Как найти вероятность через плотность распределения

Для непрерывных случайных величин наряду с законом распределения вероятностей рассматривают плотность вероятностей, которую обозначают так .

Плотностью вероятностей случайной величины называют первую производную от интегральной функции распределения вероятностей

откуда дифференциал

Поскольку прирост определяют зависимости

куплена плотности вероятностей на прирост случайной величины соответствует вероятность того, что случайная величина содержаться в промежутке где .

Геометрически на графике плотности вероятностей соответствует площадь прямоугольника с основанием и высотой

Свойства плотности вероятностей

1. Плотность вероятностей принимает положительные значения . Это свойство следует из определения первой производной от функции распределения , которая в свою очередь является неубывающей функцией.

2. Условие нормирования случайной величины

3.Вероятность попадания случайной величины в промежуток определяется зависимостью

4. Функция распределения вероятностей непрерывной случайной величины определяется через плотность распределения вероятностей интегрированием

—————————————

Рассмотрим задачи для закрепления материала на практике.

Пример 1. Закон распределения случайной величины заданы функцией

Найти плотность распределения вероятностей и построить графики обеих функций . Вычислить вероятность того, что случайная величина принадлежит промежутку

Решение. Вычисляем функцию плотности вероятностей

Графики функций изображены на рисунках

Вероятность события вычислим по формуле

Согласно приведенной выше формулы получим

На этом задача решена.

———————————————

Пример 2. По заданной функцией плотности распределения вероятностей

установить параметры и функцию распределения вероятностей . Построить графики функций.

Решение. Значение постоянной определяем из условия нормировки

При найденном значении плотность вероятностей будет иметь вид

Функция распределения вероятностей определяется интегрированием:

Записываем общий вид функции ,

Графики функций распределения вероятностей и ее плотности показаны на рисунках ниже

—————————————

Пример 3. Случайная величина имеет закон распределения вероятностей в виде треугольника

Записать выражения для плотности вероятностей и функции распределения вероятностей, построить график и вычислить .

Решение. На промежутках и плотность вероятностей меняется по линейному закону вида

для первого и второго участки соответственно. Для нахождения неизвестных констант установим ординаты вершины треугольника . Используем условие нормирования, согласно которому площадь треугольника равна единице:

При известных координатах всех вершин находим уравнение прямых

Есть другой способ нахождения уравнения прямых, предусматривающий отыскания по одной константе на уравнение. Если известна точка пересечения прямой с осью ординат , то уравнение прямой которая через эту точку проходит следующее

где – ордината пересечения с осью . Подстановкой второй точки прямой находят неизвестную константу . Для заданных точек получим

Со временем второй метод для Вас станет проще и практичнее в использовании. Плотность вероятностей примет значение

а ее функция примет вид

Функцию распределения вероятностей находим интегрированием:

а) на промежутке :

2) на промежутке

Следовательно, функция распределения вероятностей такая

Ее график приведен ниже

Вычисляем вероятность события согласно формуле

или

Следовательно, вероятность равна

————————-

Хорошо проанализируйте приведенные примеры — это поможет научиться быстро находить плотность распределения вероятностей и выполнять построение графика. Будьте внимательны при интегрировании и выбирайте удобную для вычислений методику.

Непрерывная случайная величина

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Случайная величина называется непрерывной, если ее функция
распределения

 непрерывно дифференцируема. В этом случае

 имеет производную, которую обозначим через

 – плотность распределения вероятностей.

Плотностью распределения вероятностей непрерывной случайной
величины

 называются функцию

 – первую производную от функции распределения

:

Из этого определения следует, что функция распределения является
первообразной для плотности распределения.

Заметим, что для описания распределения вероятностей дискретной
случайной величины плотность распределения неприменима.

Вероятность того, что непрерывная случайная величина

 примет значение, принадлежащее интервалу

 равна определенному интегралу от плотности
распределения, взятому в пределах от

 до

.

Зная плотность распределения

,
можно найти функцию распределения

 по формуле:

Числовые характеристики непрерывной случайной величины

Математическое ожидание непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

где

 – плотность распределения случайной величины

.
Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу

,
то:

Все свойства математического ожидания, указанные для
дискретных случайных величин, сохраняются и для непрерывных величин.

Дисперсия непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

или равносильным равенством:

В частности, если все возможные значения

 принадлежат интервалу

,
то

или

Все свойства дисперсии, указанные для дискретных случайных
величин, сохраняются и для непрерывных случайных величин.

Среднее квадратическое отклонение
непрерывной случайной величины определяется так же, как и для дискретной
величины:

При решении задач, которые выдвигает практика, приходится
сталкиваться с различными распределениями непрерывных случайных величин.

Основные законы распределения непрерывных случайных величин

  • Нормальный закон распределения СВ
  • Показательный закон распределения СВ
  • Равномерный закон распределения СВ

Примеры решения задач


Пример 1

Дана
функция распределения F(х) непрерывной случайной величины 
Х.

Найти плотность распределения вероятностей f(x), математическое ожидание M(X), дисперсию D(X) и вероятность попадания X на отрезок [a,b]. Построить графики функций F(x) и f(x).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Плотность
распределения вероятностей:

Математическое
ожидание:

Дисперсию
можно найти по формуле:

Вероятность
попадания на отрезок:

Построим графики функций F(x) и f(x).

График плотности
распределения

График функции
распределения


Пример 2

Случайная величина Х задана плотностью вероятности

Определить константу c, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал [0;0,25].

Решение

Константу

 определим,
используя свойство плотности вероятности:

В нашем случае:

Найдем математическое
ожидание:

Найдем дисперсию:

Искомая дисперсия:

Найдем функцию
распределения:

для

:

для

:

для

:

Искомая функция
распределения: 

Вероятность попадания
в интервал

:


Пример 3

Плотность
распределения непрерывной случайной величины

 имеет вид:

Найти:

а)
параметр

;

б)
функцию распределения

;

в)
вероятность попадания случайной величины

 в интервал

г)
математическое ожидание

 и дисперсию

д)
построить графики функций

 и

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

а)
Постоянный параметр

 найдем из
свойства плотности вероятности:

В нашем
случае эта формула имеет вид:

б)
Функцию распределения

 найдем из
формулы:

Учитывая
свойства

,  сразу можем отметить,
что:

Остается
найти выражение для

, когда

 принадлежит
интервалу

:

Получаем:  

в)
Вероятность
попадания случайной величины

 в интервал

:

г)
Математическое ожидание находим по формуле:

Для
нашего примера:

Дисперсию
можно найти по формуле:

Среднее
квадратическое отклонение равно квадратному корню из дисперсии:

д) Построим графики

 и

:

График плотности вероятности f(x)

График функции распределения F(x)

Задачи контрольных и самостоятельных работ


Задача 1

НСВ на всей
числовой оси oX задана интегральной функцией:

Найти
вероятность, что в результате 2 испытаний случайная величина примет значение,
заключенное в интервале (0;4).


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Дана
дифференциальная функция непрерывной СВ Х. Найти: постоянную С, интегральную
функцию F(x).


Задача 3

Случайная
величина Х задана функцией распределения F(x):

а) Найти
плотность вероятности СВ Х — f(x).

б) Построить графики
f(x), F(x).

в) Найти вероятность
попадания НСВ в интервал (0; 3).


Задача 4

Дифференциальная
функция НСВ Х задана на всей числовой оси ОХ:

Найти:

а) постоянный
параметр С=const;

б) функцию
распределения F(x);

в) вероятность
попадания в интервал -4<X<4;

г) построить
графики f(x), F(X).


Задача 5

Случайная величина
Х задана функцией распределения F(x):

а) Найти
плотность вероятности СВ Х — f(x).

б) Построить
графики f(x), F(x).

в) Найти
вероятность попадания НСВ в интервал (0;π⁄2).


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 6

НСВ X имеет
плотность вероятности (закон Коши)

а) постоянный
параметр С=const;

б) функцию
распределения F(x);

в) вероятность
попадания в интервал -1<X<1;

г) построить
графики f(x), F(X).


Задача 7

Случайная
величина X задана интегральной F(x) или дифференциальной f(x)
функцией. Требуется:

а) найти
параметр C;

б) при
заданной интегральной функции F(x) найти дифференциальную
функцию f(x), а при заданной дифференциальной функции f(x) найти интегральную
функцию F(x);

в)
построить графики функций F(x) и f(x);

г) найти
математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение σ(X);

д)
вычислить вероятность попадания в интервал P(a≤x≤b);

е)
определить, квантилем какого порядка является точка xp;

ж)
вычислить квантиль порядка p


Задание 8

Дана
интегральная функция распределения случайной величины X. Найти дифференциальную
функцию распределения, математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение.


Задача 9

Случайная
величина X задана интегральной функцией распределения

Найти
дифференциальную функцию, математическое ожидание и дисперсию X.


Задача 10

СВ Х
задана функцией распределения F(x). Найдите вероятность
того, что в результате испытаний НСВ Х попадет в заданный интервал (0;0,5).
Постройте график функции распределения. Найдите плотность вероятности НСВ Х и
постройте ее график. Найдите числовые
характеристики НСВ Х, если

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Зная плотность
распределения, можно вычислить вероятность
того, что непрерывная случайная величина
примет значение, принадлежащее заданному
интервалу. Вычисление основано на
следующей теореме.

Теорема. Вероятность
того, что непрерывная случайная величина
X
примет значение, принадлежащее интервалу
(а,
b),
равна определенному интегралу от
плотности распределения, взятому в
пределах от а до
b:

Р(а<Х<b)
=

Доказательство.
Используем соотношение (**) (см. гл. X,
§ 2)

Р(а

Х<b)
= F(b)
F(a).

По формуле Ньютона
— Лейбница,

F(b)
F(a)=.

Таким образом,

Р(а

Х<b)
=

Так как Р(а

Х<b)
= Р(а<Х<b),то
окончательно получим

Р(а<Х<b)
=
(*)

Геометрически
полученный результат можно истолковать
так: вероятность того, что непрерывная
случайная величина примет значение,
принадлежащее интервалу (а,b),
равна площади
криволинейной трапеции, ограниченной
осью Ох,
кривой
распределения f
(х)
и прямыми х
и х=b.

Замечание. В
частности, если f
(х)
— четная
функция и концы интервала симметричны
относительно начала координат, то

Р(-а<Х<a)
= Р(|Х|<a)
=2

Пример.
Задана плотность вероятности случайной
величины X

Найти вероятность
того, что в результате испытания X
примет
значение, принадлежащее интервалу (0,5;
1).

Решение. Искомая
вероятность

Р (0,5
<
X
<
1)=

§ 3. Нахождение функции распределения по известной плотности распределения

Зная плотность
распределения f(х),
можно найти функцию распределения F
(х)
по формуле

F(x)
=

Действительно, мы
обозначили через F
(х)
вероятность
того, что случайная величина примет
значение, меньшее х,
т. е.

F(x)
=
P(X<x).

Очевидно, неравенство
X
< х
можно записать
в виде двойного неравенства —<X
< х,
следовательно,

F(х)=Р(<X
< х)
(*)

Полагая в формуле
(*) (см. § 2) а=,b
= х,
имеем

Р(<X
< х)
=

Наконец, заменив
Р (<
X
< х) на F
(х),
в силу (*), окончательно получим

F(x)
=

Таким образом,
зная плотность распределения, можно
найти функцию распределения. Разумеется,
по известной функции распределения
может

быть найдена
плотность распределения, а именно:

f(x)=Г’(x).

Пример.
Найти функцию распределения по данной
плотности распределения:

Построить график
найденной функции.

Решение. Воспользуемся
формулой F(x)=

Если x

a,
то f(x)
=0, следовательно, F(x)=0.
Если a<x

b
,то
f(x)=1/(b
а),
следовательно,

.

Если х
>
b,
то

F(x)=

Итак, искомая
функция распределения

График этой функции
изображен на рис. 4.

§ 4. Свойства плотности распределения

Свойство 1. Плотность
распределения
неотрицательная
функция:

f(x)
0.

Доказательство.
Функция распределения — неубывающая
функция, следовательно, ее производная
F(х)=f(х)—функция
неотрицательная.

Геометрически
это свойство означает, что точки,
принадлежащие графику плотности
распределения, расположены либо над
осью Ох, либо
на этой оси.

График плотности
распределения называют кривой
распределения.

Свойство 2.
Несобственный
интеграл от плотности распределения в
пределах от

до

равен единице:

Доказательство.
Несобственный интеграл
выражает
вероятность события, состоящегов
том, что
случайная величина примет значение,
принадлежащее интервалу (,).
Очевидно, такое событие достоверно,
следовательно, вероятность его равна
единице.

Геометрически это
означает, что вся площадь криволинейной
трапеции, ограниченной осью Ох
и кривом
распределения, равна единице.

В частности, если
все возможные значения случайной
величины принадлежат интервалу (а,
b),
то

Пример. Плотность
распределения случайной величины X
задана:

f
(x)=

Найти постоянный
параметр а.

Решение. Плотность
распределения должна удовлетворять
условию
,
поэтому потребуем, чтобы выполнялось
равенство

Отсюда

Найдем неопределенный
интеграл:

Вычислим несобственный
интеграл:

Таким образом,
искомый параметр

a=.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Непрерывные случайные величины: функция распределения случайной величины:

Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.

Функция распределения непрерывной случайной величины

Зная функцию распределения непрерывной случайной величины, задача определения вероятности её попадания на интервал (а; b) может быть решена следующим образом.

По известной функции распределения вероятность попадания непрерывной случайной величины на интервал (а; b) равна приращению функции распределения на этом участке (рис. 1).
Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Во всех рассмотренных выше случаях случайная величина определялась путём задания значений самой величины и вероятностей этих значений.

Однако такой метод применим далеко не всегда. Например, в случае непрерывной случайной величины, её значения могут заполнять некоторый произвольный интервал. Очевидно, что в этом случае задать все значения случайной величины просто нереально.

Даже в случае, когда это сделать можно, зачастую задача решается чрезвычайно сложно. Рассмотренный только что пример даже при относительно простом условии (приборов только четыре) приводит к достаточно неудобным вычислениям, а если в задаче будет несколько сотен приборов?

Поэтому встает задача по возможности отказаться от индивидуального подхода к каждой задаче и найти по возможности наиболее общий способ задания любых типов случайных величин.

Пусть х — действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее х, т.е. X

Определение. Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х.

F(x) = Р(Х < х)

Функцию распределения также называют интегральной функцией. Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.

Для дискретной случайной величины функция распределения имеет
Непрерывные случайные величины - определение и вычисление с примерами решения

Знак неравенства под знаком суммы показывает, что суммирование распространяется на те возможные значения случайной величины, которые меньше аргумента х.

Функция распределения дискретной случайной величины X разрывна и возрастает скачками при переходе через каждое значение Непрерывные случайные величины - определение и вычисление с примерами решения

Так для примера, который мы будем рассматривать на следующемНепрерывные случайные величины - определение и вычисление с примерами решения

Свойства функции распределения

1)    значения функции распределения принадлежат отрезку [0, 1].

Непрерывные случайные величины - определение и вычисление с примерами решения

2)    F(x) — неубывающая функция.

Непрерывные случайные величины - определение и вычисление с примерами решения

3)    Вероятность того, что случайная величина примет значение, заключенное в интервале (а, b) , равна приращению функции распределения на этом интервале.
Непрерывные случайные величины - определение и вычисление с примерами решения

4)    На минус бесконечности функция распределения равна нулю, на плюс бесконечности функция распределения равна единице.

5)    Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.

Таким образом, не имеет смысла говорить о каком — либо конкретном значении случайной величины. Интерес представляет только вероятность попадания случайной величины в какой — либо интервал, что соответствует большинству практических задач.

Заключение по лекции:

В лекции мы рассмотрели методы решения основной задачи теории вероятностей — определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.

Плотность вероятности. Числовые характеристики. Моменты случайных величин

Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности
распределения.

Плотность распределения

Функция распределения полностью характеризует случайную величину, однако, имеет один недостаток. По функции распределения трудно судить о характере распределения случайной величины в небольшой окрестности той или иной точки числовой оси.

Определение. Плотностью распределения вероятностей непрерывной случайной величины X называется функция f(x) — первая производная от функции распределения F(x).

Непрерывные случайные величины - определение и вычисление с примерами решения

Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.

Смысл плотности распределения состоит в том, что она показывает как часто появляется случайная величина X в некоторой окрестности точки х при повторении опытов.

После введения функций распределения и плотности распределения можно дать следующее определение непрерывной случайной величины.

Определение. Случайная величина X называется непрерывной, если её функция распределения F(x) непрерывна на всей оси ОХ, а плотность распределения f(x) существует везде, за исключением (может быть, конечного числа точек).

Зная плотность распределения, можно вычислить вероятность того, что некоторая случайная величина X примет значение, принадлежащее заданному интервалу.

Теорема. Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (а, b), равна определенному интегралу от плотности распределения, взятому в пределах от а до b.

Непрерывные случайные величины - определение и вычисление с примерами решения

Доказательство этой теоремы основано на определении плотности распределения и третьем свойстве функции распределения (см. лекцию тема № 10).

Геометрически это означает, что вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу (а, b), равна площади криволинейной трапеции, ограниченной осью ОХ, кривой распределения f(x) и прямыми х=а и х=b.

Геометрически вероятность Р(а < X < b) представляется в виде заштрихованной области, ограниченной кривой распределения и осью Ох на интервале(а; b) (рис 1).

Непрерывные случайные величины - определение и вычисление с примерами решения

Функция распределения может быть легко найдена, если известна плотность распределения, по формуле:

Непрерывные случайные величины - определение и вычисление с примерами решения

Свойства плотности распределения

1) Плотность распределения — неотрицательная функция.

Непрерывные случайные величины - определение и вычисление с примерами решения
2) Несобственный интеграл от плотности распределения в пределах от —
Непрерывные случайные величины - определение и вычисление с примерами решения равен единице.Непрерывные случайные величины - определение и вычисление с примерами решения

Плотность распределения Непрерывные случайные величины - определение и вычисление с примерами решения
можно представить как:

Непрерывные случайные величины - определение и вычисление с примерами решения

тогдаНепрерывные случайные величины - определение и вычисление с примерами решения
Поэтому иногда функцию плотности распределения f(x) называют также дифференциальной функцией распределения или дифференциальным законом распределения величины X, а функцию распределения F(x) -интегральной функцией распределения или интегральным законом распределения.

Следует заметить, что интеграл Непрерывные случайные величины - определение и вычисление с примерами решения возможно трактовать как сумму бесконечно большого числа несовместных элементарных событий, каждое из которых заключается в попадании случайной величины в бесконечно малый участок (х, х + dx) и имеет вероятность:

Р(х < X < х + dx) = dF(x) = f(x)dx

Величину f(x)dx называют элементом вероятности.

По своему содержанию элемент вероятности есть вероятность попадания случайной величины X на элементарный участок dx, прилежащий к точке X.

Функция распределения случайной величины X по известной плотности распределения может быть найдена, как интеграл от плотности распределения в интервале от Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения
В схеме непрерывных случайных величин можно вывести аналогии формулы полной вероятности и формулы Бейеса, рассмотренные при изучении темы 4.

Обозначим Р(А /х) условную вероятность события А при условии Х= х. Заменяя в формуле полной вероятности вероятность гипотезы элементом вероятности f(x)dx, а сумму — интегралом, получим полную вероятность события А.

Непрерывные случайные величины - определение и вычисление с примерами решения
Данная формула называется интегральной формулой полной вероятности.

Соответствующий аналог в схеме непрерывных случайных величин имеет и формула Бейеса. Обозначив условную плотность распределения случайной величины X при условии, что в результате опыта появилось событие A через Непрерывные случайные величины - определение и вычисление с примерами решения, получим:

Непрерывные случайные величины - определение и вычисление с примерами решения

Данная формула называется интегральной формулой Бейеса.

Числовые характеристики непрерывных случайных величин

Пусть непрерывная случайная величина X задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [а,b].

Математическое ожидание

Определение. Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [а,b], называется определенный интеграл

Непрерывные случайные величины - определение и вычисление с примерами решения
Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

Непрерывные случайные величины - определение и вычисление с примерами решения
При этом, конечно, предполагается, что несобственный интеграл сходится.

Дисперсия

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата её отклонения.

Непрерывные случайные величины - определение и вычисление с примерами решения

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

Непрерывные случайные величины - определение и вычисление с примерами решения
 

Среднеквадратичное отклонение

Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.

Непрерывные случайные величины - определение и вычисление с примерами решения

Мода

Определение. Модой Непрерывные случайные величины - определение и вычисление с примерами решения дискретной случайной величины называется её наиболее вероятное значение. Для непрерывной случайной величины мода — такое значение случайной величины, при которой плотность распределения имеет максимум.

Непрерывные случайные величины - определение и вычисление с примерами решения
Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным.

Если распределение имеет минимум, но не имеет максимума, то оно
называется антимодальным.

Медиана

Определение. Медианой Непрерывные случайные величины - определение и вычисление с примерами решения случайной величины X называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Непрерывные случайные величины - определение и вычисление с примерами решения
Геометрически медиана — абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.

Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Начальный момент

Определение. Начальным моментом порядка k случайной величины X называется математическое ожидание величины Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Для дискретной случайной величины:Непрерывные случайные величины - определение и вычисление с примерами решения
Для непрерывной случайной величины: Непрерывные случайные величины - определение и вычисление с примерами решения

Начальный момент первого порядка равен математическому ожиданию.

Центральный момент

Определение. Центральным моментом порядка k случайной величины X называется математическое ожидание величины Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Для дискретной случайной величины: Непрерывные случайные величины - определение и вычисление с примерами решения

Для непрерывной случайной величины: Непрерывные случайные величины - определение и вычисление с примерами решения
Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.
 

Коэффициент асимметрии

Определение. Отношение центрального момента третьего порядка к среднеквадратическому отклонению в третьей степени называется коэффициентом асимметрии.

Непрерывные случайные величины - определение и вычисление с примерами решения
 

Эксцесс

Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.

Непрерывные случайные величины - определение и вычисление с примерами решения
Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: Непрерывные случайные величины - определение и вычисление с примерами решения

Абсолютный центральный момент: Непрерывные случайные величины - определение и вычисление с примерами решения

Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.

Заключение по лекции:

В лекции мы рассмотрели методы решения основной задачи теории вероятностей — определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности распределения.

Законы распределения непрерывных величин: нормальное, равномерное, показательное

В материалах сегодняшней лекции мы рассмотрим законы распределения непрерывных величин.

Равномерное распределение

Определение. Непрерывная случайная величина имеет равномерное распределение на отрезке [а,b], если на этом отрезке плотность

распределения случайной величины постоянна, а вне его равна нулю.
Непрерывные случайные величины - определение и вычисление с примерами решения

Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения, представленной на рис. 1
Непрерывные случайные величины - определение и вычисление с примерами решения        

Получаем Непрерывные случайные величины - определение и вычисление с примерами решения       .

Найдём функцию распределения F(x) на отрезке [а,b] (рис. 2).
Непрерывные случайные величины - определение и вычисление с примерами решения
Непрерывные случайные величины - определение и вычисление с примерами решения

Для того, чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы её значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.

Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.
Непрерывные случайные величины - определение и вычисление с примерами решения

Вероятность попадания случайной величины в заданный интервал:
Непрерывные случайные величины - определение и вычисление с примерами решения
 

Показательное распределение

Определение. Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью    

Непрерывные случайные величины - определение и вычисление с примерами решения

где Непрерывные случайные величины - определение и вычисление с примерами решения— положительное число.

Найдём закон распределения.
Непрерывные случайные величины - определение и вычисление с примерами решения

Графики функции распределения и плотности распределения представлены на рис. 3, 4.
Непрерывные случайные величины - определение и вычисление с примерами решения

Найдём математическое ожидание случайной величины, подчинённой показательному распределению.
Непрерывные случайные величины - определение и вычисление с примерами решения
Результат получен с использованием того факта, что

Непрерывные случайные величины - определение и вычисление с примерами решения

Для нахождения дисперсии найдём величину Непрерывные случайные величины - определение и вычисление с примерами решенияНепрерывные случайные величины - определение и вычисление с примерами решения

Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:

Непрерывные случайные величины - определение и вычисление с примерами решения
Тогда Непрерывные случайные величины - определение и вычисление с примерами решения
Итого:Непрерывные случайные величины - определение и вычисление с примерами решения

Видно, что в случае показательного распределения математическое ожидание и среднеквадратическое отклонение равны.

Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.Непрерывные случайные величины - определение и вычисление с примерами решения

Показательное распределение широко используется в теории надёжности.

Допустим, некоторое устройство начинает работать в момент времени to=0, а через какое- то время t происходит отказ устройства.

Обозначим Т непрерывную случайную величину — длительность безотказной работы устройства.

Таким образом, функция распределения F(t) = P(T

Вероятность противоположного события (безотказная работа в течение времени t) равна R(t) = P(T>t) — l — F(t).

Функция надежности

Определение. Функцией надёжности R(t) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t.

Часто на практике длительность безотказной работы подчиняется показательному закону распределению.

Вообще говоря, если рассматривать новое устройство, то вероятность отказа в начале его функционирования будет больше, затем количество отказов снизится и будет некоторое время иметь практически одно и то же значение. Затем (когда устройство выработает свой ресурс) количество отказов будет возрастать.

Другими словами, можно сказать, что функционирование устройства на протяжении всего существования (в смысле количества отказов) можно описать комбинацией двух показательных законов (в начале и конце функционирования) и равномерного закона распределения.

Функция надёжности для какого- либо устройства при показательном законе распределения равна:

Непрерывные случайные величины - определение и вычисление с примерами решения

Данное соотношение называют показательным законом надежности.

Важным свойством, позволяющим значительно упростить решение задач теории надежности, является то, что вероятность безотказной работы устройства на интервале времени t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t.

Таким образом, безотказная работа устройства зависит только от интенсивности отказов Непрерывные случайные величины - определение и вычисление с примерами решения и не зависит от безотказной работы устройства в
прошлом.

Так как подобным свойством обладает только показательный закон распределения, то этот факт позволяет определить, является ли закон распределения случайной величины показательным или нет.

Нормальный закон распределения

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Непрерывные случайные величины - определение и вычисление с примерами решения
Нормальный закон распределения также называется законом Гаусса.

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры Непрерывные случайные величины - определение и вычисление с примерами решения входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величины X.

Найдём функцию распределения F(x).

Непрерывные случайные величины - определение и вычисление с примерами решения

График плотности нормального распределения называется нормальной кривой или кривой Гаусса.

Нормальная кривая обладает следующими свойствами:

1)    Функция определена на всей числовой оси.

2)    При всех х функция распределения принимает только положительные значения.

3)    Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента л значение функции стремится к нулю.

4)    Найдём экстремум функции.Непрерывные случайные величины - определение и вычисление с примерами решения

Т.к. приНепрерывные случайные величины - определение и вычисление с примерами решения , то в точке х = m функция имеет максимум, равный Непрерывные случайные величины - определение и вычисление с примерами решения

5)    Функция является симметричной относительно прямой x = а, т.к. разность

(х — а) входит в функцию плотности распределения в квадрате.

6)    Для нахождения точек перегиба графика найдем вторую производную функции плотности.
Непрерывные случайные величины - определение и вычисление с примерами решения
При Непрерывные случайные величины - определение и вычисление с примерами решения вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно     Непрерывные случайные величины - определение и вычисление с примерами решения
Построим график функции плотности распределения (рис. 5).
Непрерывные случайные величины - определение и вычисление с примерами решения

Построены графики при м =0 и трёх возможных значениях среднеквадратичного отклоненияНепрерывные случайные величины - определение и вычисление с примерами решения. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.

Если а > 0, то график сместится в положительном направлении, если а < 0 — в отрицательном.

При а = 0 и Непрерывные случайные величины - определение и вычисление с примерами решения кривая называется нормированной. Уравнение нормированной кривой:
Непрерывные случайные величины - определение и вычисление с примерами решения

Функция Лапласа

Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Непрерывные случайные величины - определение и вычисление с примерами решения

ОбозначимНепрерывные случайные величины - определение и вычисление с примерами решения

Тогда Непрерывные случайные величины - определение и вычисление с примерами решения
Т.к. интегралНепрерывные случайные величины - определение и вычисление с примерами решения не выражается через элементарные функции, то вводится в рассмотрение функция

Непрерывные случайные величины - определение и вычисление с примерами решения
которая называется функцией Лапласа или интегралом вероятностей.

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

На рис. 6 показан график функции Лапласа.

Непрерывные случайные величины - определение и вычисление с примерами решения

Функция Лапласа обладает следующими свойствами:

  • 1)    Ф(0) = 0;
  • 2)    Ф(-х) = — Ф(х);
  • 3)  Непрерывные случайные величины - определение и вычисление с примерами решения

Функцию Лапласа также называют функцией ошибок и обозначают
erf х.

Ещё используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Непрерывные случайные величины - определение и вычисление с примерами решения
На рис. 7 показан график нормированной функции Лапласа.

Непрерывные случайные величины - определение и вычисление с примерами решения

Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величиныНепрерывные случайные величины - определение и вычисление с примерами решения
Непрерывные случайные величины - определение и вычисление с примерами решения
Если принять Непрерывные случайные величины - определение и вычисление с примерами решения, то получаем с использованием таблиц значений функции Лапласа:

Непрерывные случайные величины - определение и вычисление с примерами решения

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую, чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм.

Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.

Пример:

Случайная величина Х задана плотностью распределения вероятностей:

Непрерывные случайные величины - определение и вычисление с примерами решения

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в)Непрерывные случайные величины - определение и вычисление с примерами решения
 

Решение:

а) Значение с найдем из условия нормировки: Непрерывные случайные величины - определение и вычисление с примерами решения
Следовательно,

Непрерывные случайные величины - определение и вычисление с примерами решения

б) Известно, что Непрерывные случайные величины - определение и вычисление с примерами решения

Поэтому, если Непрерывные случайные величины - определение и вычисление с примерами решения

если Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

если Непрерывные случайные величины - определение и вычисление с примерами решения

Таким образом,

Непрерывные случайные величины - определение и вычисление с примерами решения

График функции F(х) изображен на рис. 5. 3.

Непрерывные случайные величины - определение и вычисление с примерами решения

в) Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Случайная величина Х задана функцией распределения:

Непрерывные случайные величины - определение и вычисление с примерами решения

Найти дифференциальную функцию распределения  Непрерывные случайные величины - определение и вычисление с примерами решения
 

Решение:  

Так как Непрерывные случайные величины - определение и вычисление с примерами решения то

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Случайная величина Х задана дифференциальной функцией Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Найти Непрерывные случайные величины - определение и вычисление с примерами решения а также Непрерывные случайные величины - определение и вычисление с примерами решения

Решение:

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Некоторые законы распределения непрерывной случайной величины 

Пример:

Случайная величина Х равномерно распределена на отрезке [3;7]. Найти:

а) плотность распределения вероятностей Непрерывные случайные величины - определение и вычисление с примерами решения и построить ее график;

б) функцию распределения Непрерывные случайные величины - определение и вычисление с примерами решения и построить ее график;

в) Непрерывные случайные величины - определение и вычисление с примерами решения
Решение: Воспользовавшись формулами, рассмотренными выше, при а = 3, b = 7, находим:

Непрерывные случайные величины - определение и вычисление с примерами решения

Построим ее график (рис. 6.3):

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Построим ее график (рис. 6.4):

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Среднее время безотказной работы прибора равно 100 ч.
Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.
 

Решение.

По условию математическое ожидание Непрерывные случайные величины - определение и вычисление с примерами решения
откуда Непрерывные случайные величины - определение и вычисление с примерами решения = 1/100 = 0,01.
Следовательно,

Непрерывные случайные величины - определение и вычисление с примерами решения

в) Искомую вероятность найдем, используя функцию распределения: 

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Случайная величина Х распределена нормально с математическим ожиданием 32 и дисперсией 16. Найти: а) плотность распределения вероятностей Непрерывные случайные величины - определение и вычисление с примерами решения б) вероятность того, что в результате испытания Х примет значение из интервала (28;38).
 

Решение:

По условию m = 32, σ2 = 16, следовательно, σ = 4, тогда

а) Непрерывные случайные величины - определение и вычисление с примерами решения

б) Воспользуемся формулой:

Непрерывные случайные величины - определение и вычисление с примерами решения

Подставив a = 28, b = 38, m = 32, σ = 4, получим
Непрерывные случайные величины - определение и вычисление с примерами решения

По   таблице   значений   функции   Ф(х)   находим   Ф(1,5) = 0,4332, Ф(1) = 0,3413.
Итак, искомая вероятность:

Непрерывные случайные величины - определение и вычисление с примерами решения

Заключение по лекции:

В лекции мы рассмотрели законы распределения непрерывных величин.

  • Закон больших чисел
  • Генеральная и выборочная совокупности
  • Интервальные оценки параметров распределения
  • Алгебра событий — определение и вычисление
  • Правило «трех сигм» в теории вероятности
  • Производящие функции
  • Теоремы теории вероятностей
  • Основные законы распределения дискретных случайных величин

Понравилась статья? Поделить с друзьями:
  • Как нашли тело елены логуновой
  • Как найти мощность тока в обмотке двигателя
  • Как найти минимум поверхности
  • Оставьте меня также как нашли
  • Как найти внутреннее сопротивление катушки