Как найти вероятность формула с монетой

Бросание монет. Решение задач на нахождение вероятности

На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей — задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например «Симметричную монету бросают дважды…» или «Бросают 3 монеты …», но принцип решения от этого не меняется, вот увидите.

найти вероятность, что при бросании монеты

Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

Для задач о подбрасывании монеты существуют два основных метода решения, один — по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй — по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.

Нужна помощь? Решаем теорию вероятностей на отлично

Полезная страница? Сохрани или расскажи друзьям

1. Классическое определение вероятности

Для начала надо вспомнить саму формулу, по которой будем считать. Итак, вероятность находится как $P=m/n$, где $n$ — число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а $m$ — число тех исходов, которые благоприятствуют событию (то есть тому, что указано в условии задачи). Но как найти эти загадочные исходы? Проще всего пояснить на примерах.

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Итак, монету бросают дважды. Если обозначить буквой Р выпадение решки (цифры), а буквой О — выпадение орла (герба), то все возможные выпадения можно записать так: РР, ОР, РО и ОО (соответствено, выпали две решки, орел потом решка, решка потом орел и два орла). Подсчитываем число этих комбинаций и получаем $n=4$. Теперь из них надо отобрать только те, что удовлетворяют условию «орел выпадет ровно один раз», это комбинации ОР и РО и их ровно $m=2$. Тогда искомая вероятность равна $P=2/4=1/2=0.5$. Готово!

Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.

Так как монета снова подбрасывается два раза, множество всех элементарных исходов эксперимента (или комбинаций, как мы их называем здесь для удобства), точно такое же: РР, ОР, РО и ОО, $n=4$. А вот условию «оба раза выпала одна сторона» удовлетворяют другие комбинации: РР и ОО, откуда $m=2$. Нужная вероятность равна $P=2/4=1/2=0.5$.

Как видим, все довольно просто. Перейдем к чуть более сложной задаче.

Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Снова применим формулу классической вероятности. Шаг первый — выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Смотри-ка, бросков всего на один больше, а комбинаций возможных уже $n=8$ (кстати, они находятся по формуле $n=2^k$, где $k$ — число бросков монеты).

Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет $m=3$. Тогда вероятность события $P=m/n=3/8=0.375$.

Взяли разгон и переходим к 4 монетам.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Приступаем к вычислению. Шаг первый — выписываем все возможные комбинации для 4 бросков монеты. Чтобы проверить себя, сразу подсчитаем, что их должно получиться $n=2^4=16$ штук! Вот они:

OOOO, OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, OPPP,
POOO, POOP, POPO, POPP, PPOO, PPOP, PPPO, PPPP.

Теперь выбираем те, где герб (он же орел, он же буква О) встречается 2 или 3 раза:
OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, POOO, POOP, POPO, PPOO,

их будет $m=10$. Тогда вероятность равна $P=m/n=10/16=5/8=0.625$.

Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.

2. Комбинаторика + классическая вероятность

Надо заметить, что если действовать исключительно переборным методом (как это делалось выше), с ростом числа монет быстро растет число комбинаций (для 5 монет — 32, для 6 монет — 64 и так далее), так что и вероятность ошибиться при выписывании исходов велика, метод решения теряет свою простоту и привлекательность.

Один из способов решения этой проблемы — остаться в рамках формулы классической вероятности, но использовать комбинаторные методы (см. формулы комбинаторики тут) для подсчета числа исходов. Поясню на примере последней задачи, решив ее другим способом.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 4 монет. Все исходы можно закодировать некоторой последовательностью вида $X_1 X_2 X_3 X_4$, где $X_i=O$ (в $i$-ый раз выпал орел) или $X_i=P$ (в $i$-ый раз выпала решка). Найдем число всех таких последовательностей. Значение $X_1$ (результат первого броска) может быть выбран 2 способами (орел или решка), значение $X_2$ (результат второго броска) может быть выбран 2 способами (орел или решка), и так далее. Итого получим всего $n=2cdot 2cdot 2cdot 2=16$ различных исходов. Или, если использовать формулу комбинаторики для числа размещений с повторениями из 2 объектов по 4 позициям, сразу получим $n=A_4^2=2^4=16$.

Найдем число благоприятствующих исходов с использованием комбинаторики. Сначала найдем число таких последовательностей, где О встречается ровно 2 раза. Выбираем $C_4^2$ способами 2 позиции, где будет стоять О (на остальных тогда ставим решки). Аналогично для последовательностей, где О встречается ровно 3 раза — $C_4^3$ способами выбираем 3 позиции, где будет стоять О (на оставшейся позиции записывается решка). Подсчитывая число сочетаний и складывая, найдем количество благоприятствующих комбинаций:
$$
m=C_4^2+C_4^3=frac{4!}{2!2!}+frac{4!}{3!1!}=frac{3cdot 4}{1cdot 2}+4=6+4=10.
$$
Итого получаем такое же значение вероятности: $P=m/n=10/16=0.625$.

Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.

Например, если рассмотреть подобную задачу:

Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза

Ответ можно получить без выписывания 256 комбинаций (!!!), просто по аналогии с примером выше:
$$
n=2^8=256;\
m=C_8^4=frac{8!}{4!4!}=frac{5cdot 6cdot 7 cdot 8}{1cdot 2 cdot 3 cdot 4}=70;\
P=frac{n}{n}=frac{70}{256}=0.273.
$$

Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).

Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 6 монет. Так как каждый бросок дает 2 возможных исхода (О или Р), всего получим $n=2^6=64$ элементарных исхода (комбинации вида ОРОРОР, ОООРРР и т.д.).

Найдем число благоприятствующих исходов. Мысленно объединим два герба, которые должны появиться рядом, в один объект (ОО). Остается выбрать ему место среди остальных 4 решек (так гербов должно выпасть 2, то решек — 6-2=4). Существует $m=C_5^1=5$ способов выбрать позицию в последовательности из 5 объектов. Для наглядности, если выбрана позиция 2, то есть оба герба стоят на втором месте, это комбинация Р(ОО)РРР, если выбрана позиция 4 — РРР(ОО)Р.
Искомая вероятность: $P=m/n=5/64=0.078$.

Способ 3. Формула Бернулли

Рассмотрим общую задачу о подбрасывании монет.

Пусть бросается $n$ монет (или, что тоже самое, монета бросается $n$ раз). Нужно вычислить вероятность того, что герб появится в точности $k$ раз.

Так как броски монет — события независимые (результат броска одной монеты не влияет на последующие броски), вероятность выпадения герба в каждом броске одинакова (и равна $p=1/2=0.5$), то можно для вычисления вероятности применить формулу Бернулли:
$$
P=P_n(k)=C_n^k cdot p^k cdot (1-p)^{n-k} = C_n^k cdot left(1/2right)^k cdot left(1-1/2right)^{n-k}=C_n^k cdot left(1/2right)^n.
$$

То есть, мы вывели общую формулу, дающую ответ на вопрос «какова вероятность того, что герб появится в точности $k$ раз из $n$» (запишем в трех эквивалентных видах, выбирайте удобный для себя):
$$
P=C_n^k cdot left(1/2right)^n=frac{C_n^k}{2^n}=C_n^k cdot 0.5^n, quad C_n^k=frac{n!}{k!(n-k)!}.
$$

А теперь все задачи решаются проще простого, вот глядите!

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Подставляем $n=2, k=1$ и получаем $P=C_2^1 cdot left(1/2right)^2=2 cdot frac{1}{4}=frac{1}{2}=0.5.$

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Это уже третий способ решения задачи!
Подставляем $n=4, k=2$ и $k=3$, получаем
$$P=C_4^2 cdot left(1/2right)^4+C_4^3 cdot left(1/2right)^4=(6+4) cdot frac{1}{16}=frac{10}{16}=0.625.$$

Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

Подставляем $n=3, k=0$ и получаем $P=C_3^0 cdot left(1/2right)^3=1 cdot frac{1}{8}=frac{1}{8}=0.125.$

Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.

Подставляем $n=8, k=7$ и $k=8$ и получаем
$$P=C_8^8 cdot left(1/2right)^8+ C_8^7 cdot left(1/2right)^8=(1+8) cdot frac{1}{256}=frac{9}{256}=0.035.$$

Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.

Пригодится: онлайн калькулятор для формулы Бернулли

Понравилось? Добавьте в закладки

Полезные ссылки

  • Онлайн калькуляторы
  • Онлайн учебник
  • Более 200 примеров
  • Решенные контрольные
  • Формулы и таблицы
  • Сдача тестов
  • Решение на заказ
  • Онлайн помощь

Решебник по вероятности

А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):

30 мая 2012

Задачи на подбрасывание монет считаются довольно сложными. И перед тем как решать их, требуется небольшое пояснение. Задумайтесь, любая задача по теории вероятностей в итоге сводится к стандартной формуле:

Основная формула теории вероятностей

где p — искомая вероятность, k — число устраивающих нас событий, n — общее число возможных событий.

Большинство задач B6 решаются по этой формуле буквально в одну строчку — достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n. В этом и состоит вся сложность.

Тем не менее, существует как минимум два принципиально различных метода решения:

  1. Метод перебора комбинаций — стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные;
  2. Специальная формула вероятности — стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами.

Для решения задачи B6 надо знать оба метода. К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали!

Метод перебора комбинаций

Этот метод еще называется «решение напролом». Состоит из трех шагов:

  1. Выписываем все возможные комбинации орлов и решек. Например: ОР, РО, ОО, РР. Число таких комбинаций — это n;
  2. Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. Считаем отмеченные комбинации — получаем число k;
  3. Осталось найти вероятность: p = k : n.

К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Для 3 монет их уже 8, а для 4 — 16, и вероятность ошибки приближается к 100%. Взгляните на примеры — и сами все поймете:

Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

Итак, монету бросают два раза. Выпишем все возможные комбинации (O — орел, P — решка):

OO OP PO PP

Итого n = 4 варианта. Теперь выпишем те варианты, которые подходят по условию задачи:

OP PO

Таких вариантов оказалось k = 2. Находим вероятность:

Вероятность для n = 4 и k = 2

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Вероятность для n = 16 и k = 1

Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я — не уверен. Поэтому давайте рассмотрим второй способ решения.

Специальная формула вероятности

Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните:

Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле:

Специальная формула вероятности для задачи B6

Где Cnk — число сочетаний из n элементов по k, которое считается по формуле:

Формула числа сочетани из n элементов по k элементов

Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.

На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться — и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.

Задача. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.

По условию задачи, всего бросков было n = 4. Требуемое число орлов: k = 3. Подставляем n и k в формулу:

Специальная формула вероятности для n = 4 и k = 3

С тем же успехом можно считать число решек: k = 4 − 3 = 1. Ответ будет таким же.

Задача. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем числа n и k. Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу:

Специальная формула вероятности для n = 3 и k = 0

Напомню, что 0! = 1 по определению. Поэтому C30 = 1.

Задача. В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.

Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.

Пусть p1 — вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем:

Специальная формула вероятности для n = 4 и k = 3

Теперь найдем p2 — вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем:

Специальная формула вероятности для n = 4 и k = 4

Чтобы получить ответ, осталось сложить вероятности p1 и p2. Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:

p = p1 + p2 = 0,25 + 0,0625 = 0,3125

Смотрите также:

  1. Правила комбинаторики в задаче B6
  2. Комбинаторика в задаче B6: легкий тест
  3. Что такое числовая дробь
  4. Задачи B12, сводящиеся к линейным уравнениям
  5. Сложные задачи на проценты
  6. Задача B4 с таблицами: тарифы на интернет

Probability is a branch of Mathematics. Probability tells how likely an event occurs. In a single word, it can be called a possibility i.e., the possibility of happening of an event. Its value always lies between 0 (zero) to 1 (one). 0 indicates an impossible event and 1 indicates a certain event. The formula for the probability of an event is mentioned below,

Probability of an event P(Event)= (Number of favorable outcomes)/ (Total number of possible outcomes)

Coin Toss Probability

Before going to the concept, first, let’s understand the possible outcomes when a coin is tossed. There are only 2 possible outcomes when a coin is tossed. Those are Head & Tail. So, as per the above probability formula, the coin toss probability formula is given as,

Coin Toss Probability Formula = (Number of favorable outcomes)/ (Total number of possible outcomes)

Here, when a single coin is tossed – Total number of possible outcomes = 2

So, simplify above formula for single coin toss as,

Coin Toss Probability Formula for single coin toss = (Number of favorable outcomes)/2

Sample Problems

Question 1: What is the probability of getting head when a single coin is tossed.

Solution: 

Let A be the event of getting head when a coin is tossed.

Number of favorable outcomes – {Head} = 1

As per the coin toss probability formula when a single coin is tossed, the probability of getting head P(A) = Number of favorable outcomes/2

P(A) = 1/2 = 0.5

So there is a 50% chance of getting head when a coin is tossed.

Question 2: What is the probability of getting at least 1 tail when two coins are tossed.

Solution: 

Let B be the event of getting at least 1 tail when two coins are tossed.

Number of favorable outcomes – {(Head, Tail), (Tail, Head), (Tail, Tail)} = 3

Total possible outcomes – {(Head, Tail), (Tail, Head), (Tail, Tail), (Head, Head)} = 4

As per the coin toss probability formula, Probability of getting atleast 1 tail when 2 coins are tossed P(B) = Number of favorable outcomes/Total number of possible outcomes

P(B) = 3/4 = 0.75

So there are 75% of chances of getting at least 1 tail when two coins are tossed.

Question 3: What is the probability of getting head or tail when two coins are tossed.

Solution: 

Let C be the event of getting head or tail when a coin is tossed.

Number of favorable outcomes – {Head, Tail} = 2

As per the coin toss probability formula when a single coin is tossed, the probability of getting head or tail P(C) = Number of favorable outcomes/2

P(C) = 2/2 = 1

So there is a 100% chance of getting head or tail when a single coin is tossed.

This is an example for sure (or) certain event.

Question 4: What is the probability of getting head and tail at the same time when a single coin is tossed.

Solution: 

Let D be the event of getting head and tail when a coin is tossed.

Here there are no favorable outcomes because when a coin is tossed only 1 possible outcome is obtained either a head or tail but both are not obtained.

Number of favorable outcomes – {} = 0

As per the coin toss probability formula when a single coin is tossed, Probability of getting head and tail P(D)= Number of favorable outcomes/2

P(D) = 0/2 = 0

So there are 0% chances of getting head and tail at the same time when a coin is tossed. 

This is an example of an impossible event.

Question 5: What is the probability of getting all three heads when 3 coins are tossed at same time.

Solution: 

Let E be the event of getting  all three heads when 3 coins are tossed.

When 3 coins are tossed the possible outcomes are ({HHH}, {HHT}, {HTH}, {THH}, {HTT}, {TTH}, {THT}, {TTT})

So total number of possible outcomes = 8

The total possible outcomes can also be found by multiplying the number of outcomes of each event together. Here 3 coins are tossed. For each coin toss, there will 2 outcomes. So by multiplying outcomes of each toss i.e., 2 × 2 × 2 = 8 total number of possible outcomes are obtained.

Number of favorable outcomes – {HHH} = 1

As per the coin toss probability formula, Probability of getting all three heads 

P(E) = Number of favorable outcomes/Total number of possible outcomes

P(E) = 1/8 = 0.125

So, there is 12.5% chances of getting all 3 heads when 3 coins are tossed.

Question 6: What is the probability of getting at least two heads when 3 coins are tossed at same time.

Solution: 

Let F be the event of getting atleast two heads when 3 coins are tossed.

When 3 coins are tossed the possible outcomes are ({HHH}, {HHT}, {HTH}, {THH}, {HTT}, {TTH}, {THT}, {TTT})

So, the total number of possible outcomes = 8

Number of favorable outcomes – ({HHT}, {HTH}, {THH}, {HHH}) = 4

As per the coin toss probability formula, the Probability of getting at least two heads

P(F)= Number of favorable outcomes/Total number of possible outcomes

P(F) = 4/8 = 1/2 = 0.5

So, there is 50% chance of getting atleast two heads when 3 coins are tossed.

Last Updated :
29 Dec, 2021

Like Article

Save Article



Итак, те же независимые испытания, но значения  и  достаточно велики:

Найти вероятность того, что при 400 бросках монеты орёл выпадет 200 раз.

Очевидно, что здесь следует применить формулу Бернулли, и мы попробуем её применить:  …стоп, что делать дальше?
Микрокалькулятор (по крайне мере, мой) не справился с 400-й степенью и капитулировал перед факториалами.
Воспользуемся стандартной функцией Экселя (БИНОМРАСП – см. п. 3 Калькулятора), которая сумела обработать монстра:
.

Заостряю ваше внимание, что это точное значение и такое решение вроде бы идеально,… но: 1) программного обеспечения может не оказаться под рукой, 2) учебное решение будет смотреться нестандартно, 3) Эксель – тоже не панацея, «сломался» на значениях, чуть бОльших, чем  (специально ради интереса ломал).

Возникает мысль написать специальную программу, например, на Паскале, но… сами понимаете, изощрённые фантазии многими преподавателями не одобряются =)

Локальная теорема Лапласа. Если вероятность  появления случайного события  в каждом испытании постоянна, то вероятность  того, что в  испытаниях событие  наступит ровно  раз, приближённо равна:
 , где  – функция Гаусса, а .

При этом, чем больше , тем рассчитанная вероятность  будет лучше приближать точное значению  (по Бернулли).  Рекомендуемое минимальное количество  испытаний – примерно 50-100, в противном случае результат  может оказаться далёким от истины. Кроме того, локальная теорема Лапласа работает тем лучше, чем вероятность  ближе к 0,5, и наоборот – даёт существенную погрешность, когда  меньше, чем  (впрочем, это зависит от ). Поэтому критерием эффективного использования теоремы является выполнение неравенства .

Так, например, если , то  и применение теоремы Лапласа для 50 испытаний оправдано. Но если  и , то  и приближение  к точному значению  будет плохим.
Оформим официальные отношения с нашим примером:

Задача 75
Монета подбрасывается 400 раз. Найти вероятность того, что орёл выпадет ровно:
а) 200 раз,      б) 225 раз.

С чего начать решение? Сначала распишем известные величины, чтобы они были перед глазами:
 – общее количество независимых испытаний;
 – вероятность выпадения орла в каждом броске;
 – вероятность выпадения решки.

а) Найдём вероятность того, что в серии из 400 бросков орёл выпадет ровно  раз. Ввиду большого количества испытаний используем локальную теорему Лапласа: , где .

На первом шаге вычислим значение аргумента:

Далее находим соответствующее значение функции: . Это можно сделать несколькими способами. В первую очередь, конечно же, напрашивается прямое вычисление:
 – округление проводят, как правило, до 4 знаков после запятой. Для ускорения вычислений я добавил эту формулу в Калькулятор (пункт 4).

Кроме того, существует таблица значений функции , которая есть практически в любой книге по теории вероятностей. И эта книга не исключение:

Прямо сейчас откройте Приложение Таблицы
и разберитесь, как пользовать таблицей значений функции !

В частности, найдите по таблице значение . «Дедовский» способ поможет в тех случаях, когда под рукой не окажется нужной техники (что вполне реально на практике).
На заключительном этапе применим формулу :
 – вероятность того, что при 400 бросках монеты орёл выпадет ровно 200 раз.

Как видите, полученный результат очень близок к точному значению , вычисленному по формуле Бернулли.

б) Найдём вероятность того, что в серии из 400 испытаний орёл выпадет ровно  раз. Используем локальную теорему Лапласа. Раз, два, три – и готово:
1)

2)

Обязательно найдите это значение по таблице!

3)  – искомая вероятность.

Ответ:

Следующий пример посвящен,… правильно догадываетесь, и это вам для самостоятельного решения :)

Задача 76
Вероятность рождения мальчика равна 0,52. Найти вероятность того, что среди 100 новорожденных окажется ровно: а) 40 мальчиков, б) 50 мальчиков, в) 30 девочек.

Кстати, реальная статистическая вероятность рождения мальчика во многих регионах мира как раз колеблется в пределах от 0,51 до 0,52.

Как вы заметили, вероятности получаются достаточно малыми, и это не должно вводить в заблуждение – ведь речь идёт о вероятностях отдельно взятых, локальных значениях (отсюда и название теоремы). А таковых значений много, и, образно говоря, вероятности «должно хватить на всех». Правда, многие события будут практически невозможными. Так, в серии из 400 испытаний орёл теоретически может выпасть от 0 до 400 раз, и данные события образуют полную группу:

Однако бОльшая часть этих значений представляет собой сущий мизер, и вероятность того, что орёл выпадет ровно 250 раз – уже одна десятимиллионная: . О значениях вроде  тактично умолчим :)

С другой стороны, не следует недооценивать и «скромные результаты»: так, если  составляет всего около , то вероятность того, орёл выпадет, скажем, от 220 до 250 раз, будет весьма заметна. А теперь задумаемся: как найти эту вероятность?  С современными вычислительными возможностями не составит труда воспользоваться теоремой сложения вероятностей несовместных событий и вычислить сумму  либо абсолютно точное значение через формулу Бернулли: .

Но гораздо проще эти значения объединить. А объединение чего-либо называется интегрированием:

1.12. Интегральная теорема Лапласа

1.10. Формула Пуассона

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Оглавление страницы:

Статистика. Числовые характеристики ряда чисел

Средним арифметическим нескольких чисел называется число, равное отношению суммы этих чисел к их количеству.

Другими словами, среднее арифметическое – это дробь, в числителе которой стоит сумма чисел, а взнаменателе – их количество.

Пример:

  • Вычислить среднее арифметическое данных чисел:  6, 10, 16, 20.

Среднее арифметрическое: ( 6 + 10 + 16 + 20 ) 4 = 52 4 = 13

Медиана ряда чисел – это число, стоящее посередине упорядоченного ряда чисел, если количество чисел в ряду нечётное.

Пример:

  • Найти медиану ряда чисел:  12, 2, 11, 3, 7, 10, 3

Сперва упорядочим этот ряд (расположим числа в порядке возрастания, от меньшего к большему):  2, 3, 3,  7 , 10, 11, 12

Посередине данного упорядоченного ряда стоит число 7.

Медиана ряда чисел – это полусумма двух стоящих посередине упорядоченного ряда чисел, если количество чисел в ряду чётное.

Пример:

  • Найти медиану ряда чисел:  8, 3, 10, 1, 16, 2, 3

Сперва упорядочим этот ряд (расположим числа в порядке возрастания, от меньшего к большему):   2, 3,  7 , 10 , 11, 12

Посередине данного упорядоченного ряда стоят два числа: 7 и 10.

Их полусумма равна: 7 + 10 2 = 17 2 = 8,5

Размах ряда чисел – это разность между наибольшим и наименьшим числом.

Пример:

  • Найти размах ряда чисел: 8, 3, 10, 1, 16, 2, 3

Для удобства упорядочим этот ряд: 1, 2, 3, 3, 8, 10, 16

Наибольшее значение ряда: 16. Наименьшее значение ряда: 1.

Размах:  16 − 1 = 15

Мода ряда чисел – наиболее часто встречающееся число в этом ряду.

Ряд чисел может иметь более одной моды, а может вообще не иметь моды.

Примеры:

  1. Найти моду ряда: 1,  5,  6,  3 , 10,  32,  4,  3

Число, встречающееся в этом ряду чаще всех: 3.

Данный ряд имеет моду: 3.

  1. Найти моду ряда: 5, 2, 3, 4, 1, 0, 8

Каждое число в данном ряде встречается одинаковое количество раз (один раз).

Данный ряд не имеет моды.

  1. Найти моду ряда: 9 , 1 , 4 , 10 , 17 , 1 , 33 , 6 , 9 , 8 , 5 , 5

Числа 1, 5, 9  встречаются в этом ряде наибольшее количество раз (по два раза).

Данный ряд имеет три моды: 1, 5, 9.

Вероятности

Случайное событие – это событие, которое может произойти, а может не произойти.

Мы называем событие случайным, если нельзя утверждать, что это событие в данных обстоятельствах непременно произойдёт.

События обозначаются заглавными латинскими буквами.

Частота случайного события A в серии опытов – это отношение числа тех опытов, в которых событие A произошло, к общему числу проведенных опытов.

Примеры:

  1. Какова частота события «выпал орёл», если в серии опытов из 20 бросков монеты решка выпала 8 раз?

Если решка выпала 8 раз, то орёл выпал 20 − 8 = 12 раз.

Частота: 12 20 = 6 10 = 0,6

  1. Какова частота события «выпало чётное число очков» в серии опытов из восьми бросков кубика, если результаты представлены в виде числового ряда: 3, 2, 3, 5, 1, 1, 6, 4

Как мы видим, чётных чисел выпало три штуки.

Частота: 3 8 = 0,375

Каждое случайное событие делится на несколько элементарных исходов.  Они делятся на благоприятные исходы и неблагоприятные исходы.

Например, для события «выпало четное число очков» при броске кубика:

  • Благоприятные исходы:

«выпало два очка», «выпало четыре очка», «выпало шесть очков»

  • Неблагоприятные исходы:

«выпало одно очко», «выпало три очка», «выпало пять очков»

Все возможные исходы = благоприятные исходы + неблагоприятные исходы.

Вероятность случайного события P ( A ) – это отношение благоприятных исходов m к общему числу исходов n. P ( A ) = m n

Вероятность случайного события лежит в пределах от 0 до 1. 0 ≤ P ( A ) ≤ 1

Сумма вероятностей всех элементарных исходов случайного эксперимента равна 1.

Примеры:

  1. Какова вероятность вытащить из шляпы, в которой лежат три синих шара, белого кролика?

Число благоприятных исходов: m = 0 , так как ни одного кролика нет.

Число всех возможных исходов: n = 3 , так как есть три объекта, которые можно достать из шляпы.

A=«достать кролика», посчитаем вероятность этого события. P ( A ) = m n = 0 3 = 0

  1. Какова вероятность вытащить из шляпы, в которой лежат три синих шара, синий шар?

Число благоприятных исходов: m = 3 , так как каждый из трех шариков синий, каждый подходит.

Число всех возможных исходов: n = 3 , так как есть три объекта, которые можно достать из шляпы.

A=«достать синий шар», посчитаем вероятность этого события. P ( A ) = m n = 3 3 = 1

  1. Какова вероятность вытащить из шляпы, в которой лежат три синих шара и девять красных шаров, синий шар?

Число благоприятных исходов: m = 3 , так как всего синих шаров в шляпе три.

Число всех возможных исходов: n = 3 + 9 = 12 , так как всего в шляпе 12 объектов, которые можно достать.

A=«достать синий шар», посчитаем вероятность этого события. P ( A ) = m n = 3 12 = 0,25

Событие A ¯ называется противоположным событию A, если событие A ¯ происходит тогда, когда событие A не происходит (то есть вместо события A происходит событие A ¯ ).

Примеры противоположных событий:

  1. A : «купить молоко», A ¯ : «не купить молоко»
  1. A : «прибор исправен», A ¯ : «прибор неисправен»
  1. A : «выпал орёл», A ¯ : «выпала решка»
  1. A : «на игральной кости выпало нечетное число», A ¯ : «на игральной кости выпало чётное число»

Вероятность противоположного события определяется по формуле: P ( A ¯ ) = 1 − P ( A )

Примеры:

  1. Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,28. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что эта ручка пишет хорошо.

Пусть событие A: «ручка пишет плохо».

Противоположное событие: A ¯ : «ручка пишет хорошо»

P ( A ) = 0,28. Найдём вероятность противоположного события по формуле:

P ( A ¯ ) = 1 − P ( A ) = 1 − 0,28 = 0,72

  1. В среднем из 100 карманных фонариков, поступивших в продажу, 8 неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен.

Пусть событие A: «фонарик неисправен»

Противоположное событие A ¯ : «фонарик исправен»

P ( A ) = 8 100 = 0,08

P ( A ¯ ) = 1 − P ( A ) = 1 − 0,08 = 0,92

Ответ: 0,92

Теоремы о вероятностных событиях

Два события называются несовместными, если они не могут произойти одновременно, то есть если наступление одного из них исключает наступление другого. В противном случае события называются совместными.

Примеры несовместных событий:

  • Выпадение 1, выпадение 5, выпадение 6 при бросании кости

За один бросок может выпасть либо 1, либо 5, либо 6. Одновременно два или три значения выпасть не могут, только одно.

  • Выпадение орла, выпадение решки при броске монеты

За один бросок может выпасить либо орёл, либо решка, одновременно орёл и решка выпасть не могут.

Теорема сложения вероятностей несовместных событий:

Вероятность появления одного из двух (или более) несовместных событий равна сумме вероятностей этих событий.

P ( A + B ) = P ( A ) + P ( B )

Примеры:

  1. Паша на экзамене вытягивает билет. Все билеты относятся к одной из трех тем: «углы», «треугольники», «четырехугольники». Вероятность того, что Паше попадется билет по теме «треугольники» равна 0,22, вероятность того, что ему попадется билет по теме «четырехугольники» равна 0,31, вероятность того, что ему попадется билет по теме «углы» равна 0,47. Паша знает тему «углы» и тему «треугольники», но «четырехугольники» вызывают у него затруднения. Найдите вероятность того, что ему попадется билет по теме «треугольники» или по теме «углы».

Решение:

Событие A = «вытащить билет по теме углы» и событие B = «вытащить билет по теме треугольники» – несовместные.

Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P ( A + B ) = P ( A ) + P ( B )

P ( A + B ) = 0,47 + 0,22 = 0,69

Ответ: 0,69

  1. Макар играет в лотерею. Вероятность выиграть стиральную машину равна 0,001, вероятность выиграть денежный приз 0,013, вероятность выиграть сувенир 0,04. Найдите вероятность того, что лотерейный билет принесёт Макару какой-нибудь приз.

Решение:

Событие A = «выиграть машину», событие B = «выиграть денежный приз» и событие C = «выиграть сувенир» несовместные.

Вероятность появления одного из трех несовместных событий равна сумме вероятностей этих событий:

P ( A + B + C ) = P ( A ) + P ( B ) + P ( C )

P ( A + B + C ) = 0,001 + 0,013 + 0,04 = 0,054

Ответ: 0,054

Два события называются независимыми, если наступление одного из них не влияет на вероятность наступления другого. В противном случает события называются зависимыми.

Примеры независимых событий:

  • Игральный кубик бросают два раза. Выпадение трех очков при первом броске и выпадение четырех очков при втором броске являются независимыми событиями.

При первом броске вероятность выпадания трех очков равна 1 6 , при втором броске вероятность выпадания четырех очков снова равна 1 6 . Не смотря на то, что кубик кидают два раза, у него по-прежнему остаётся шесть граней, при каждом новом броске может выпасть одно из шести чисел с той же самой вероятностью 1 6 , вне зависимости от того, что выпадало до этого.

  • Монету бросают три раза. Выпадение орла при первом броске, выпадение орла при втором броске, выпадение орла при третье броске явлюятся независимыми событиями.

При первом броске вероятность выпадения орла равна 0,5, при втором броске вероятность выпадения орла равна 0,5, при третьем броске вероятность выпадения орла равна 0,5. Не смотря на то, что монету кидают несколько раз, при каждом новом броске может выпасть орёл или решка с той же самой вероятностью 0,5, вне зависимости от того, что выпадало до этого.

Примеры зависимых событий:

  • В шляпе лежат три синих шара и два красных. Последовательно извлекются два шара. Извлечь в первый раз синий шар и извлечь во второй раз синий шар – два зависимых события.

Почему же они зависимые? Потому что первоначально вероятность вытащить синий шар равна 3 5 (всего шаров 5, синих 3). После того, как один синий шар вытащили, количество благоприятных исходов изменилась, общее количество шаров изменилось. При следующем вынимании шара из шляпы вероятность вытащить синий шар равна 2 4 = 1 2 (всего шаров 4, синих 2). Таким образом наступление первого события влияет на вероятность наступления второго.

Теорема умножения вероятностей независимых событий:

Вероятность появления двух (или более) независимых событий равна произведению вероятностей этих событий.

P ( A ⋅ B ) = P ( A ) ⋅ P ( B )

Примеры:

  1. В первой шляпе лежит один синий шар и один красный, во второй шляпе лежит 1 синий шар и 4 красных. Из каждой шляпы извлекли по одному шару. Найдите вероятность того, что оба шара красные.

Решение:

Событие A: «извлечь красный шар из первой шляпы».

Событие B: «извлечь красный шар из второй шляпы».

Оба этих события независимы друг от друга, так как при извлечении шпара из первой шляпы, вторая остаётся нетронутой. Найдём вероятности этих событий.

P ( A ) = 1 2    (всего шаров два, красных – один).

P ( B ) = 4 5    (всего шаров пять, красных четыре).

P ( A ⋅ B ) = P ( A ) ⋅ P ( B )

P ( A ⋅ B ) = 1 2 ⋅ 4 5 = 0,4

Ответ: 0,4

  1. Стрелок 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что стрелок первые 2 раза попал в мишени, а последний раз промахнулся.

Решение:

Событие A: «попадание», событие B: «промах». По условию P ( A ) = 0,9. Найдём вероятность промаха, она равна

P ( B ) = 1 − P ( A ) = 1 − 0,9 = 0,1

Каждый из выстрелов – событие, не зависящее от предыдущих или последующих выстрелов, то есть все три события – независимые. Вероятность появления трех независимых событий равна произведению их вероятностей, то есть

P ( A ⋅ A ⋅ B ) = P ( A ) ⋅ P ( A ) ⋅ P ( B )

P ( A ⋅ A ⋅ B ) = 0,9 ⋅ 0,9 ⋅ 0,1 = 0,081

Ответ: 0,081

Симметричная монета в теории вероятности

Симметричная монета: Орёл Симметричная монета: Решка

Математическая монета, которая используется в теории вероятности, лишена многих качеств бычной моенты: цвета, размера, веса и достоинства. Она не сделана ни из какого материала и не может служить платёжным средством. Монета имеет две стороны, одна из которых орёл (О), а другая решка (Р). Монету бросают и она падает одной стороной вверх. Никаких других свойств у монеты нет. Рассмотрим различные опыты с монетой

Бросание одной монеты

Возможные исходы:
О
Р
Всего два исхода. Вероятность каждого исхода из двух возможных равна 1 2 = 0,5

Бросание двух монет (бросание одной монеты два раза подряд)

Возможные исходы:
О О
О Р
Р О
Р Р
Всего четыре исхода. Вероятность каждого исхода из четырех возможных равна 1 4 = 0,25

Бросание трех монет (бросание одной монеты три раза подряд)

Возможные исходы:
О О О
О О Р
О Р О
О Р Р
Р О О
Р О Р
Р Р О
Р Р Р
Всего восемь исходов. Вероятность каждого исхода из восьми возможных равна 1 8 = 0,125

Бросание четырех монет (бросание одной монеты четыре раза подряд)

Возможные исходы:
О О О О
О О О Р
О О Р О
О О Р Р
О Р О О
О Р О Р
О Р Р О
О Р Р Р
Р О О О
Р О О Р
Р О Р О
Р О Р Р
Р Р О О
Р Р О Р
Р Р Р О
Р Р Р Р
Всего шестнадцать исходов. Вероятность каждого исхода из шестнадцати возможных равна 1 16 = 0,0625

Примеры:

  1. Симметричную монету бросают три раза подряд. Какова вероятность, что решка выпадет ровно один раз?

Решение:

Всего восемь различных исходов (см. опыт с бросанием трех монет). Исходов, в которых решка выпала ровно один раз, три.

P = 3 8 = 0,375

Ответ: 0,375

  1. Cимметричную монету бросают четыре раза подряд. Найдите вероятность того, что орёл выпадет хотя бы два раза.

Решение:

В опыте с бросанием четырех монет всего шестнадцать различных исходов. Благоприятные исходы – те, в которых выпало два, три или четыре орла. Таких исходов всего одиннадцать.

P = 11 16 = 0,6875

Ответ: 0,6875

Симметричная игральная кость в теории вероятности

Симметричная игральная кость

Математическая игральная кость, которая используется в теории вероятности, это правильная кость, у которой шансы на выпадение каждой грани равны. Подобно математической монете, математическая кость не имеет ни цвета, ни размера. Ни веса, ни иых материальных качеств. Рассмотрим различные опыты с игральной костью.

Бросание одной кости

Возможные исходы: 1, 2, 3, 4, 5, 6. Всего шесть исходов. Вероятность каждого исхода из шести возможных равна 1 6 .

Бросание двух костей (бросание одной кости два раза подряд)

Для того, чтобы перебрать все возможные варианты, составим таблицу:

Симметричная игральная кость: возможные варианты выпадения очков при бросании двух костей

Первое число в паре – количество очков, выпавших на первом кубике. Второе число в паре – количество очков, выпавших на втором кубике. Всего возможно тридцать шесть различных исходов.

Такую таблицу не составит труда нарисовать на экзамене, если попадётся задача на бросание двух кубиков. Сумма чисел в ячейке – сумма выпавших очков.

Симметричная игральная кость: сумма очков при бросании двух костей - все варианты

Примеры:

  1. Какова вероятность, что сумма очков при бросании двух кубиков, будет равна 7?

Решение:

Как видно из таблицы, всего 36 различных вариантов выпадания очков на двух кубиках. Благоприятных вариантов – когда сумма очков будет равна семи – всего 6.

P = 6 36 = 1 6

Ответ: 1 6

  1. Какова вероятность, что сумма очков при бросании двух кубиков, будет меньше десяти?

Решение:

Как видно из таблицы, всего 36 различных вариантов выпадания очков на двух кубиках. Благоприятные варианты – когда сумма очков будет равна 1, 2, 3, 4, 5, 6, 7, 8, или 9. Таких ячеек в таблице 30.

P = 30 36 = 5 6

Ответ: 5 6

Понравилась статья? Поделить с друзьями:
  • Как найти коэффициент оборачиваемости дебиторской задолженности
  • Как найти каналы на телевизоре vityas
  • Как найти абсолютную погрешность приближения дроби
  • Как найти свои даные
  • Как найти основные свойства дроби