Как найти вероятность того что не попадется

На чтение 16 мин Просмотров 127к. Опубликовано 25 мая, 2018

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И  как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

вероятность

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Содержание

  1. Вероятность нескольких событий
  2. Задачи и решения задач на вероятность
  3. Вероятность нескольких событий
  4. Дополняющая вероятность

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: формула 1

Ответ: 0,8.

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

формула 2

Вероятность что второй дежурный мальчик:

формула 3

Раз оба должны быть мальчики, вероятности перемножим:

формула 4

Ответ: 0,2.

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12.  В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение: 

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение: 

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1 Игра №2 Вероятность данного варианта
3 1 0,4 · 0,2 = 0,08
1 3 0,2 · 0,4 = 0,08
3 3 0,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение: 

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 5

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 6

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 7

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 8

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение: 

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение: 

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

… США, КАН, КИТ …

… США, КИТ, КАН …

… КИТ, США, КАН …

… КАН, США, КИТ …

… КАН, КИТ, США …

… КИТ, КАН, США …

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

формула 9

≈ 0,33.

Дополняющая вероятность

Задача 1. 

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение: 

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: 

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение: 

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля 12 апреля 13 апреля Вероятность данного варианта
X – 0,9 X – 0,9 O – 0,1 0,9 ·0,9 ·0,1 = 0,081
X – 0,9 O – 0,1 O – 0,9 0,9 ·0,1 ·0,9 = 0,081
O – 0,1 O – 0,9 O – 0,9 0,1 ·0,9 ·0,9 = 0,081
O – 0,1 X – 0,1 O – 0,1 0,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля 5 июля 6 июля Вероятность данного варианта
X – 0,8 X – 0,8 O – 0,2 0,8 · 0,8 · 0,2 = 0,128
X – 0,8 O – 0,2 O – 0,8 0,8 · 0,2 · 0,8 = 0,128
O – 0,2 O − 0,8 O − 0,8 0,2 · 0,8 · 0,8 = 0,128
O – 0,2 X – 0,2 O – 0,2 0,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

На этой странице вы узнаете

  • Как кот может быть одновременно жив и мертв? 
  • Можно ли всегда выигрывать спор с монеткой? 
  • Если рандомно ответить на вопрос теста, какой шанс угадать ответ?

Какова вероятность выиграть в лотерею? Исследователи подсчитали: один на восемь миллионов. «Или выиграю, или проиграю», — решаю я, покупая лотерейный билет. Так понятие вероятности преследует нас в обычной жизни. И не только в лотерее. Давайте разберемся подробнее.

Вероятность

Выходя утром из дома, мы задумываемся: брать ли с собой зонт? Проверяем прогноз погоды — вероятность выпадения осадков 2%. Зонтик нам сегодня вряд ли понадобится. В пути нас настигает ливень…

Прогноз погоды — самый яркий пример вероятности. Он не всегда бывает точный, не всегда сбывается. Мы не можем с уверенностью сказать, что будет завтра. Зато можем по совокупности факторов определить, на какую погоду стоит ориентироваться. 

Теория вероятности — один из разделов математики, в котором изучаются модели случайных экспериментов. 

Случайными экспериментами называются такие, результаты которых неизвестны заранее. Подбрасывая монетку, мы не знаем, что выпадет — орел или решка. Только поймав монетку, мы узнаем результат. 

Как кот может быть одновременно жив и мертв? 

Ученый по имени Эрвин Шредингер провел мысленный эксперимент. Он поместил кота в закрытый ящик, в котором был расположен механизм, содержащий атомное ядро и ёмкость с ядовитым газом. 

По эксперименту с вероятностью 0,5 ядро распадется, емкость с газом откроется и кот умрет. Но при этом с вероятностью 0,5 ядро не распадается и кот останется жив. 

Пока ящик закрыт, мы не знаем результат эксперимента — такой эксперимент в математике можно назвать случайным.  Тем временем кот находится одновременно в двух состояниях: он и жив, и мертв. 

Рассмотрим чуть подробнее пример с монеткой. Есть всего два варианта, какое событие может произойти:

  • выпадет орел;
  • выпадет решка. 

Эти два события образуют множество элементарных событий. 

Множество элементарных событий — множество всех возможных результатов случайного эксперимента. 

В случае выше их всего два. А если мы будем подбрасывать игральную кость, то их будет уже 6. Множество элементарных событий будет менять в зависимости от ситуации. 

Допустим, мы поспорили с друзьями, что выпадет орел. Для нас это событие будет благоприятным, поскольку мы выиграем спор. Второе событие будет неблагоприятным, потому что спор будет проигран. 

Как найти вероятность, что мы выиграем спор? Нужно разделить число благоприятных событий на общее число событий. Таким образом, мы получили классическое определение вероятности. 

Вероятность — отношение количества благоприятных событий к количеству всех возможных событий. 

Пусть m — количество благоприятных исходов, а n — количество всех событий. Получаем следующую формулу. 

(P = frac{m}{n})

Вероятность можно обозначить, как P(x), где х — некоторое событие. 

Заметим, что количество благоприятных исходов должно быть либо меньше, либо равно количеству всех исходов. Если благоприятных событий больше, чем всех, значит, мы нашли не все множество элементарных событий.

Когда вероятность равна 1, то такое событие точно наступит. Иначе говоря, мы можем быть уверены на 100% — оно произойдет.

Можно ли всегда выигрывать спор с монеткой?

Можно, если хитро сформулировать условия. Например: «Орел — я выиграл, решка — ты проиграл». Вероятность выигрыша в этом случае будет равна (P = frac{2}{2} = 1), то есть мы точно выиграем спор. 

Однако вероятность не так проста, и даже здесь подготовила ловушку. 

В редких случаях есть и третий вариант событий — монетка встанет на ребро. Вероятность такого события составляет  (frac{1}{6000}). То есть за миллион бросков это может случиться 150 раз или 1 раз в 2 дня, если подкидывать монету каждый день по 8 часов в течение года. Чтобы монета встала на ребро два раза подряд, придется подбрасывать ее в том же темпе около 35 лет.

Вероятность всегда будет меньше или равна 1. Но ее можно выразить и через проценты. Для этого достаточно умножить полученный результат на 100%. 

Пример 1. На ресепшене одного из отелей стоит ваза с конфетами. В вазе 56 яблочных конфет, 49 апельсиновых и 35 малиновых. Гость отеля наугад тянет конфету. Какова вероятность, что ему попадется апельсиновая конфета?

Решение. Найдем, сколько всего конфет в вазе: 56 + 49 + 35 = 140. Вероятность вытащить апельсиновую конфету будет равна 
(frac{49}{140} = 0,35)

Выразим в процентах:  
0,35 * 100% = 35%

Задача решена. Обычно в ответе пишут значение вероятности через дробное число, а не проценты. Поэтому получаем следующий ответ. 

Ответ: 0,35

Чтобы выразить вероятность через проценты в одно действие, достаточно воспользоваться следующей формулой. 

(P = frac{m}{n} * 100%)

Но что, если нам нужно найти вероятность для более сложных экспериментов? Первым делом нужно определить, какие события перед нами.

Равновозможные и противоположные события

Когда мы бросаем игральную кость, вероятность выпадения любого из чисел равна 16. То есть вероятности выпадения чисел равны между собой. Такие события называются равновозможными. 

Равновозможные события — такие события, что по условиям опыта ни одно из них не является более возможным, чем другие. 

Вероятности появления событий равны. 

Для игрального кубика существует всего шесть событий, которые могут произойти: выпадет число 1, 2, 3, 4, 5 или 6. Все эти события образуют полную группу событий. 

Полная группа событий — такая группа событий, если в результате опыта обязательно появится хотя бы одно из них. 

В результате подбрасывания монеты выпадет либо орел, либо решка. То есть полная группа событий состоит из двух событий. 

Мы подбросили монету и выпал орел. Следовательно, не выпала решка. 

А если не выпадет орел? Обязательно выпадет решка. Эти события будут называться противоположными. 

Противоположные события — такие события, если при не наступлении одного обязательно наступает второе. 

Обозначим событие “выпала решка” как A. Противоположное ему событие “выпал орел” обозначим как (overline{A}). 

Заметим, что вероятность события A равняется 12, как и вероятность события (overline{A}). Чему равна их сумма?

)frac{1}{2} + frac{1}{2} = 1) 

Так мы вывели связь между противоположными событиями. Поскольку они всегда образуют полную группу событий, то сумма их вероятностей будет равна 1. 

(P(A) + P(overline{A}) = 1)

Какие еще примеры противоположных событий можно назвать? Ясная и дождливая погода. Если наступает одно из этих событий, то второе уже не может наступить. 

Объединение и пересечение событий 

Допустим, у нас есть два события: сегодня пойдет снег и сегодня пойдет дождь. Что будет, если мы их объединим? 

Объединение событий — событие, состоящее из всех элементарных исходов, благоприятствующих хотя бы одному из событий. 

В этом случае мы получим событие, которое будет выполняться при любом из исходов: и если пойдет снег, и если не пойдет снег. 

Объединение событий обозначается знаком (cup). Объединение событий А и В можно записать как (A cup B). 

Рассмотрим немного другой пример. В первое событие входит, что Илья получит пятерку по физике, а второе событие — Антон получит пятерку по физике. А как можно назвать событие, если оба мальчика получат пятерку по физике?

Пересечение событий — событие, состоящее из всех элементарных исходов, благоприятствующих обоим событиям. 

Пересечение событий обозначается знаком (cap). Пересечение событий А и В можно записать как (A cap B). 

Несовместные и совместные события

Рассмотрим два события: “чайник исправно работает” и “чайник сломался”. Могут ли эти события существовать одновременно? Нет, поскольку появление одного из них исключает появление другого.

Такие события называются несовместными. Название само говорит, что события не могут существовать одновременно. 

Несовместные события — такие события, появление одного из которых исключает появление другого. 

Решим небольшую задачу. На экзамене есть несколько билетов. С вероятностью 0,5 попадется билет по планиметрии. С вероятностью 0,3 попадется билет по экономике. При этом не существует билетов, которые включают обе эти темы. С какой вероятностью на контрольной попадется билет по одной из этих тем?

Представим билеты в виде схемы. Заметим, что нам нужно объединить два из трех кругов, то есть сложить их вероятности. 

Следовательно, вероятность будет равна 0,5 + 0,3 = 0,8.

Сформулируем определение суммы вероятностей двух несовместных событий. 

Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей:

(P(A cup B) = P(A) + P(B))

Если существуют несовместные события, то существуют и совместные. 

Совместные события — события, наступление одного из которых не исключает наступления другого. 

В магазине работают два консультанта. Один из них занят общением с клиентом. Означает ли это, что второй консультант тоже занят?  Нет, поскольку они работают независимо друг от друга. Если занят первый консультант, второй может быть как занят, так и нет. 

Подбросим игральный кубик и рассмотрим два вида событий. Пусть событие А — это “выпадет число 2”, событие В — “выпадет четное число”. 

Найдем вероятность события А: (frac{1}{6}). 

Для события В всего три благоприятных исхода из шести: выпадет число 2, 4 или 6. Тогда вероятность наступления события В равна (frac{3}{6} = frac{1}{2})

Исключают ли события А и В друг друга? Нет, поскольку если произойдет событие А, произойдет и событие В. Когда произойдет событие В, есть вероятность, что произойдет и событие А. 

Найдем объединение совместных событий на примере кругов. Если мы наложим их друг на друга, то в середине получится как бы два слоя. Проверить это можно, если наложить друг на друга два листа бумаги. 

А нужно получить вот такую картину:

Поэтому для объединения двух кругов нам нужно будет исключить одну из серединок. 

Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения:

(P(A cup B) = P(A) + P(B) — P(A cap B))

В каких случаях нужно пользоваться формулой со сложением? Достаточно, чтобы задачу можно было сформулировать с помощью “или”. Например, нужно, чтобы выпали темы по планиметрии или по экономике. 

Независимые и зависимые события 

Прогуляемся в магазин за булочками. В упаковке две булочки, а сама упаковка непрозрачная, то есть увидеть булочки до вскрытия упаковки мы не можем. 

Известно, что на заводе, где изготавливаются булочки, 5 из 100 булочек подгорают. Значит, 95 из 100 булочек не подгорают. По классическому определению вероятности находим, что вероятность каждой булочки не подгореть равна (frac{95}{100} = 0,95). 

Какова вероятность, что в упаковке попадутся только не подгорелые булочки? Как найти вероятность сразу для двух булочек?

Ответим на вопрос: зависят ли булочки друг от друга? 

Если подгорит одна из булочек в упаковке, не обязательно подгорит другая. Следовательно, булочки не зависят друг от друга. Такие события называются независимыми. 

Независимые события — такие события, появление одного из которых не зависит от появления другого события. 

Определим вероятность независимых событий. 

Пусть вероятность, что подгорела первая булочка, будет равна Р(А) = 0,95, а вероятность для второй булочки будет равна Р(В) = 0,95. 

А чтобы найти вероятность независимых событий, нужно воспользоваться следующей формулой:

(P(A cap B) = P(A) * P(B))

Тогда вероятность, что булочки в одной упаковке не подгорят, равняется P = 0,95 * 0,95 = 0,9025. 

В каком случае нужно пользоваться этой формулой? Нужно подставить союз “и”. 

Мы хотим, чтобы в упаковке первая булочка была не подгорелой и вторая булочка была не подгорелой. 

Приведем еще один пример. В здании два автомата с кофе на разных этажах. Даже если сломается один из них, работа второго не будет зависеть от первого. 

Но если автоматы стоят  рядом и включены в одну розетку, то при поломке одного из них есть вероятность выхода из строя розетки, а значит, и второй автомат тоже сломается. Такие события будут зависимыми: появление одного из них зависит от появления другого. 

Предположим, что в мешке лежит семь кубиков: два из них оранжевые, а пять — фиолетовые. Из мешка дважды вытаскивают кубики. Какова вероятность, достать во второй раз именно фиолетовый кубик?

Нужная последовательность может быть в двух случаях:

  • сначала вытащат фиолетовый кубик и потом снова фиолетовый;
  • сначала вытащат оранжевый кубик, а потом фиолетовый. 

Разберем первый случай. Вероятность в первый раз вытащить фиолетовый кубик равна (frac{5}{7}). После этого в мешке останется шесть кубиков, четыре из которых будут фиолетовые. 

Вероятность вытащить во второй раз фиолетовый кубик равна (frac{5}{7} * frac{4}{6} = frac{20}{42} = frac{10}{21}). 

Теперь рассмотрим второй случай. Вероятность в первый раз достать оранжевый кубик равна (frac{2}{7}). В мешке останется шесть кубиков, пять из которых будут фиолетовыми. 

Вероятность вытащить во второй раз фиолетовый кубик будет уже равна (frac{2}{7} * frac{5}{6} = frac{10}{42} = frac{5}{21}). 

В этом примере очень наглядно видно, что вероятность напрямую зависит от того, какой кубик попался первым. Следовательно, эти события зависимы. 

Как отличить зависимые и независимые события? Если после наступления первого события меняется количество благоприятных и всех исходов, то такие события — зависимые. Если количество благоприятных и всех исходов не меняется, то события независимые.

Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А. 

Условная вероятность обозначается P(B|A). В нашем примере условной вероятностью будет вычисление, что во второй раз попадется именно фиолетовый кубик.   

Найдем вероятность двух зависимых событий. Формула похожа на ту, что используется для независимых событий. Но в этот раз нам нужно применить условную вероятность. 

Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило:

(P(A cap B) = P(A) * P(B | A))

Формула Бернулли

Рассмотрим случаи, когда испытание повторяется многократно. Для этого еще раз обратимся к игральному кубику. Подбросим кубик 8 раз. Какова вероятность, что цифра 5 выпала ровно три раза?

Пусть p — вероятность, что выпадет цифра 5. Тогда (p = frac{1}{6}). 

Теперь возьмем q — противоположное р событие — вероятность, что цифра 5 не выпадет. (q = frac{5}{6}). 

Обозначим количество всех бросков за n, а количество выпадения цифры 5 за k. 

Чтобы решить задачу, нужно воспользоваться формулой Бернулли. 

(P_n(k) = C_n^k * p^k * q^{n — k}) 

Множитель (C_n^k) — это число сочетаний. Подробнее узнать про сочетания можно в статье «Основы комбинаторики». 

Решим задачу, подставив значения в формулу:

(P_8(3) = C_8^3 * (frac{1}{6})^3 * (frac{5}{6})^5 = frac{8!}{5!3!} * frac{1}{6^3} * frac{5^5}{6^5} = frac{6 * 7 * 8}{1 * 2 * 3} * frac{5^5}{6^8} approx 0,1) 

Фактчек

  • Вероятность — отношение количества благоприятных событий к количеству всех возможных событий. 
  • События могут быть противоположными. Противоположные события — такие события, если при не наступлении одного обязательно наступает второе. 
  • События можно разделить на совместные и несовместные. Несовместные события — такие события, появление одного из которых исключает появление другого. Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей: P(A (cup) B) = P(A) + P(B). Совместные события — события, наступление одного из которых не исключает наступления другого. Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения: P(A cup B) = P(A) + P(B) — P(A cap B).
  • События также можно разделить на независимые и зависимые. Независимые события — такие события, появление одного из которых не зависит от появления другого события. Вероятность независимых событий можно найти по формуле P(A cap B) = P(A) * P(B). Зависимые события — это события, появление одного из которых зависит от появления другого. Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило. P(A cap B) = P(A) * P(B | A). 
  • Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А. 

Проверь себя

Задание 1. 
Какие события являются несовместными?

  1. Подбрасывание монетки.
  2. Брак батареек в одной упаковке.
  3. “Миша идет” и “Миша стоит”.
  4. Случайное вытаскивание конфет из вазы. 

Задание 2. 
Алена делает ошибку при решении задач по математике с вероятностью 0,17. С какой вероятностью она не сделает ошибку при решении задачи?

  1. 0,17
  2. 1
  3. 0,83
  4. 1,17 

Задание 3. 
Артем решал задачи на вероятность. Ниже приведены его ответы. В какой из задач он точно совершил ошибку?

  1. 1
  2. 0,216
  3. 0,45
  4. 1,5 

Задание 4. 
В упаковке три шариковые ручки. С вероятностью 0,1 такая ручка не будет писать. Найдите вероятность, что все три ручки в упаковке пишут. 

  1. 0,3
  2. 0,001
  3. 2,7
  4. 0,729 

Задание 5. 
Перед Дашей лежит несколько карточек. Она случайно переворачивает одну из них. С вероятностью 0,5 на карточке окажется рисунок природы. С вероятностью 0,27 на карточке окажется мотивационная цитата. Карточек и с рисунком, и с цитатой нет. Найдите вероятность, что Дана перевернет карточку или с рисунком, или с цитатой. 

  1. 0,77
  2. 0,135
  3. 0,23
  4. -0,23

Ответы: 1. — 3 2. — 3 3. — 4 4. — 4 5. — 1

Для успешной сдачи ЕГЭ нужно знать, как решать задачи на вероятность. Эту тему проходят в школе уже в 8-9 классе. Но многие ученики приходят в тупик при решении этих задач. Для их решения нужно быть очень внимательным и грамотно работать с формулами.

В этой статье разберем задачи по теории вероятностей по принципу от простого к сложному, научимся работать с формулой и разберем особенности решения отдельных типов задач.

    1. Что такое вероятность простыми словами
    2. Как решать задачи с перечислением: примеры решения задач
    3. Как решать задачи с фиксированными элементами: примеры решения задач
    4. Как решать задачи с двумя кубиками: используем таблицы
    5. Независимые события в теории вероятностей
    6. Число сочетаний: учимся работать с формулой на примерах

Что такое вероятность простыми словами

Вся наша жизнь состоит из случайных событий, которые могут либо произойти, либо нет. Например, вы сегодня идете на экзамен, по которому лучше остальных знаете один билет, достанется он именно вам или нет – случайность. Так как билетов всего 20, а вам нужно вытянуть всего 1, мы можем определить вероятность, с которой вам достанется желаемый билет. Эта вероятность будет составлять 1 шанс к 20 возможным, то есть 1 к 20 или 1/20 или 0,05.

Формула вероятности

Формула для вычисления вероятности события выглядит следующим образом:Kak reshat zadachi na veroyatnost 10где P – вероятность события;

m —  число вариантов, которые нас устраивают (число благоприятных исходов);

n – общее количество вариантов (возможных исходов).

Логично, что число благоприятных исходов всегда меньше, чем общее количество исходов, т.е. меньшее число мы делим на большее. Таким образом вероятность всегда находится в диапазоне от 0 до 1.

Приведем еще пример.

Задача 1

У нас есть пакет, в котором лежит 15 шариков, 9 из которых фиолетового цвета, а остальные белые. Какова вероятность вытащить из пакета один белый шарик?

Решение. Итак, общее количество белых шариков 15 – 9 = 6 штук, следовательно количество благоприятных исходов нашего события – 6. Общее количество возможных исходов – 15. Подставляем в формулу и получаем:Kak reshat zadachi na veroyatnost 3

Таким образом, вероятность вытащить белый шарик равна 6/15.

Ответ: 6/15

Задачи на вероятность нужно читать внимательно, чтобы не допускать досадных ошибок. Например, вот в такой задаче.

Задача 2

В автомате, продающем, маленькие мячики есть мячи 5 цветов: 21 синих, 30 красных, 15 зеленых, 8 белых, а остальные желтые. Всего в автомате 90 мячиков. Какова вероятность, что Коле достанется мяч не синего цвета.

Решение. Мы обращаем внимание на то, что Коле должен достаться мяч НЕ синего цвета, а любого другого. Многие ученики просто не замечают частицу НЕ и ищут вероятность выпадения именно синего мяча, и естественно допускаю ошибку. Внимательно читаем условия задачи.

Итак, общее количество возможных вариантов – 90. Нам нужен любой мяч, кроме синего. Следовательно, количество вариантов, когда выпадет не синий мяч равно 90 – 21 = 69. Таким образом, вероятность того, что выпадет мячик любого цвета, кроме синего, равна:Kak reshat zadachi na veroyatnost 6Kak reshat zadachi na veroyatnost 7

Ну и разберем еще задачу.

Задача 3

На конкурсе выступают 11 участников из Казани, 6 участников из Нижнего Новгорода, 3 участника из Москвы и 7 участников из Твери. Порядок выступления в конкурсе определяется жеребьевкой. Какова вероятность того, что последним будем выступать конкурсант из Нижнего Новгорода? Результат округлите до сотых.

Решение. Итак, представим, что все конкурсанты подошли к барабану, где лежат номерки и тянут по одному номерку. Общее количество конкурсантов n = 11 + 6 + 3 + 7 = 27. Нас интересует, какова вероятность того, что один из конкурсантов из Нижнего Новгорода вытянет номерок с цифрой 27. Конкурсантов из Нижнего Новгорода всего 6, следовательно m = 6. Таким образом, вероятность будет равна:Kak reshat zadachi na veroyatnost 8Как представить в виде десятичной дроби?

Очень просто. Нужно разделить 6,0000 на 27 уголком. Тогда вы получите 0,222… или округляя до сотых 0,22.

Ответ: 0,22

Как решать задачи с перечислением

Этот тип задач отличается от предыдущих лишь тем, что в задаче предметы поименованы. А вычисления выполняются по той же формуле:

Kak reshat zadachi na veroyatnost 10

Приведем пример такой задачи.

Задача 4

В портфеле у Васи лежали учебники по алгебре, геометрии, химии, биологии и литературе. Вася не глядя вынимает один учебник, какова вероятность того, что он вытянул алгебру?

Решение. Не смотря на то, что теперь предметы поименованы, принцип решения задачи остался прежним. Общее количество вариантов (т.е. учебников в портфеле) – 5.  Нужный нам вариант (т.е. учебник по алгебре) – 1. Следовательно, вероятность нужного нам события равна:

Р =  = 0,2

Ответ: 0,2

Как решать задачи с фиксированными элементами: разбираем на примере

Задачи на вероятность с фиксированными элементами сводятся к стандартным задачам на вероятность, но из элементов m и n нужно вычесть 1.

Давайте разберемся на примере.

Задача 5

Задача 8. В соревнованиях по борьбе участвуют 73 участника. Из них 25 участников из Москвы, в том числе Б. Егоров. На пары участники разбиваются с помощью жеребьевки. Какова вероятность того, что противником Б. Егорова станет участник из Москвы? Результат округлите до сотых.

Решение. В этой задаче есть фиксированный элемент – Б. Егоров. Это фиксированный элемент мы должны вычесть из элементов m и n.

Итак, общее количество участников – 73. Но Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, его мы исключаем из общего количества и получаем n = 72. Нас интересуют только участники из Москвы, их 25. Но опять же Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, количество устраивающих нас вариантов m = 24. А теперь считаем по нашей формуле:Kak reshat zadachi na veroyatnost 12Таким образом, вероятность того, что противником Б. Егорова станет участник из Москвы равна 0,33.

Ответ: 0,33

Еще раз обратим внимание. Если в задаче есть фиксированный элемент, то мы вычитаем единицу из m и n, а дальше решаем задачу по стандартной формуле нахождения вероятности.

Как решать задачи с двумя кубиками: используем таблицы

Таблицы полезны при решении задач, где речь идет о двух игральных кубиках. Например.

Задача 6

Петя подбросил два игральных кубика. Какова вероятность того, что в сумме выпадет не менее 9 очков.

Решение. Вот в таких задачах удобнее всего построить таблицу. По горизонтали мы размещаем очки, которые могут выпасть на первом кубике, т.е. числа от 1 до 6. А по вертикали мы размещаем числа, которые могут выпасть на втором кубике, т.е. также числа от 1 до 6. Начертим таблицу:

Kak reshat zadachi na veroyatnost 13

Далее заполняем таблицу. Для этого мы вписываем сумму чисел, которые находятся на пересечении этой ячейки. Например, заполним первую строку. В ячейке на пересечении двух единиц у нас получится 1+1 = 2, далее пересекаются 2 и 1 получаем 2 +1 = 3, далее 3 + 1 = 4, далее 4 + 1 = 5, далее 5 + 1 = 6 и в последней ячейке этой строки получим 6 + 1 = 7Kak reshat zadachi na veroyatnost 14Таким образом, заполняем всю таблицу и получаем:Kak reshat zadachi na veroyatnost 15Мы получили таблицу со всеми возможными вариантами выпадения значений двух кубиков и их сумму.

Теперь вернемся к нашей задаче. Нам требовалось найти вероятность того, что на кубиках выпадет сумма не менее 9 очков. Следовательно, отмечаем в таблице значения больше или равные 9:Kak reshat zadachi na veroyatnost 16Таким образом, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 10

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Kak reshat zadachi na veroyatnost 17Итак, вероятность того, что на кубиках выпадет сумма не менее 9 очков, равна 0,27.

Ответ: 0,27

Задача 7

Маша подбрасывает два игральных кубика. Какова вероятность того, что в сумме на кубиках выпадет 6 очков? Результат округлите до сотых.

Решение. Берем нашу таблицу и находим значения, когда на кубиках сумма составит 6 очков:Kak reshat zadachi na veroyatnost 18Итак, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 5.

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Kak reshat zadachi na veroyatnost 22Напомним, чтобы 5/36 перевести в десятичную дробь, необходимо разделить столбиком 5,00000 на 36, в результате чего получим 0,13888. Округляем до сотых и получаем 0,14.

Итак, вероятность того, что на кубиках выпадет сумма 6 очков, равна 0,14.

Ответ: 0,14

Независимые события в теории вероятностей

Если вероятность появления одного события не зависит от появления другого события, и наоборот, то такие события называются независимыми.

Если события независимые, то их вероятности перемножаются. В результате этого мы получаем вероятность возникновения этих событий одновременно.

Давайте рассмотрим задачи с независимыми событиями.

Задача 8

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок попадет в мишень все 6 раз подряд?  Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность каждого из них – 0,8. Чтобы найти вероятность возникновения этих независимых событий одновременно необходимо перемножить вероятности этих событий. Таким образом:

Р = 0,8 * 0,8 *0,8 * 0,8 *0,8 * 0,8 = 0,262144

Округляем результат до сотых и получаем 0,26.

Итак, вероятность того, что стрелок попадет в мишень все 6 раз подряд, равна 0,26.

Ответ: 0,26

Рассмотрим еще одну задачу, чуть сложнее.

Задача 9

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок первые 2 раза промахнется, а остальные 4 раза попадет в цель? Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность того, что стрелок попадет или не попадет в мишень, равна 1. Вероятность того, что стрелок попадет в мишень, равна 0,8. Тогда вероятность того, что не попадет в мишень, равна 1 — 0,8 = 0,2. Нам нужно найти вероятность, когда стрелок два раза промахнется, а потом четыре раза попадет. Перемножаем соответствующие вероятности:

Р = 0,2 * 0,2 * 0,8 * 0,8 * 0,8 * 0,8 = 0,016384

Округляем 0,016384 до сотых и получаем 0,02.

Итак, вероятность того, что стрелок два раза промахнется, а потом четыре раза попадет, равна 0,02.

Ответ: 0,26

Число сочетаний из n по m

Задача 10

Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?

Мы понимаем, что здесь может быть большое количество вариантов сочетаний книг. Чтобы вычислить их количество нужно знать формулу числа сочетаний из n по m: Kak reshat zadachi na veroyatnost 19где С – это число сочетаний

n – количество элементов, из которого нужно выбрать

m – количество элементов, которое нужно выбрать

В формуле присутствует факториал. Записывается факториал следующим образом: n!, 5!, 7! Напомним, что это такое.

Факториал – это произведение всех натуральных чисел от 1 до основания факториала. Основание факториала – это число, которое стоит перед знаком «!». Т.е. факториал 5! имеет основание 5 и найти его можно следующим образом:

5! = 1 * 2 * 3 * 4 * 5

А факториал n! имеет основание n:

n! = 1 * 2 * 3 * 4 * 5 * … * n

Часто ученики путают, что в ставить внизу, а что наверху, т.е. меняют n и m местами. Применительно к нашей задаче можно перепутать, что ставить наверху: 2 или 8. Запомнить, что ставить наверху, а что внизу – легко. Сверху всегда стоит наименьшее число, т.е. в нашем случае – это 2.

Давайте вернемся к нашей задаче. Применяем формулу и получаем: Kak reshat zadachi na veroyatnost 20Обратите внимание, что не нужно умножать в числителе все натуральные числа от 1 до 8, у вас это отнимет очень много времени. Достаточно подробно расписать числитель и знаменатель, сделать сокращение и все легко считается.

Итак, Маша может выбрать книги 28 способами.

Ответ: 28

Давайте разберем еще одну задачу.

Задача 11

Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?

Решение. Применяем нашу формулу:

Kak reshat zadachi na veroyatnost 21

Ответ: 105 способов

Итак, сегодня мы разбирались, как решать задачи на вероятность. Теперь вы можете приступить к практике, ведь только большое количество тренировок позволит вам успешно справиться с заданиями ЕГЭ. Еще больше информации для подготовки к ЕГЭ по математике вы можете получить на нашем сайте, а также .

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

теория вероятности возникла как помощь в игре в кости, в казино и т.п.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом oslash.

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом Omega.

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. 0<P(A)<1.
  2. Вероятность невозможного события равна 0, т.е. P(oslash) = 0 .
  3. Вероятность достоверного события равна 1, т.e. P(Omega) = 1.
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. P(A+B) =P(A)+P(B).

Важным частным случаем является ситуация, когда имеется n равновероятных элементарных исходов, и произвольные k из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле P(A) = frac{k}{n}. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов k, прямо в условии написано число всех исходов n.

Самый простой способ определения вероятности

Ответ получаем по формуле P(A) = frac{k}{n}.

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть P(A), где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

    [ P(A)=frac{k}{n}=frac{8}{20}=0,4 ]

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. P(B)=1-P(A).

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. P(A+B) = P(A)+P(B)-P(AB).

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае P{AB)= P(A)cdot P(B).

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение 1cdot 2 cdot 3 cdot 4 cdot 5 cdot 6, которое обозначается символом 6! и читается “шесть факториал”.

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов P_n=1 cdot 2 cdot 3 cdot 4 cdot 5 cdot 6 В нашем случае  n= 6.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение 6 cdot 5.

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

    [ A^{k}_{n}=n cdot (n-1) cdot (n-2) dots cdot(n-k+1)= frac{n!}{(n-k)!} ]

В нашем случае n = 6, k = 2.

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: frac {6 cdot 5 cdot 4}{1cdot 2 cdot 3} = 20. В общем случае ответ на этот вопрос дает формула для числа сочетаний из n элементов по k элементам:

    [ C^{k}_{n}=frac{n cdot (n-1) cdot (n-2) dots (n-k+1)}{1cdot 2 cdot 3 dots cdot k}=frac{n!}{k! cdot (n-k)!}. ]

В нашем случае n=6, k=3.

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

P=frac {9}{30}=0,3.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

P=frac{980}{1000}=0,98

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.

Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:

P(A)=P(B)-P(C)=0,73-0,67=0,06.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

P(AB)=P(A)+ P(B)=0,2 +0,15 = 0,35

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: bigcirc– лампочка горит, otimes – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: P=0,29 cdot 0,71 cdot 0,71=0,146189, где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: P=1-0,29=0,71.

otimes otimes otimes P=0,29 cdot 0,29 cdot 0,29 = 0,024389

otimes bigcirc bigcirc P_1=0,29 cdot 0,71 cdot 0,71 = 0,146189

otimes otimes bigcirc  P_2=0,29 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes bigcirc  P_3=0,71 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes otimes  P_4=0,71 cdot 0,29 cdot 0,29 = 0,146189

bigcirc bigcirc otimes  P_5=0,71 cdot 0,71 cdot 0,29 = 0,05971

otimes bigcirc otimes  P_6=0,29 cdot 0,71 cdot 0,29 = 0,146189

bigcirc bigcirc bigcirc P_7=0,71 cdot 0,71 cdot 0,71=0,357911

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: P=P_1+P_2+P_3+P_4+P_5+P_6+P_7=0,146189 +0,05971+0,05971+0,146189+0,05971+0,146189+0,357911=0,975608.

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

решения задачи о монетах

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Решение типовых задач ЕГЭ по математике (профильная).

Теория вероятности.

№1.В случайном эксперименте бросают две игральные
кости.Найдите вероятность того ,что всумме выпадет 5 очков.Результат округлите
до сотых.

Решение:Всего вариантов выпадения для 2 кубиков m=62=36(каждый
из кубиков имеет 6 граней).А подходящих для нас (сумма  равна 5) всего
n=4

5=1+4=2+3=3+2=4+1

Искомая вероятность
равна Р=4
/36=0,11

Ответ:0,11

№2.В случайном эксперименте бросают три
игральные кости. Найдите вероятность того, что в сумме выпадет 16 очков.
Результат округлите до сотых.

Решение: Всего вариантов выпадения для трёх кубиков
m= 6³ = 216 (каждый из кубиков имеет 6 граней).

А подходящих для нас
(сумма равна 16) всего n= 6:

16 = 6+6+4 = 6+4+6 =
4+6+6 = 5+5+6 = 5+6+5 = 6+5+5.

Искомая вероятность
равна Р = 6/216 = ¹⁄₃₆ ≈ 0,03.

Ответ: 0,03

№3.В чемпионате по гимнастике участвуют 20
спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором
выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка,
выступающая первой, окажется из Китая.

Решение:В чемпионате принимает
участие 20 − (8 + 7) = 5 спортсменок из Китая. Тогда вероятность того, что
спортсменка, выступающая первой, окажется из Китая, равна

Ответ: 0,25.

№ 4: В среднем из 1000 садовых насосов, поступивших
в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный
для контроля насос не подтекает.

Решение: n= 1000 – 5 = 995 – насосов не
подтекают.  m=1000.

Вероятность того, что один случайно выбранный для
контроля насос не подтекает, равна 

  Р= n/m=995/1000 = 0,995.

Ответ : 0,995

№5:  Фабрика выпускает сумки. В среднем на 100
качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите
вероятность того, что купленная сумка окажется качественной. Результат
округлите до сотых.

Решение: m= 100 + 8 = 108 – сумок всего
(качественных и со скрытыми дефектами) ; благоприятных исходов n = 100/

Вероятность того, что купленная сумка окажется
качественной, равна       Р = n/m =100/108 = 0,(925) ≈ 0,93.

Ответ : 0,93

№6 .В соревнованиях по
толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9
спортсменов из Швеции и 5 − из Норвегии. Порядок, в котором выступают
спортсмены, определяется жребием. Найдите вероятность того, что спортсмен,
который выступает последним, окажется из Швеции.

 Решение : Всего участвует m= 4 + 7 + 9 + 5 = 25
спортсменов; благоприятных исходов n =9.

 Вероятность того, что спортсмен, который
выступает последним, окажется из Швеции, равна 

 Р = n/m =9/25 = 36/100 = 0,36.

Ответ: 0,36

№7: Научная конференция проводится в 5 дней. Всего
запланировано 75 докладов − первые три дня по 17 докладов, остальные
распределены поровну между четвертым и пятым днями. Порядок докладов
определяется жеребьёвкой. Какова вероятность, что доклад профессора
Н. окажется
запланированным на последний день конференции?

Решение: В последний день конференции
запланировано

n=(75 – 17 × 3) : 2 = 12 докладов; всего
возможных выборов m=75.

Вероятность того, что доклад профессора Н. окажется
запланированным на последний день конференции, равна Р= n/m= 12/75 = 4/25 =
0,16.

Ответ: 0,16

№8: Конкурс исполнителей проводится в 5 дней. Всего
заявлено 80 выступлений − по одному от каждой страны. В первый день 8
выступлений, остальные распределены поровну между оставшимися днями. Порядок
выступлений определяется жеребьёвкой. Какова вероятность, что выступление
представителя России состоится в третий день конкурса?

Решение: В третий день конкурса запланировано

 n=(80 – 8) : 4 = 18 выступлений ; всего
возможных выборов m=80.

Вероятность того, что выступление представителя
России состоится в третий день конкурса, равна 

Р = n/m =18/80 = 9/40 = 225/1000 = 0,225.

Ответ: 0,225.

№9 : На семинар приехали 3 ученых из Норвегии, 3 из
России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите
вероятность того, что восьмым окажется доклад ученого из России.

Решение: Всего участвует m= 3 + 3 + 4 = 10 ученых,
из России n=3

Вероятность того, что восьмым окажется доклад
ученого из России, равна   Р = m/n= 3/10 = 0,3.

Ответ: 0,3.

 №10: Перед началом первого тура чемпионата по
бадминтону участников разбивают на игровые пары случайным образом с помощью
жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10
участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в
первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?

Решение: Нужно учесть, что Руслан Орлов не может
играть сам с собою, поэтому m =25 , сам   Руслан Орлов тоже из России , значит
n =9.

Вероятность того, что в первом туре Руслан Орлов
будет играть с каким-либо бадминтонистом из России, равна    Р = m/n=   9/25 =
36/100 = 0,36.

Ответ: 0,36.

 №11: В сборнике билетов по биологии всего 55 билетов,
в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в
случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.

Решение:  Вероятность того, что в случайно
выбранном на экзамене билете школьнику достанется вопрос по ботанике, равна  Р
= m/n=  11/55 =1/5 = 0,2.

Ответ: 0,2.

№12 : В сборнике билетов по математике всего 25
билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность
того, что в случайно выбранном на экзамене билете школьнику не достанется
вопроса по неравенствам.

Решение: Благоприятных исходов  n=25 – 10 = 15 –
билетов не содержат вопрос по неравенствам.

Вероятность того, что в случайно выбранном на
экзамене билете школьнику не достанется вопроса по неравенствам, равна   Р =
m/n= 15/25 = 3/5  = 0,6.

Ответ: 0,6

13. Две фабрики выпускают
одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих
стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая
— 1%. Найдите вероятность того, что случайно купленное в магазине стекло
окажется бракованным.

Решение.Вероятность того, что стекло куплено на
первой фабрике и оно бракованное: 0,45 • 0,03 = 0,0135.

Вероятность того, что стекло куплено на второй
фабрике и оно бракованное: 0,55 • 0,01 = 0,0055.

Поэтому по формуле полной вероятности вероятность
того, что случайно купленное в магазине стекло окажется бракованным
равна                            0,0135 + 0,0055 = 0,019.

Ответ: 0,019

14. Если гроссмейстер А.
играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А.
играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б.
играют две партии, причем во второй партии меняют цвет фигур. Найдите
вероятность того, что А. выиграет оба раза.

Решение.Возможность выиграть первую и вторую
партию не зависят друг от друга. Вероятность произведения независимых событий
равна произведению их вероятностей: 0,52 · 0,3 = 0,156.

 Ответ: 0,156.

15:  Вася, Петя, Коля и Лёша
бросили жребий — кому начинать игру. Найдите вероятность того, что начинать
игру должен будет Петя.

Решение: Жребий начать игру может выпасть каждому
из четырех мальчиков , значит m=4. Вероятность того, что это будет именно
Петя        Р = m/n= 1/4 = 0,25

 Ответ: 0,25.

 №16: В чемпионате мира
участвует 20 команд. С помощью жребия их нужно разделить на пять групп по
четыре команды в каждой. В ящике вперемешку лежат карточки с номерами
групп:     

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова
вероятность того, что команда России окажется в третьей
группе.   

Решение: Всего команд 20, значит возможных
вариантов m =20 . Благоприятных исходов  n =4 ( четыре карточки с  цифрой 3) .
Вероятность выпадения нужного исхода Р = n/m=  4/20 = 0,2.

Ответ: 0,2.

№17.На экзамене по геометрии
школьник отвечает на один вопрос из списка экзаменационных вопросов.
Вероятность того, что это вопрос по теме «Внешние углы», равна 0,2. Вероятность
того, что это вопрос по теме «Тригонометрия», равна 0,25. Вопросов, которые
одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на
экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.Введем два события:А:
выбор вопроса по теме «Внешние углы»;B: выбор вопроса по теме
«Тригонометрия».Вероятности этих событий:

Так как вопросов,
которые одновременно относятся к этим двум темам, нет, то события несовместны и
вероятность их суммы можно вычислить по формуле:

Ответ: 0,45

№18: В торговом центре два
одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате
закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих
автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется
в обоих автоматах.

Решение: Рассмотрим события :А = кофе закончится в
первом автомате, В = кофе закончится во втором автомате.  Тогда A•B = кофе
закончится в обоих автоматах,  A + B = кофе закончится хотя бы в одном
автомате. По условию P(A) = P(B) = 0,3; P(A•B) = 0,12. События A и B
совместные, вероятность суммы двух совместных событий равна сумме вероятностей
этих событий, уменьшенной на вероятность их произведения:

P(A + B) = P(A) +
P(B) − P(A•B) = 0,3 + 0,3 − 0,12 = 0,48. Следовательно, вероятность
противоположного события, состоящего в том, что кофе останется в обоих
автоматах, равна 1 − 0,48 = 0,52.

Ответ: 0,52.

19:Биатлонист пять раз стреляет
по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8.
Найдите вероятность того, что биатлонист первые три раза попал в мишени, а
последние два раза промахнулся. Результат округлите до сотых.

Решение: Результат каждого
следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом
выстреле», «попал при втором выстреле» и т.д. независимы.Вероятность каждого
попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2.
1 выстрел: Р= 0,8 ;  2
выстрел : Р= 0,8 ; 3 выстрел : Р= 0,8;4 выстрел :Р = 0,2  ;5 выстрел :Р= 0,2
.По формуле умножения
вероятностей независимых событий, получаем, что искомая вероятность равна:

 Р=0,8 ∙ 0,8 ∙
0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02.

Ответ: 0,02.

№ 20. В магазине стоят два
платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05
независимо от другого автомата. Найдите вероятность того, что хотя бы один
автомат исправен.

Решение.Найдем вероятность того,
что неисправны оба автомата. Эти события независимые, вероятность их
произведения равна произведению вероятностей этих событий: 0,05 • 0,05 =
0,0025. Событие, состоящее в том, что исправен хотя бы один автомат,
противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975.

Ответ: 0,9975.

№ 21. Помещение освещается
фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года
равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не
перегорит.

Решение.Найдем вероятность того,
что перегорят обе лампы. Эти события независимые, вероятность их произведения
равно произведению вероятностей этих событий: 0,3·0,3 = 0,09. Событие,
состоящее в том, что не перегорит хотя бы одна лампа, противоположное.
Следовательно, его вероятность равна 1 − 0,09 = 0,91.

Ответ: 0,91.

№22: Вероятность того, что
новый электрический чайник прослужит больше года, равна 0,97. Вероятность того,
что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он
прослужит меньше двух лет, но больше года.

Решение .Пусть  A = «чайник
прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух
лет», тогда A + B = «чайник прослужит больше года». События A и В совместные,
вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на
вероятность их произведения. Вероятность произведения этих событий, состоящего
в том, что чайник выйдет из строя ровно через два года — строго в тот же день,
час и секунду — равна нулю. Тогда: P(A + B) = P(A) + P(B) − P(A•B) = P(A) +
P(B), откуда, используя данные из условия, получаем 0,97 = P(A) + 0,89.Тем
самым, для искомой вероятности имеем: P(A) = 0,97 − 0,89 = 0,08.

Ответ: 0,08.

№24: Агрофирма закупает
куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца
высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего
высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо,
купленное у этой агрофирмы, окажется из первого хозяйства.

Решение. Пусть в первом хозяйстве
агрофирма закупает x  яиц, в том числе, 0.4x яиц высшей категории, а во втором
хозяйстве y—  яиц, в том числе  02y яиц высшей категории. Тем самым, всего
агрофирма закупает  x+y яиц, в том числе 0.4x +0.2y  яиц высшей категории. По
условию, высшую категорию имеют 35% яиц, тогда:  (0.4x+0.2y)/(x+y) =0.35  ,
0.4x+0.2y=0.35(x+y) , 0.05x=0.15y , x=3y.Следовательно, у первого хозяйства
закупают в три раза больше яиц, чем у второго. Поэтому вероятность того, что
купленное яйцо окажется из первого хозяйства равна
Р=3y/(3y+y) =3/4= 0.75

Ответ : 0,75

№24: На клавиатуре телефона 10
цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет
чётной?

Решение.На клавиатуре телефона 
m=10 цифр, из них  n=5 четных: 0, 2, 4, 6, 8. Поэтому вероятность того, что
случайно будет нажата четная цифра равна  Р = n/m=5 / 10 = 0,5.

Ответ: 0,5.

№25: Какова вероятность того,
что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение.Натуральных чисел от 10 до
19  m=10, из них на три делятся три числа: n= 12, 15, 18. Следовательно,
искомая вероятность равна   Р = n/m=3/10 = 0,3.

Ответ: 0,3.

№26.Ковбой
Джон попадает в муху на стене с вероятностью 0,9, если стреляет из
пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера,
то он попадает в муху с вероятностью 0,4. На столе лежат 10 револьверов, из них
только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый
попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон
промахнётся.

Решение.Ковбой Джон может наудачу
схватить как пристрелляный, так и не пристрелянный револьвер. Так как на столе
10 револьверов и из них только 4 пристрелянные, то вероятность выбора
пристрелянного револьвера равна 
4/10=0,4,а
непристрелянного 1-0,4=0,6.Известно, что если он выстреливает из пристрелянного
револьвера, то попадает в цель с вероятностью 0,9, значит, вероятность такого
события будет равна0,4*0,9=0,36,а вероятность выбора непристрелянного
револьвера и попадания из него в цель, равна 0,6*0,4=0,24.Если произойдет или
первое или второе событие, то Ковбой Джон попадет в цель и вероятность этого события
равна 0,36+0,24=0,6,тогда вероятность промаха 1-0,6=0,4.

Ответ: 0,4.

№27: В группе туристов 5
человек. С помощью жребия они выбирают двух человек, которые должны идти в село
за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию.
Какова вероятность того, что А. пойдёт в магазин?

Решение.Всего туристов  m=5,
случайным образом из них выбирают n=2. Вероятность быть выбранным равна Р =
n/m=2 / 5 = 0,4.

Ответ: 0,4.

№28: Перед началом
футбольного матча судья бросает монетку, чтобы определить, какая из команд
начнёт игру с мячом. Команда «Физик» играет три матча с разными командами.
Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два
раза.

Решение.Обозначим «Р» ту сторону
монеты, которая отвечает за выигрыш жребия «Физиком», другую сторону монеты
обозначим «0». Тогда благоприятных комбинаций  n=3: РР0, Р0Р, 0РР, а всего
комбинаций  m=2
3 = 8:Тем самым, искомая вероятность равна:  Р=n/m=3/8= 0,375.

Ответ: 0,375.

29:  В классе 26 человек,
среди них два близнеца — Андрей и Сергей. Класс случайным образом делят на две
группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей
окажутся в одной группе.

Решение.Пусть один из близнецов
находится в некоторой группе. Вместе с ним в группе может оказаться n=12
человек из m=25 оставшихся одноклассников. Вероятность этого события
равнаP=n/m= 12 / 25 = 0,48.

Ответ : 0,4

№30.В
случайном эксперименте симметричную монету бросают трижды. Найдите вероятность
того, что орел выпадет ровно два раза.

Решение.Обозначим выпадение орла буквой О, а
выпадение решки буквой Р. Возможных восемь исходов:OOO,  OОР,  
ОРО,   ОРР,   РОО,   РОР,  РРО,  
РРР

Из них благоприятными являются OОР, ОРО и РОО.
Поэтому искомая вероятность равна  то есть 0,375. (Этот
подход затруднителен в случае большого числа бросаний монетки.)

 Ответ: 0,375.

№31 Ковбой
Джон попадает в муху на стене с вероятностью 0,9, если стреляет из
пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера,
то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них
только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый
попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон
промахнётся.

Решение.Запишем,
как могло случиться, что «Джон промахнулся». «Ковбой схватил
пристрелянный револьвер И не попал в муху, ИЛИ ковбой схватил непристрелянный
револьвер И не попал в муху.» Сначала разберемся с пистолетами: —
Вероятность схватить пристрелянный пистолет равна 4/10 = 0,4. Мы вычислили её
по определению вероятности: здесь один пистолет = одно элементарное событие,
один пристрелянный пистолет = одно благоприятствующее событие. — Вероятность
схватить непристрелянный пистолет равна (10−4)/10 = 0,6. Вычислили аналогично,
определив число непристрелянных пистолетов. Затем разберемся с мухой: — Если
ковбой стрелял из пристрелянного револьвера, то он НЕ попал в муху с
вероятностью 1−0,9=0,1. — Если ковбой стрелял из непристрелянного револьвера,
то он НЕ попал в муху с вероятностью 1−0,2=0,8. Здесь мы воспользовались
формулой для вероятности противоположного события, потому что в условии даны
вероятности попадания в муху из разных пистолетов, но не промахов. Теперь
вернемся к нашей формулировке события «Ковбой схватил…» и вместо
текста, описывающего составляющие события, подставим полученные числа — их
вероятности, а вместо союзов «И» и «ИЛИ» знаки «·» и
«+» соответственно. Получаем:

0,4·0,1 + 0,6·0,8 = 0,04 + 0,48 = 0,52.

Ответ :0,52

№32 В
группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые
должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он
подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение.

Всего туристов  m=5, случайным образом из них
выбирают n=2. Вероятность быть выбранным равна Р = n/m=2 / 5 = 0,4.

Ответ: 0,4.

№33 Перед
началом футбольного матча судья бросает монетку, чтобы определить, какая из
команд начнёт игру с мячом. Команда «Физик» играет три матча с разными
командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий
ровно два раза.

Решение.

Обозначим «Р» ту сторону монеты, которая отвечает
за выигрыш жребия «Физиком», другую сторону монеты обозначим «0». Тогда
благоприятных комбинаций  n=3: РР0, Р0Р, 0РР, а всего комбинаций  m=2^3 = 8:Тем
самым, искомая вероятность равна:                     Р=n/m=3/8= 0,375.

Ответ: 0,375.

№34 На
рок-фестивале выступают группы — по одной от каждой из заявленных стран.
Порядок выступления определяется жребием. Какова вероятность того, что группа
из Дании будет выступать после группы из Швеции и после группы из Норвегии?
Результат округлите до сотых.

Решение.

Общее количество выступающих на фестивале групп
для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6
способов взаимного расположения среди выступающих (Д — Дания, Ш — Швеция, Н —
Норвегия):

m=…Д…Ш…Н…, …Д…Н…Ш…,
…Ш…Н…Д…, …Ш…Д…Н…, …Н…Д…Ш…, …Н…Ш…Д… = 6

Дания находится после Швеции и Норвегии n=2.

 Поэтому вероятность того, что группы случайным
образом будут распределены именно так, равна  Р = n/m=2/6=0,333… = 0,33.

Ответ: 0,33

№35 В
классе 26 человек, среди них два близнеца — Андрей и Сергей. Класс случайным
образом делят на две группы по 13 человек в каждой. Найдите вероятность того,
что Андрей и Сергей окажутся в одной группе.

Решение.

Пусть один из близнецов находится в некоторой
группе. Вместе с ним в группе может оказаться n=12 человек из m=25 оставшихся
одноклассников. Вероятность этого события равнаP=n/m= 12 / 25 = 0,48.

Ответ : 0,48

№36 Чтобы
поступить в институт на специальность «Лингвистика», абитуриент должен набрать
на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский
язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно
набрать не менее 70 баллов по каждому из трёх предметов — математика, русский
язык и обществознание. Вероятность того, что абитуриент З. получит не менее 70
баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку
— 0,7 и по обществознанию — 0,5.

Найдите вероятность того, что З. сможет поступить
хотя бы на одну из двух упомянутых специальностей.

Решение.

Для того, чтобы поступить хоть куда-нибудь, З.
нужно сдать и русский, и математику как минимум на 70 баллов, а помимо этого
еще сдать иностранный язык или обществознание не менее, чем на 70 баллов. Пусть
A, B, C и D — это события, в которых З. сдает соответственно математику,
русский, иностранный и обществознание не менее, чем на 70 баллов.    
Р=0,6*0,8*(0,7+0,5-0,7*0,5)=0,408

Ответ: 0,408.

№37 Из
районного центра в деревню ежедневно ходит автобус. Вероятность того, что в
понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность
того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того,
что число пассажиров будет от 15 до 19.

Решение.

Рассмотрим события A = «в автобусе меньше 15
пассажиров»     и                           В = «в автобусе от 15 до 19
пассажиров». Их сумма — событие A + B = «в автобусе меньше 20 пассажиров».
События A и В несовместные, вероятность их суммы равна сумме вероятностей этих
событий:

P(A + B) = P(A) + P(B).

Тогда, используя данные задачи, получаем: 0,94 =
0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38.

Ответ: 0,38.

№38 В
Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода,
установившись утром, держится неизменной весь день. Известно, что с
вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля,
погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в
Волшебной стране будет отличная погода.

Решение.

Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО,
ХОО, ОХО, ООО (здесь Х — хорошая, О — отличная погода). Найдем вероятности
наступления такой погоды:

P(XXO) = 0,8•0,8•0,2 = 0,128;

P(XOO) = 0,8•0,2•0,8 = 0,128;

P(OXO) = 0,2•0,2•0,2 = 0,008;

P(OOO) = 0,2•0,8•0,8 = 0,128.

Указанные события несовместные, вероятность их
сумы равна сумме вероятностей этих событий:

P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128
+ 0,008 + 0,128 = 0,392.

Ответ: 0,392.

№39 Вероятность
того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает
случайную упаковку, в которой две таких батарейки. Найдите вероятность того,
что обе батарейки окажутся исправными.

Решение.

Вероятность того, что батарейка исправна, равна
0,94. Вероятность произведения независимых событий (обе батарейки окажутся
исправными) равна произведению вероятностей этих
событий:                          Р= 0,94·0,94 = 0,8836.

Ответ: 0,8836. 

№40 Перед
началом волейбольного матча капитаны команд тянут честный жребий, чтобы
определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди
играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что
«Статор» будет начинать только первую и последнюю игры.

Решение.

Требуется найти вероятность произведения трех
событий: «Статор» начинает первую игру, не начинает вторую игру, начинает
третью игру. Вероятность произведения независимых событий равна произведению
вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда
находим: 0,5•0,5•0,5 = 0,125.

Ответ: 0,125.

Понравилась статья? Поделить с друзьями:
  • Код ошибки 7026 windows 10 как исправить
  • Как найти повтор программы
  • Как составить социальную характеристику на ребенка
  • Яндекс как найти периметр прямоугольника
  • Как исправить порванный натяжной потолок