Как найти вероятность на отрезке

Геометрическая вероятность

  1. Геометрическая вероятность на прямой
  2. Геометрическая вероятность на плоскости
  3. Геометрическая вероятность в пространстве
  4. Примеры

Понятие геометрической вероятности было сформулировано в §37 данного справочника. В этом параграфе мы рассмотрим различные задачи, при решении которых используется геометрическая вероятность.

п.1. Геометрическая вероятность на прямой

В одномерном случае пространству всех событий соответствует длина отрезка Ω ↔ L. Событие AlA – попадание в отрезок lAL.
Тогда вероятность события A $$ mathrm{ P(A)=frac{l_A}{L} } $$ Говорят, что мерой множеств событий в одномерном случае является длина.

Например:
Оптический кабель длиной 1 м случайно разрезают ножницами. Какова вероятность того, что длина обрезка составляет не меньше 80 см?
Геометрическая вероятность на прямой
Чтобы получить обрезок не менее 80 см, нужно попасть ножницами в отрезок 20 см справа или слева куска кабеля. Вероятности попадания (mathrm{P_{text{справа}}=frac{l_A}{L}, P_{text{слева}}=frac{l_A}{L}}). По правилу суммы, искомая вероятность при L=100 см, lA=20 см $$ mathrm{ P_{text{справа}}+P_{text{слева}}=frac{2l_A}{L}, P=frac{2cdot 20}{100}=0,4 } $$ Ответ: 0,4.

п.2. Геометрическая вероятность на плоскости

В двумерном случае пространству всех событий соответствует площадь некоторой замкнутой области Ω ↔ SΩ.
Событие AsA – попадание в замкнутую подобласть с площадью sASΩ.
Тогда вероятность события A $$ mathrm{ P(A)=frac{s_A}{S_{Omega}} } $$ Говорят, что мерой множеств событий в двумерном случае является площадь.

Например:
Два друга договорились встретиться между 14 и 15 часами. Каждый может прийти в любой момент в течение назначенного часа. Тот, кто пришёл первым, ждёт другого в течение 15 минут, а затем уходит. Чему равна вероятность встречи?
Геометрическая вероятность на плоскости
Пусть 0≤x≤60 (мин) и 0≤y≤60 (мин) – моменты прихода первого и второго друга соответственно. Тогда пространство событий – квадрат 60х60.
Область ожидания: |x–y|≤15. Раскроем модуль: –15≤x–y≤15. Получаем систему: (left{ begin{array}{ l} mathrm{yleq x+15} &\ mathrm{ygeq x-15} & end{array}right. ). На графике – это зелёная полоса. Событие A – встреча состоялась – соответствует площади зеленой полосы. Получаем: begin{gather*} mathrm{ S_{Omega}=60cdot 60=3600, s_A=3600-2S_{Delta}=3600-2cdot frac{1}{2}cdot 45^2=1575 }\ mathrm{ P(A)=frac{s_A}{S_{Omega}}=frac{1575}{3600}=frac{7}{16}=0,4375 } end{gather*} Ответ: 0,4375.

п.3. Геометрическая вероятность в пространстве

В трёхмерном случае пространству всех событий соответствует объём некоторой замкнутой области Ω ↔ VΩ.
Событие AvA – попадание в замкнутую подобласть с объёмом vAVΩ.
Тогда вероятность события A $$ mathrm{ P(A)=frac{v_A}{V_{Omega}} } $$ Говорят, что мерой множеств событий в трёхмерном случае является объём.

Например:
Телескоп находится на космической станции. В каждый момент времени он случайно направлен в одну из сторон и наблюдает часть неба. Пусть телескоп способен регистрировать все объекты в радиусе 10000 км. Какова вероятность, что он заметит астероид радиусом 100 км, залетевший в область регистрации?
Геометрическая вероятность в пространстве
Пространству всех событий соответствует сфера объемом: $$ mathrm{ V_{Omega}=frac{4}{3}pi R^3, R=10000 text{км} } $$ Событие A – астероид замечен – соответствует объему астероида: $$ mathrm{ v_{A}=frac{4}{3}pi R^3, R=100 text{км} } $$ Вероятность того, что астероид будет замечен: $$ mathrm{ P(A)=frac{v_{A}}{V_{Omega}}=frac{frac{4}{3}pi R^3}{frac{4}{3}pi R^3}=left(frac{r}{R}right)^3, P(A)=left(frac{100}{10000}right)^3=10^{-6}=0,000001 } $$ Ответ: 0,000001.

п.4. Примеры

Пример 1. Для игры в «Дартс» используется круглая мишень радиусом 40 см. Центральный круг – «десятка» – имеет радиус 4 см. Если игрок всегда попадает в мишень в любую точку с одинаковой вероятностью, какова вероятность попасть в «десятку»?

Мерой для этой задачи является площадь.
Пространство всех событий – круг радиусом R = 40 см. Его площадь (mathrm{ S_{Omega;}=pi R^2}).
Событие A – попадание в «десятку» – круг радиусом r = 4 см. Его площадь (mathrm{ s_{A}=pi r^2}).
Вероятность попадания: $$ mathrm{ P(A)=frac{s_{A}}{S_{Omega}}=frac{pi r^2}{pi R^2}=left(frac{r}{R}right)^2, P(A)=left(frac{4}{40}right)^2=0,01 } $$ Ответ: 0,01.

Пример 2. В правильный треугольник вписан полукруг. В треугольник случайно ставятся точки. Какова вероятность, что точка попадет в полукруг?
Пример 2
Мерой в данной задаче является площадь.
Пусть сторона треугольника a. Тогда пространство всех событий – треугольник площадью (mathrm{ S_{Omega}=frac{sqrt{3}}{4}a^2}).
Найдем радиус вписанного полукруга.
ΔCOB ~ ΔOEB – по двум углам. $$ mathrm{ frac{CO}{OE}=frac{CB}{OB}Rightarrowfrac{acdot sin60^{circ}}{r}=frac{a}{a/2}Rightarrow r=frac{a}{2}cdot sin60^{circ}=frac{sqrt{3}}{4}a } $$ Площадь вписанного полукруга: (mathrm{ s_{A}=frac{pi r^2}{2}=frac{pi}{2}left(frac{sqrt{3}}{4}aright)^2=frac{3pi}{32}a^2}).
Вероятность попасть в полукруг: $$ mathrm{ P(A)=frac{s_{A}}{S_{Omega}}=frac{frac{3pi}{32}a^2}{frac{sqrt{3}}{4}a^2}=frac{sqrt{3}}{8}pi approx 0,68 } $$ Ответ: (mathrm{ frac{sqrt{3}}{8}pi approx 0,68. })

Пример 3. На отрезке [0; 1] случайным образом выбирается точка. Найдите вероятность того, что её координата x удовлетворяет условиям:
1) x2 > 0,64
2) (left{ begin{array}{ l} mathrm{0,3x^2leq 0,027} &\ mathrm{2x^2geq 0,08} & end{array}right. )

1) (mathrm{x^2geq 0,64Rightarrow (x^2-0,64)geq 0Rightarrow (x-0,8)(x+0,8)geq 0Rightarrow} left{ begin{array}{ l} mathrm{xleq -0,8} &\ mathrm{xgeq 0,8} & end{array}right. )
Учитывая x ∈ [0; 1], получаем: $$ left{ begin{array}{ l} mathrm{0leq xleq 1} &\ left[ begin{array}{ l} mathrm{xleq -0,8Rightarrow 0,8leq xleq 1} &\ mathrm{xgeq 0,8} & end{array}right.& end{array}right. $$ Мерой в данной задаче является длина: LΩ = 1, lA = 1 – 0,8 = 0,2
Вероятность выбора точки при данных условиях: ( mathrm{P(A)=frac{0,2}{1}=0,2} )
begin{gather*} 2) left{ begin{array}{ l} mathrm{0,3x^2leq 0,027} &\ mathrm{2x^2geq 0,08} & end{array}right. Rightarrow left{ begin{array}{ l} mathrm{x^2leq 0,009} &\ mathrm{x^2geq 0,004} & end{array}right. Rightarrow left{ begin{array}{ l} mathrm{x^2-0,009leq 0} &\ mathrm{x^2-0,004geq 0} & end{array}right. Rightarrow left{ begin{array}{ l} mathrm{(x-0,3)(x+0,3)leq 0} &\ mathrm{(x-0,2)(x+0,2)geq 0} & end{array}right. Rightarrow \ Rightarrow left{ begin{array}{ l} mathrm{-0,3leq xleq 0,3} &\ left[ begin{array}{ l} mathrm{xleq -0,2} &\ mathrm{xgeq 0,2} & end{array}right.& end{array}right. Rightarrow left[ begin{array}{ l} mathrm{-0,3leq xleq -0,2} &\ mathrm{0,2leq xleq 0,3} & end{array}right. end{gather*} Учитывая x ∈ [0; 1], получаем: $$ left{ begin{array}{ l} mathrm{0leq xleq 1} &\ left[ begin{array}{ l} mathrm{-0,3leq xleq -0,2} &\ mathrm{0,2leq xleq 0,3} & end{array}right.& end{array}right. Rightarrow 0,2 leq x leq 0,3 $$ Мерой в данной задаче является длина: LΩ = 1, lA = 0,3 — 0,2 = 0,1
Вероятность выбора точки при данных условиях: (mathrm{P(A)=frac{0,1}{1}=0,1})
Ответ: 1) 0,2; 2) 0,1.

Пример 4. В сито, наполненное до краёв зерном, уронили жемчужину. Сито представляет собой цилиндр радиусом 20 см и высотой 12 см.
1) Какова вероятность случайно зачерпнуть горсть зерна вместе с жемчужиной, если объём горсти 0,1 л?
2) Если после неудачной попытки, высыпать зерно из горсти обратно в сито, перемешать, и снова зачерпнуть горсть, изменится ли вероятность?
3) Если после неудачной попытки, высыпать зерно из горсти в сторону и зачерпнуть следующую горсть, изменится ли вероятность?
4) Сколько «неудачных» горстей нужно отсыпать в сторону, чтобы вероятность удачи для следующей попытки превысила 1/3?
1) Мерой для этой задачи является объём.
Пространство всех событий – все возможные точки, где может оказаться жемчужина – это цилиндрическое сито, объемом

VΩ = πR2h,   R = 20 см = 2 дм,  h = 12 см = 1,2 дм
VΩ = π · 22 · 1,2 = 4,8 π дм3 = 4,8 π л

Событие A – зачерпнуть жемчужину в горсти объемом vA = 0,1 л
Вероятность: $$ mathrm{ P(A)=frac{v_{A}}{V_{Omega}}, P(A)=frac{0,1}{4,8pi} approx 0,0066 } $$ 2) Если высыпать зерно обратно из горсти и перемешать, то пространство всех событий останется тем же, VΩ = 4,8π л. Вероятность не изменится.

3) Если высыпать зерно в сторону, пространство всех событий уменьшится:

VΩ = VΩ – vA = (4,8π – 0,1) л

Вероятность увеличится: $$ mathrm{ P(A)=frac{v_{A}}{V_{Omega}^{‘}}, P(A)=frac{0,1}{4,8pi -0,1} approx 0,0071 } $$
4) После того, как мы отсыпаем N горстей, пространство всех событий $$ mathrm{ V_{Omega}^{»} = V_{Omega}-Nv_{A}=(4,8pi-0,1N) text{л} } $$ По условию: $$ mathrm{ P(A)frac{0,1}{4,8pi -0,1N}geq frac13 } $$ Получаем: (mathrm{4,8pi -0,1Nlt 0,3Rightarrow Ngt frac{4,8pi-0,3}{0,1}=147,8})
N = 148.
Ответ: 1) 0,0066; 2) нет; 3) увеличится, 0,0071; 4) 148.

Пример 5. Загадываются два действительных числа от 0 до 4.
1) Какова вероятность, что их сумма больше 3?
2) Какова вероятность, что их разность меньше 1?

По условию 0 ≤ x ≤ 4, 0 ≤ y ≤ 4
Мерой для этой задачи является площадь.
Пространство всех событий: квадрат 4х4, SΩ = 42 = 16.

Ответ: (mathrm{ 1) frac{23}{32}; 2) frac{7}{16}. })

Алгебра и начала математического анализа, 11 класс

Урок №37. Геометрическая вероятность.

Перечень вопросов, рассматриваемых в теме:

  • Геометрическая вероятность
  • Задачи на геометрическую вероятность

Глоссарий по теме

Испытанием называется осуществление определенных действий.

Под событием понимают любой факт, который может произойти в результате испытания.

Любой результат испытания называется исходом.

Достоверным называют событие, которое в результате испытания обязательно произойдёт.

Невозможным называют событие, которое заведомо не произойдёт в результате испытания.

Геометрической вероятностью некоторого события называется отношение P(A) = g/G, где G – геометрическая мера, выражающая общее число всех равновозможных исходов данного испытания, а g – мера, выражающая количество благоприятствующих событию A исходов

Основная литература:

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. Под ред. А.Б. Жижченко. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни. – 2-е изд. – М.: Просвещение, 2010. – 336 с.: ил. – ISBN 978-5-09-022250

Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и классов с углубл. изуч. математики. — 4-е изд. — М.: Просвещение, 1995. — 288 с.: ил. — ISBN 5-09-0066565-9. сс.253-259.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Вероятность наступления некоторого события A в испытании равна P(A) = g/G, где G – геометрическая мера, выражающая общее число всех равновозможных исходов данного испытания, а g – мера, выражающая количество благоприятствующих событию A исходов.

Пусть на плоскости задана некоторая область D, площадь которой равна S(D), и в ней содержится область d, площадь которой равна s(d). В области D наудачу ставится точка. Тогда вероятность события А – «точка попадает в область d» равна числу P(A) = s(d)/S(D).

Рисунок 1 — иллюстрация геометрической вероятностей

Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Вероятность попадания точки на отрезок l равна P(A) = |l|/|L|.

Пусть пространственная фигура d составляет часть фигуры D. В фигуру D наудачу ставится точка. Вероятность попадания точки в фигуру d равна P(A) = V(d)/V(D).

Пример использования геометрического определения вероятности при решении задачи.

Два друга договорились встретиться в определенном месте между 12 и 13 часами. Пришедший первым ждет другого в течении 20 минут, после чего уходит. Чему равна вероятность встречи друзей, если приход каждого из них может произойти

наудачу в течении указанного часа и моменты прихода независимы?

Решение:

х — момент прихода первого друга

y — момент прихода второго друга

0≤х≤60, 0≤у≤60

⎮х-у⎮≤20.

Сделаем рисунок

Рисунок 2 — Иллюстрация к задаче

S=602–2·1/2·402=2000

P(A) = 2000/602 = 5/9.

Ответ: вероятность встречи 5/9.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Метровый шнур случайным образом разрезают ножницами. Найти вероятность того, что длина обрезка составит не менее 80 см.

Решение:

Общему числу исходов соответствует длина шнура 1 м. Чтобы длина обрезка составила не менее 0,8 м, можно отрезать не более 0,2 м. Такие отрезы можно выполнить с любой стороны шнура, их суммарная длина равна 0,2+0,2=0,4 м. По геометрическому определению:

P(A)=l/L=0,4/1=0,4

Ответ: 0,4

Пример 2. В шар брошена случайная точка.

2а) С какой вероятностью она попадёт в центр шара?

Решение:

Объём одной точки (центра шара) равен нулю, значит и искомая вероятность равна 0

Ответ: 0

2б) С какой вероятностью она попадёт на какой-нибудь диаметр шара?

Решение:

Любая точка шара всегда попадает на какой-нибудь диаметр. Поэтому вероятность равна единице.

Ответ: 1.

2в) С какой вероятностью она попадёт в одно, определённое, полушарие?

Решение:

При решении этой задачи используем отношение объемов фигур. Пусть весь объём шара равен V. Все точки шара — трёхмерная фигура Ω. Искомая вероятность равна отношению объёма полушария V(A) к объёму шара V:

Ответ: 0,5

Пример 3. В круг радиуса см вписан равнобедренный прямоугольный треугольник. В круг наудачу ставится точка. Найдите вероятность того, что она не попадёт в данный треугольник. При необходимости в расчетах используйте значение π с точностью до целых.

Решение:

Площадь круга равна

Гипотенуза прямоугольного треугольника, вписанного в круг, равна диаметру круга (прямой угол опирается на диаметр), то есть .

Поскольку треугольник равнобедренный, его катеты равны между собой, и по теореме Пифагора каждый катет равен . Площадь такого треугольника будет равна (можно найти площадь треугольника, не вычисляя длины катета: рассмотрим квадрат со стороной, равной гипотенузе нашего треугольника, площадь такого квадрата в четыре раза больше площади треугольника

Вероятность попадания точки в треугольник равна отношению площадей треугольника и круга:

Ответ: 1/3

Геометрические вероятности

Пусть отрезок
составляет
часть отрезка.
На отрезкенаугад поставлена точка. Предполагается
, что вероятность попадания точки на
отрезокпропорциональна длине этого отрезка и
не зависит от его расположения относительно
отрезка.
В этих предположениях вероятность
попадания точки на отрезокопределяется равенством

Пусть плоская фигура
составляет
часть плоской фигурыНа фигуру наудачу брошена точка.
Предполагается, что вероятность попадания
брошенной точки на фигурупропорциональна площадиэтой фигуры и не зависит от ее расположения
относительно фигуры,
ни от формы фигурыи.
В этих предположениях вероятность
попадания точки на фигуруопределяется равенством

где— площадь фигуры

Аналогично определяется вероятность
попадания точки в пространственную
фигуру
,
которая составляет часть фигуры.

Задача № 1.

На отрезок
,
имеющий длину 40 см, помещен меньший
отрезокдлиной 15 см. Найти вероятность того, что
точка наудачу поставленная на большой
отрезок, попадет также и на меньший
отрезок. Предполагается, что вероятность
попадания точки на отрезокпропорциональна длине этого отрезка и
не зависит от его расположения на отрезке.

Ответ:

Задача № 2.

Плоскость разграфлена параллельными
прямыми, находящимися друг от друга на
расстоянии
.
На плоскость наудачу брошена монета
радиуса.
Найти вероятность того, что монета не
пересечет ни одной из прямых.

Задача № 3.

Внутрь круга радиуса
наудачу
брошена точка. Найти вероятность того,
что точка окажется внутри вписанного
в этот круг правильного треугольника.
Предполагается, вероятность попадания
точки в треугольник пропорциональна
площади треугольника и не зависит от
его расположения относительно круга.

Ответ:

Задача образец.

Два товарища условились встретиться в
определенном месте между 12 часами и
половиной первого дня. Пришедший первым
ждет другого в течении 20 минут, после
чего уходит. Найти вероятность того,
что встреча товарищей состоится, если
каждый из них наудачу выбирает момент
своего прихода ( в промежутке от 12 часов
до половины первого) и моменты прихода
обоих независимы.

Решение.

Обозначим событие:
— встреча товарищей состоится.

Найдем вероятность события применив
формулу:

Обозначим момент прихода одного из них
через
мин., а момент прихода другого черезмин. Для того, чтобы встреча произошла
необходимо и достаточно, чтобы выполнялось
условие:

Будем изображать
икак
декартовы координаты точек плоскости;
в качестве единицы масштаба выберем
минуту рис. 1.

Рис. 1.

Все возможные исходы испытания
изображаются точками фигуры ограниченной
квадратом, сторона которого равна 30;
площадь этого квадрата равна

Неравенство
равносильно системе неравенств:

Исходы испытания, благоприятствующие
событию
,
удовлетворяют системе неравенств:

Решениями этой системы неравенств
являются координаты всех точек плоскости,
расположенных на рис.1 в заштрихованной
области, то есть между граничными
прямыми:
;;;;;и на самих граничных прямых. Точки
плоскости, принадлежащие заштрихованной
области, характеризуют исходы испытания,
благоприятствующие событию.
Площадь заштрихованной фигуры равна

Искомая вероятность события
равна отношению площади заштрихованной
фигуры к площади всего квадрата:

Задача № 4.

Коэффициенты
иквадратного уравнениявыбирают наудачу на отрезке.
Какова вероятность того, что корни этого
уравнения будут действительными числами?

Ответ:

Задача № 5.

Наудачу взяты два неотрицательных числа
и,
каждое из которых не больше единицы.
Найти вероятность того, что суммане превышает единицы, а их произведение
не больше двух.

Ответ:

Задача № 6.

Плоскость разграфлена параллельными
прямыми, находящимися друг от друга на
расстоянии
.
На плоскость наудачу бросают иглу длины.
Найти вероятность того, что игла пересечет
какую-нибудь прямую.

Ответ:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Классическое определение вероятности оказывается эффективным для решения целого спектра задач, но с другой стороны, обладает и рядом ограничений. Одним из таких ограничений является тот факт, что оно неприменимо к испытаниям с бесконечным количеством исходов. Простейший пример:

На отрезок  наудачу бросается точка. Какова вероятность того, что она попадёт в промежуток ?

Поскольку на отрезке бесконечно много точек, то здесь нельзя применить формулу  (ввиду бесконечно большого значения «эн») и поэтому на помощь приходит другой подход, называемый геометрическим определением вероятности:

Вероятность наступления некоторого события  в испытании равна отношению , где  – геометрическая мера, выражающая общее число всех возможных и равновозможных исходов данного испытания, а  – мера, выражающая количество благоприятствующих событию  исходов.

На практике в качестве такой геометрической меры чаще всего выступает длина или площадь, реже – объём.
Рассмотрим событие:  – брошенная на отрезок  точка, попала в промежуток . Очевидно, что общее число исходов выражается длиной бОльшего отрезка: , а благоприятствующие событию  исходы – длиной вложенного отрезка:  По геометрическому определению вероятности:

Примечание: – метрические единицы: метры, сантиметры или какие-то др.

Слишком просто? Как и в случае с классическим определением, это обманчивое впечатление. Обстоятельно и добросовестно разбираемся в практических примерах:

Задача 28
Метровую ленту случайным образом разрезают ножницами. Найти вероятность того, что длина обрезка составит не менее 80 см.

Решение: «чего тут сложного? Вероятность равна ». Это автоматическая ошибка, которую допускают по небрежности. Да, совершенно верно – длина обрезка составит не менее 80 см, если от ленты отрезать меньше 20 сантиметров. Но здесь часто забывают, что искомый разрез можно сделать как с одного конца ленты, так и с другого:

Рассмотрим событие:  – длина обрезка составит не менее 0,8 м.

Поскольку ленту можно разрезать где угодно, то общему числу исходов соответствует её длина:  Благоприятствующим исходам соответствуют  участки, отмеченные красным цветом, и их суммарная длина равна:  
По геометрическому определению:

Ответ: 0,4

Какой можно сделать вывод?

Даже если задача кажется вам очень простой, НЕ СПЕШИТЕ

При оформлении задач следует обязательно указывать размерность (единицы, метры, квадратные единицы, квадратные метры и т.д.). Кстати, обратите внимание, что на финальном этапе вычислений геометрическая мера сокращается. Так в рассмотренном примере, сократились метры:
, в результате чего получилась привычная безразмерная вероятность.

Следующая задача для самостоятельного решения:

Задача 29
После бури на участке между 40-м и 70-м километрами телефонной линии произошёл обрыв провода. Какова вероятность того, что он произошёл между 50-м и 55-м километрами линии?

Значительно чаще встречаются примеры, в которых фигурируют площади:
Задача 30
В треугольник со сторонами  вписан круг. Точка  произвольно ставится в треугольник. Найти вероятность того, что точка попадёт в круг.

Вспоминаем геометрию: вписанный круг лежит внутри треугольника и касается его сторон в трёх точках. …Представили? Отлично!

Решение: поскольку точка ставится в треугольник, а круг лежит внутри, то общему числу исходов соответствует площадь треугольника, а множеству благоприятствующих исходов – площадь вписанного круга.

Осталось вспомнить или отыскать (проще всего в Сети) школьные геометрические формулы. Если даны длины сторон треугольника, то его площадь удобно найти по формуле Герона:
, где  – длины сторон треугольника, а  – полупериметр.

Сначала вычислим полупериметр треугольника: , а затем его площадь:

Площадь круга найдём по известной формуле . Если круг вписан в треугольник, то его радиус можно рассчитать по формуле , этого я не вообще не знал – только что нашёл в Интернете.

Итак, площадь вписанного круга:

По геометрическому определению:
 – вероятность того, что точка  попадёт во вписанный круг.

Ответ:

Более простой пример для самостоятельного решения:

Задача 31
В круге радиуса 10 см находится прямоугольный треугольник с катетами 12 и 7 см. В круг наудачу ставится точка. Найти вероятность того, что она не попадёт в данный треугольник.

Следует отметить, что в этой задаче треугольник вовсе не обязан как-то касаться окружности, он просто расположен внутри круга и всё. Будьте внимательны!

А теперь рассмотрим широко известную задачу о встрече:

Задача 32
Две грузовые машины могут подойти на погрузку в промежуток времени от 19.00 до 20.30. Погрузка первой машины длится 10 минут, второй – 15 минут. Какова вероятность того, что одной машине придется ждать окончания погрузки другой?

Решение: сначала выясним длительность временнОго промежутка, на котором могут пересечься автомобили: это 90 минут (коль скоро, от 19.00 до 20.30). Изобразим прямоугольную систему координат, где в подходящем масштабе построим квадрат размером 90 на 90 единиц:

Общему множеству исходов соответствует площадь данного квадрата:
 

Далее по оси  от начала координат откладываем время погрузки одного автомобиля (зелёная линия), а по оси  – время погрузки другого автомобиля (красная линия) (можно наоборот, это не повлияет на решение).

Теперь из правого конца зелёного отрезка и из верхнего конца красного отрезка под углом 45 градусов проводим две линии внутри квадрата (малиновые отрезки).

Множеству благоприятствующих исходов (когда автомобили «пересекутся» во времени) соответствует площадь  заштрихованной фигуры. В принципе, её можно вычислить «на пальцах», но технически проще использовать окольный путь, а именно, вычислить площади двух прямоугольных треугольников. Используем формулу:
, где  – длины катетов.

В нашей задаче: верхний треугольник имеет катеты длиной по 80 единиц, нижний треугольник – по 75 единиц. Обратите внимание, что в общем случае эти треугольники не равны.

Таким образом, суммарная площадь треугольников составляет:

И бесхитростный заключительный манёвр: из площади квадрата вычитаем площади треугольников, получая тем самым благоприятствующую площадь:

По геометрическому определению:
 – вероятность того, что одной машине придется ждать окончания погрузки другой.

Ответ:

Подробное объяснение этого способа решения можно найти, например, в учебном пособии В.Е. Гмурмана, я же остановился лишь на техническом алгоритме, дабы не тратить ваше драгоценное время.

И если в разобранной задаче встреча явно нежелательна, то в следующей, скорее, наоборот. Романтичный эпизод для самостоятельного изучения:

Задача 33
Студенты случайным образом приходят в столовую с 14.00 до 15.00, при этом обед каждого из них занимает примерно 20 минут. Найти вероятность того, что: а) Коля встретится с Олей во время обеда, б) данная встреча не состоится.

Не нужно печалиться по поводу пункта «бэ» – любовь приходит и уходит, а кушать хочется всегда! =)

Решение, чертёж и ответ в конце книги.

Оставшиеся примеры параграфа посвящены не менее распространённому типу задач, где фигурируют неравенства.

Для начала разогревающий пример:

Задача 34
В квадрат с вершинами   наудачу брошена точка . Найдите вероятность того, что координаты этой точки удовлетворяют неравенству.

Решение: изобразим на чертеже искомый квадрат и прямую :

Общему множеству исходов соответствует площадь квадрата

Прямая  делит квадрат на треугольник и трапецию. Как определить фигуру, которая удовлетворяет условию ? Вспоминаем линейные неравенства: нужно взять любую точку, не принадлежащую прямой , например, точку  и подставить её координаты в неравенство:

Получено верное неравенство, значит, множеству благоприятствующих исходов соответствует площадь  трапеции. Рассчитаем данную площадь как сумму площадей прямоугольного треугольника и прямоугольника (разделены на чертеже пунктиром):

По геометриче­скому определению:
 – вероятность того, что координаты брошенной в данный квадрат точки удовлетворяют неравенству.

Ответ:

…аналитическую геометрию немного вспомнили, теперь на очереди математический анализ, ибо неравенства бывают не только линейными:

Задача 35
Загадываются два числа  и  в промежутке от 0 до 5. Какова вероятность, что ?

Схема решения уже знакома: коль скоро загадываются 2 произвольных числа от нуля до пяти (они могут быть и иррациональными), то общему количеству исходов соответствует площадь квадрата  
Изобразим ветвь гиперболы , которая делит квадрат на две части:

Теперь выясним, какой из этих двух «кусков» удовлетворяет неравенству . Для этого выберем любую точку, не принадлежащую гиперболе, проще всего взять , и подставим её координаты в наше неравенство:

Получено неверное неравенство, а значит, условию  соответствует «верхний кусок», площадь   которого, деваться тут некуда, придётся вычислить с помощью определённого интеграла. Уточним нижний предел интегрирования аналитически (найдём точку пересечения гиперболы  и прямой ):

На отрезке  прямая  расположена не ниже гиперболы , по соответствующей формуле:

По геометрическому определению:
 – вероятность того, что произведение двух загаданных в промежутке от 0 до 5 чисел окажется больше двух.

Ответ:

Аналогичный пример для самостоятельного решения:

Задача 36
Загадываются два числа  и  в промежутке от 0 до 10. Какова вероятность, что
Данная задача (как, собственно, и предыдущая) допускает несколько способов расчёта площади, подумайте, какой путь более рационален.

В заключение следует отметить, что геометрическое определение вероятности тоже обладает своими недостатками. Один из них заключается в своеобразном парадоксе, давайте вспомним самый первый пример с отрезком , на который случайным образом падает точка. Возможно ли, что точка попадёт, например, на самый край отрезка? Да, такое событие возможно, но по геометрическому определению, его вероятность равна нулю! И то же самое можно сказать о любой точке отрезка! Дело в том, что с позиций геометрии размеры отдельно взятой точки равны нулю, и поэтому геометрическое определение вероятности здесь не срабатывает.

1.6.1. Теорема сложения вероятностей несовместных событий

1.4. Классическое определение вероятности

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Пусть рассматривается непрерывная вероятностная схема, т.е. пространство элементарных исходов представляет собой некоторую ограниченную область (отрезок, многоугольник, круг, параллелепипед, шар и т. п.) k-мерного пространства (прямой, плоскости, трехмерного пространства и т.д.). Естественно желание обобщить принцип равновероятности элементарных исходов классической вероятности и на эту схему. Однако в непрерывном случае число элементарных исходов бесконечно и, воспользовавшись принципом равновероятности, мы не смогли бы приписать каждому элементарному исходу иной вероятности, кроме нуля. Поэтому подойдем к определению геометрической вероятности по-другому. Рассмотрим сначала отрезок [0, 1] и предположим, что идеальная частица равномерно бросается на этот отрезок. Понятию равномерности придадим следующий смысл. Каждому отрезку Геометрическая вероятность независимо от его расположения, поставим в соответствие одинаковую вероятность попадания частицы на этот отрезок, равную его длине: Геометрическая вероятность а затем эту вероятность попытаемся с помощью трех аксиом Геометрическая вероятность продолжить на любое подмножество точек отрезка [0, 1]. Очевидно, что вероятность попадания частицы в любую точку х равна нулю, вероятность попадания на любой интервал (а, b) или полуинтервал Геометрическая вероятность (на отрезке [0, 1]) равна b — а, вероятность попадание в любое множество точек на отрезке [0, 1], состоящее из конечного и даже счетного объединения непересекающихся отрезков, интервалов и полуинтервалов равна сумме их длин, т. е. «длине», или лучше сказать, мере этого множества. В частности, вероятность попадания частицы в множество рациональных точек равна нулю.

Однако, как уже говорилось, имеется препятствие к такому продолжению, связанное с существованием подмножеств, которым разумным образом с сохранением трех аксиом вероятность мы никак не сможем приписать. Поэтому приходится ограничиваться только элементами борелевской Геометрическая вероятностьалгебры Геометрическая вероятность порожденной всевозможными интервалами (т.е. подмножествами, имеющими меру), что, впрочем, более чем достаточно для практических потребностей.

В общем случае геометрическая вероятность определяется совершенно аналогично. Пусть Геометрическая вероятность некоторая область, имеющая меру Геометрическая вероятность (длину, площадь, объем и т.д.), такую, что Геометрическая вероятность Скажем, что точка равномерным образом попадает в Геометрическая вероятность (реализуется принцип геометрической вероятности), если вероятность Р(А) попадания ее в каждую область А, являющуюся подобластью Геометрическая вероятность, пропорциональна мере этой области Геометрическая вероятность или в силу аксиомы нормированности

Геометрическая вероятность

Пример:

В круг радиусом Геометрическая вероятность равномерно бросается точка. Найдем вероятность события А, заключающегося в попадании этой точки в круг радиусом Геометрическая вероятность с тем же центром (рис. 2).

Геометрическая вероятность

Рассмотрим два способа решения этой задачи:

1)вероятность Р(А) определяется как отношение площади внутреннего круга к площади внешнего:

Геометрическая вероятность

2) заметим, что в силу принципа геометрической вероятности как угол Геометрическая вероятность так и расстояние Геометрическая вероятность от точки Геометрическая вероятность до центра О должно быть распределено равномерно. Поскольку точки, равноотстоящие от центра, все либо одновременно принадлежат меньшему кругу, либо нет, то вероятность попадания в этот круг равна отношению радиусов: Геометрическая вероятность

Итак, мы получили в одной и той же задаче два разных ответа. Причина кроется в том, что понятие геометрической вероятности не инвариантно относительно преобразований рассматриваемой области Геометрическая вероятность. В частности, в нашем примере при втором способе решения мы считаем, что равновероятно попадание точки в области Геометрическая вероятность заштрихованные на рис. 3. Но с точки зрения обычного понятия площади, используемого при первом способе решения, это не так. Значит, вероятность существенно зависит от способа определения понятия «равновероятно» или, иными словами, от того, как мы задали меру Геометрическая вероятность Именно на неинвариантности понятия геометрической вероятности относительно преобразований основаны многочисленные парадоксы, часто приводимые в различных учебниках.

Геометрическая вероятность

Возвращаясь к рассматриваемому примеру, отметим, что в приведенной постановке задачи предпочтительным нужно считать первый способ. Однако не следует думать, что второе решение относится к числу математических фокусов. Представляемая этим решением модель сигнала с равномерно распределенными фазой (углом) и амплитудой (радиусом) находит широкое применение в статистической радиофизике.

Пример:

На Землю параллельно плоскости экватора падает поток метеоритов. Найдем вероятность того, что упавший метеорит попадет между 15° и 45° северной широты (событие А). Естественно предполагать, что поток метеоритов равномерно распределен на плоскости, перпендикулярной плоскости экватора. Если мы теперь спроецируем земной шар на эту плоскость (рис. 4), то получим, что вероятность наступления события А пропорциональна площади Геометрическая вероятность заштрихованной области А. Определим Геометрическая вероятность

На Землю параллельно плоскости экватора падает поток метеоритов. Найдем вероятность того, что упавший метеорит попадет между 15° и 45° северной широты (событие А). Естественно предполагать, что поток метеоритов равномерно распределен на плоскости, перпендикулярной плоскости экватора. Если мы теперь спроецируем земной шар на эту плоскость (рис. 4), то получим, что вероятность наступления события А пропорциональна площади Геометрическая вероятность заштрихованной области А. Определим Геометрическая вероятность

Геометрическая вероятность

Окончательно получаем

Геометрическая вероятность

Пример:

Поступление каждого из двух сигналов в приемник равновозможно в любой момент промежутка времени Т. Найдем вероятность того, что приемник будет «забит» (событие А), что происходит в том случае, когда промежуток времени между моментами поступления обоих сигналов меньше Геометрическая вероятность Для этого обозначим моменты поступления сигналов через х и у. Ясно, что для наложения сигналов необходимо и достаточно, чтобы Геометрическая вероятностьИзобразим х и у как точки внутри квадрата со сторонами Т (рис.5). Тогда исходы, благоприятные для наложения сигналов, представятся заштрихованной областью А. В силу принципа геометрической вероятности искомая вероятность равна отношению площади заштрихованной фигуры к площади всего квадрата:

Геометрическая вероятность

Пример:

Задача Бюффона. Плоскость разграфлена параллельными прямыми, отстоящими друг от друга на расстояние Геометрическая вероятность На плоскость наудачу бросается тонкая игла длиной Геометрическая вероятность Найдем вероятность того, что игла пересечет какую-нибудь прямую (рис. 6). Для этого прежде всего решим, что в данном случае соответствует понятию «наудачу». Ясно, что если игла бросается с достаточной высоты и ее начальное положение случайно, то под словом «наудачу» естественно подразумевать следующее: во-первых, центр иглы наудачу попадет на отрезок длиной Геометрическая вероятность во-вторых, угол Геометрическая вероятность между иглой и прямой равномерно распределен на Геометрическая вероятность и, в-третьих, на величину угла

Геометрическая вероятность

не влияет расстояние от центра до прямой. Поэтому изобразим результат бросания точкой с координатами Геометрическая вероятность лежащей внутри прямоугольника со сторонами Геометрическая вероятность (рис. 7), где х — расстояние от центра иглы до ближайшей прямой. Из рис. 6 видно, что пересечение иглы с прямой происходит тогда и только тогда, когда Геометрическая вероятность Искомая вероятность равна отношению площади заштрихованной области А к площади прямоугольника:

Геометрическая вероятность

Задача Бюффона может быть использована для экспериментального определения числа Геометрическая вероятность Так, Вольф (Цюрих) бросал иглу 5000 раз и получил 2532 пересечения с прямыми; при этом Геометрическая вероятность Заменяя теперь Р(А) частотой пересечения прямых Геометрическая вероятность получаем эмпирическое значение числа Геометрическая вероятность

Геометрическая вероятность

Более точное определение числа Геометрическая вероятность таким путем вряд ли возможно, поскольку, с одной стороны, здесь влияют физические особенности опыта (толщина иглы, неточность при определении факта пересечения и т.д.), с другой стороны, как мы увидим дальше, необходимо производить очень большое число испытаний.

Геометрические вероятности

Геометрические вероятности

Геометрические вероятности

Смотрите также:

Предмет теория вероятностей и математическая статистика

Решение заданий и задач по предметам:

  • Теория вероятностей
  • Математическая статистика

Дополнительные лекции по теории вероятностей:

  1. Случайные события и их вероятности
  2. Случайные величины
  3. Функции случайных величин
  4. Числовые характеристики случайных величин
  5. Законы больших чисел
  6. Статистические оценки
  7. Статистическая проверка гипотез
  8. Статистическое исследование зависимостей
  9. Теории игр
  10. Вероятность события
  11. Теорема умножения вероятностей
  12. Формула полной вероятности
  13. Теорема о повторении опытов
  14. Нормальный закон распределения
  15. Определение законов распределения случайных величин на основе опытных данных
  16. Системы случайных величин
  17. Нормальный закон распределения для системы случайных величин
  18. Вероятностное пространство
  19. Классическое определение вероятности
  20. Условная вероятность
  21. Схема Бернулли
  22. Многомерные случайные величины
  23. Предельные теоремы теории вероятностей
  24. Оценки неизвестных параметров
  25. Генеральная совокупность

Понравилась статья? Поделить с друзьями:
  • Как найти динамику структуры
  • Как найти стиральную машину бэушный
  • Как найти алмазы в майнкрафте на выживание
  • Как исправить время на часах самсунг
  • Как составить поздравление для мужчины