным путём установлен закон Кулона:

сила взаимодействия двух  точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:

$$ F=k{displaystyle frac{left|{q}_{1}right|left|{q}_{2}right|}{{r}^{2}}} $$.                                                            (2.1)

Здесь `F` — модуль силы, `k` — коэффициент пропорциональности, зависящий от  выбора системы единиц, `q_1` и `q_2` — величины зарядов, `r` — расстояние между  зарядами. 

Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).

Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) –  заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.

Найдём размерность (обозначается квадратными скобками) коэффициента `k` в формуле (2.1) закона Кулона. Для размерностей физических величин в (2.1) выполняется соотношение, аналогичное соотношению (2.1) между самими величинами: $$ left[Fright]=left[kright]{displaystyle frac{left[{q}_{1}right]left[{q}_{2}right]}{left[{r}^{2}right]}}$$.

Поскольку $$ left[Fright]=H=mathrm{кг}·mathrm{м}/{mathrm{с}}^{2}, left[{q}_{1}right]=left[{q}_{2}right]=mathrm{Кл}=mathrm{А}·mathrm{с}, left[{r}^{2}right]={mathrm{м}}^{2}$$, то 

$$ left[kright]={displaystyle frac{left[Fright]left[{r}^{2}right]}{left[{q}_{1}right]left[{q}_{2}right]}}={displaystyle frac{mathrm{Н}·{mathrm{м}}^{2}}{{mathrm{Кл}}^{2}}}={displaystyle frac{mathrm{кг}·{mathrm{м}}^{3}}{{mathrm{А}}^{2}·{mathrm{с}}^{4}}}$$.

Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо. 

Приведём значение коэффициента `k` в (2.1) для системы СИ:

$$ k=9·{10}^{9}{displaystyle frac{mathrm{кг}·{mathrm{м}}^{3}}{{mathrm{А}}^{2}·{mathrm{с}}^{4}}}=9·{10}^{9} mathrm{ед}. mathrm{СИ}$$.

Заметим, что вместо выражения для размерности после численного значения можно писать «ед. СИ» (единицы СИ). Иногда в системе СИ коэффициент `k` в (2.1) записывают в форме $$ k={displaystyle frac{1}{4pi {epsilon }_{0}}}$$.

Здесь $$ {epsilon }_{0}=mathrm{8,85}·{10}^{-12}$$ ед. СИ называется электрической постоянной.

Найдём напряжённость электрического поля, созданного точечным зарядом `Q` на расстоянии `r` от заряда. Для этого поместим мысленно на расстоянии `r` от `Q` пробный заряд `q`. По закону Кулона на `q` действует сила $$ F=left|overrightarrow{F}right|=kleft|Qright|left|qright|/{r}^{2}$$. Напряжённость поля (созданного зарядом `Q`) в месте расположения `q` равна `vecE=vecF//q`. Отсюда `E=|vecE|=|vecF|//|q|`. С учётом выражения для `F` напряженность поля точечного заряда `Q` на расстоянии `r` от него 

$$ E=k{displaystyle frac{left|Qright|}{{r}^{2}}}$$.                                                     (2.2)

На рисунках 2.1 и 2.2 показаны случаи для `Q > 0` и `Q < 0`. Знак пробного заряда `q` выбран положительным из соображений удобства, т. к. при таком выборе направление силы, действующей на `q`, совпадает с направлением напряжённости. 

Формулу (2.2) можно обобщить, избавившись от знака модуля:

$$ {E}_{x}=k{displaystyle frac{Q}{{r}^{2}}}$$                                                                 (2.3)

Здесь $$ {E}_{x}$$ – проекция напряжённости на ось `x`, направленную от заряда `Q` и проходящую через исследуемую точку. Справедливость (2.3) при любом знаке `Q` проверяется непосредственно (см. рис. 2.1, 2.2).

Силовой линией (линией напряжённости) электрического поля называется непрерывная линия, касательная в каждой точке которой совпадает с направлением вектора напряжённости электрического поля в этой точке.Наглядно электрические поля изображают с помощью силовых линий.

На рис. 2.3 приведена картина силовых линий электрического поля положительного точечного заряда.

Рис. 2.3

Стрелкой на каждой силовой линии указывается её направление, т. е. направление вектора напряжённости в каждой точке силовой линии. Полезно посмотреть и нарисовать самим картины силовых линий полей из школьного учебника. 

Все свойства силовых линий как электрического поля, так и электростатического поля, следуют из определения силовых линий и из законов электродинамики. Приведём некоторые свойства.

1. Силовые линии электрического поля не пересекаются. В противном случае в точках пересечения была бы неопределённость в направлении напряжённости поля.
2. Густота силовых линий электрического поля в пространстве пропорциональна напряжённости электрического поля.
3. Силовые линии электростатического поля не замкнуты. Они начинаются на положительных зарядах (или в бесконечности) и заканчиваются на отрицательных зарядах (или в бесконечности). При этом некоторая группа силовых линий (лучевая трубка) связывает равные по модулю заряды и число силовых линий, выходящих (входящих) из заряженного тела, не зависит от формы тела, а зависит только от величины заряда (пропорционально заряду).

Обратите внимание, что первые два свойства справедливы и для электростатического поля, как частного случая электрического. Третье же свойство справедливо только для электростатического поля, а для произвольного электрического поля выполняется не всегда.

Рис. 2.4

В двух вершинах равностороннего треугольника со стороной `a=1` м расположены точечные заряды $$ {q}_{1}=Q=1.4·{10}^{-7}mathrm{Кл}$$, $$ {q}_{2}=-2Q$$. Найти напряжённость (модуль) электрического поля в третьей вершине треугольника.

Пусть напряженность полей, созданных зарядами `Q` и `-2Q` в третьей вершине треугольника $$ overrightarrow{{E}_{1}}, overrightarrow{{E}_{2}}$$ (рис. 2.4). По принципу суперпозиции полей напряжённость результирующего поля $$ overrightarrow{E}=overrightarrow{{E}_{1}}+overrightarrow{{E}_{2}}.$$ Используя теорему косинусов для треугольника, составленного из векторов $$ overrightarrow{E}, overrightarrow{{E}_{1}}, overrightarrow{{E}_{2}}$$, получаем $$ {E}^{2}={{E}^{2}}_{1}+{{E}^{2}}_{2}-2{E}_{1}{E}_{2}mathrm{cos}60°. $$ Поскольку `E_1=kQ//a^2`, `E_2=2kQ//a^2`, `cos60^@=1//2`, то `E=sqrt3k Q/q^2~~2,2*10^3` Н/Кл.

Любые заряженные тела создают вокруг себя электростатическое поле. Рассмотрим особенности электростатического поля, создаваемого точечным зарядом и заряженной сферой.

Электростатическое поле точечного заряда

Направление силовых линий электростатического поля точечного заряда

Модуль напряженности не зависит от значения пробного заряда q0:

E=FKq0=kQq0r2q0=kQr2

Модуль напряженности точечного заряда в вакууме:

E=kQr2

Модуль напряженности точечного заряда в среде:

E=kQεr2

Сила Кулона:

FKулона=qE

Потенциал не зависит от значения пробного заряда q0:

φ=Wpqo=±kQq0rq0=±kQr

Потенциал точечного заряда в вакууме:

φ=±kQr

Потенциал точечного заряда в среде:

φ=±kQεr

Внимание! Знак потенциала зависит только от знака заряда, создающего поле.

Эквипотенциальные поверхности для данного случая — концентрические сферы, центр которых совпадает с положением заряда.

Работа электрического поля по перемещению точечного заряда:

A12=±q(φ1φ2)

Пример №1. Во сколько раз увеличится модуль напряженности электрического поля, созданного точечным зарядом Q в некоторой точке, при увеличении значения этого заряда в 5 раз?

Модуль напряженности электрического поля, созданного точечным зарядом, определяется формулой:

E=kQεr2

Формула показывает, что модуль напряженности и электрический заряд — прямо пропорциональные величины. Следовательно, если заряд, который создает поле, увеличится в 5 раз, то модуль напряженности создаваемого поля тоже увеличится в 5 раз.

Электростатическое поле заряженной сферы

Направление силовых линий электростатического поля заряженной сферы:

Модуль напряженности электростатического поля заряженной сферы:

Внутри проводника (расстояние меньше радиуса сферы, или r < R)

E=0

На поверхности проводника (расстояние равно радиусу сферы, или r = R)

E=kQR2

Вне проводника (расстояние больше радиуса сферы, или r > R)

E=kQr2=kQ(R+a)2

a — расстояние от поверхности сферы до изучаемой точки. r — расстояние от центра сферы до изучаемой точки.

Сила Кулона:

FK=qE

Потенциал:

Внутри проводника и на его поверхности (r < R или r = R)

φ=±kQR

Вне проводника (r > R)

φ=±kQr=±φ=±kQR+a

Пример №2. Определить потенциал электростатического поля, создаваемого заряженной сферой радиусом 0,1 м, в точке, находящейся на расстоянии 0,2 м от этой сферы. Сфера заряжена положительна и имеет заряд, равный 6 нКл.

6 нКл = 6∙10–9 Кл

Так как сфера заряжена положительно, то потенциал тоже положителен:

Задание EF18107

Два неподвижных точечных заряда действуют друг на друга с силами, модуль которых равен F. Чему станет равен модуль этих сил, если один заряд увеличить в n раз, другой заряд уменьшить в n раз, а расстояние между ними оставить прежним?

Ответ:

а) F

б) nF

в) Fn

г) n2F


Алгоритм решения

1.Записать исходные данные.

3.Применить закон Кулона к обоим зарядам для 1 и 2 случая.

4.Установить, как меняется сила, с которой заряды действуют друг на друга.

Решение

Запишем исходные данные:

 Первая пара зарядов: q1 и q2.

 Вторая пара зарядов: q1’ = nq1 и q2’=q2/n.

 Расстояние между зарядами: r1 = r2 = r.

Закон Кулона:

FK=k|q1||q2|r2

Применим закон Кулона к парам зарядов. Закон Кулона для первой пары:

FK1=k|q1||q2|r2

Закон Кулона для второй пары:

FK2=k|nq1|q2nr2=k|q1||q2|r2

Коэффициент n сократился. Следовательно, силы, с которыми заряды взаимодействуют друг с другом, не изменятся:

FK1=FK2

После изменения зарядов модуль силы взаимодействия между ними останется равным F.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18591

В трёх вершинах квадрата размещены точечные заряды: +qq, +q (q >0) (см. рисунок). Куда направлена кулоновская сила, действующая со стороны этих зарядов на точечный заряд +2q, находящийся в центре квадрата?

Ответ:

а) ↘

б) →

в) ↖

г) ↓


Алгоритм решения

1.Сделать чертеж. Обозначить все силы, действующие на центральный точечный заряд со стороны остальных точечных зарядов.

2.Найти равнодействующую сил геометрическим способом.

Решение

Сделаем чертеж. В центр помещен положительный заряд. Он будет отталкиваться от положительных зарядов и притягиваться к отрицательным:

Модули всех векторов сил, приложенных к центральному точечному заряду равны, так как модули точечных зарядов, расположенных в вершинах квадрата равны, и находятся они на одинаковом расстоянии от этого заряда.

Складывая векторы геометрически, мы увидим, что силы, с которыми заряд +2q отталкивается от точечных зарядов +q, компенсируют друг друга. Поэтому на заряд действует равнодействующая сила, равная силе, с которой он притягивается к отрицательному точечному заряду –q. Эта сила направлена в ту же сторону (к нижней правой вершине квадрата).

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22574

На неподвижном проводящем уединённом шарике радиусом R находится заряд Q. Точка O – центр шарика, OA = 3R/4, OB = 3R, OC = 3R/2. Модуль напряжённости электростатического поля заряда Q в точке C равен EC. Определите модуль напряжённости электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать формулы для нахождения напряженности электростатического поля внутри и снаружи заряженной сферы.

2.Определить величину напряженности поля в указанных точках.

3.Установить соответствие между величинами и их значениями.

Решение

Внутри заряженной сферы напряженность электростатического поля равна 0. Поэтому напряженность в точке А равна 0.

EA=0

Снаружи заряженной сферы напряженность электростатического поля равна:

E=kQr2=kQ(R+a)2

Найдем напряженность электростатического поля в точке В, которая находится на расстоянии 3R от центра заряженной сферы:

EB=kQr2=kQ(3R)2=kQ9R2

Чтобы выразить EB через Eс, найдем напряженность электростатического поля в точке С, которая находится на расстоянии 3R/2 от центра заряженной сферы:

EС=kQr2=kQ(32R)2=4kQ9R2

Найдем отношение EB к Eс:

EBEС=kQ9R2÷4kQ9R2=kQ9R2·9R24kQ=14

Следовательно:

EB=EС4

Ответ: 14

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.5k

Понравилась статья? Поделить с друзьями:
  • Как найти действительную величину контура сечения призмы
  • Как найти фотоальбом в контакте
  • Как найти фамилии служивших
  • Сильно тормозит телефон как исправить
  • Ведьмак 3 как найти очки