Как найти вероятность удачи

  • Facebook logo
  • Twitter logo
  • LinkedIn logo

© 2023 Prezi Inc.
Terms & Privacy Policy


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

В современном мире действует иной стереотип, что есть такие люди жизнь которых складывается на том, что всего они добиваются сами ,своими силами , а есть те люди, которым «колесо фортуны» присуще с самого рождения. Обычно такую удачливость в жизни связывают с понятием везения.

Понятие «везение» обычно трактуется кратко и не однозначно. Например, словарь философии трактует это как благосклонность судьбы. Толковый словарь Ожегова обозначает везение как: «удачу, состояние при котором везет». В любую эпоху это определение вызывало интерес, ведь людей увлекало то, что сложно объяснить, принуждая их фантазировать разные сверхъестественные объяснение. Так в древней мифологии существует некая Фортуна, та, что приносит удачу и считается богиней судьбы. Писатели Рима так отзывались о Фортуне: «По всему свету во все часы дня голоса всех смертных призывают Фортуну, ее одну обвиняют в горестях, ее привлекают к ответственности за деяния, о ней одной мыслят, ее одну хвалят за поступки, ее одну уличают. С руганью вспоминают ее изменчивую, многие считают ее слепой, непостоянной, неверной, извечно переменчивой, покровительницей недостойных. На ее счет ставится и дебет и кредит, и во всех расчетных книгах она одна занимает одну и ту же страницу».

В нынешнем мире существенность о везении и невезении говорят обычно, когда человек попадает в такую ситуацию, результат которых ему неподвластен. Например, в ситуацию, где преобладает теория вероятности такие как лотерея или рулетка.

Итак, Древнее суждение «везения» на сегодняшний день широко распространенное, Фактом везения располагают только живые существа имеющие сознание (люди), потому что только человек служит мерилом всех вещей и само понимание факта везения трансформируется через субъективность случайности конкретного человека.

Вышесказанные понятие показывают, что о таком явлении как везения можно говорить, если совершен установленный опыт, который объясняется как некая совокупность действий, с несколькими случайными вариантами развития. Данный нам опыт, объединен с событием, наступление которого и является везением (благоприятное событие). Притом установления точного события как успешного или неблагоприятного зависит от индивида, лично участвующего в этом действии, который в результате из личного опыта и понимания, присваивает определяющее значение: повезло или нет.

Для понимания факта везения нужна вероятность развития события в нескольких вариантах конечного результата, так как если возможен только один вариант развития действия, ни какого везения нет. Например, на письменном экзамене по математике дается 130 вариантов по 30 заданий, всего — 900 заданий, а студент подготовился только к 330 первым. В данной ситуации не нужно говорить о везение, ведь результатом опыта служит только одно событие, человеку ни везет, ни не везет, он просто совершает операцию. Так же нельзя говорить о везение, если б участнику потребовалось из 30 билетов по дисциплине вытянуть 31 билет (невозможное событие). Есть еще одно очень важное условие – это случайность. Так например на экзамене студент выучил 20 заданий из 30 и на столе лежат эти 30 билетов в перевернутом виде (то есть заданиями вверх), необходимо достать – именно то задания к которому подготовился студент. Человек, тянущий билет уже видит объект изначально. Такое событие не является случайным, ведь человек осмысленно тянет нужный ему билет, и в этом случае нет ни везения, ни невезения (везение и невезение это одна и та же величина с разными знаками).

Еще одним фактом познания везения выражается его изменение во времени, которое проявляется именно тогда, когда человек совершает свой первый осознанный опыт, который непременно связан с выигрышем или проигрышем. Уже туда дальше усвоение данного факта изменяется с ходом всей жизни, а если быть точнее, то осмысливается с каждым новым опытом.

Итак, факт везения можно объяснить тем, что каждое предназначенное число случайных событий должно быть результатом опыта, наступление которых нельзя предугадать, и как результат опыта свершается благоприятное событие, которому способствуют неосознанные действия. Получается, что везение это величина являющаяся результатом опыта, обусловленная влиянием неосознанных действий, способствующих наступлению благоприятного момента.

Считается, что чем меньше вероятность благоприятного события, тем больше факт везения, если благоприятное событие все-таки свершается. Например, всем нам известно, что лотерея это все организованная игра входе которой выгоды и убытки зависят от случайного выбора лота. Статистически, среди нескольких тысяч участвующих лотерейных билетов возможно и пять и пятнадцать выигрышных. Выходит, что у пяти выигравших из тысячи удачливости намного больше, чем у других участников. Нужно заметить то, что неважна сумма которую посчастливилось выиграть, так как может везти и по мелочам. Можно сказать, что факт везения очень влияет на шанс выигрыша, а не на его размер. Для того чтобы установить результативность опыта нужно использовать частоту выигрышей (число наступивших благоприятных событий, деленное на число всех опытов). Так как опыт все же субъективен, то понимание везения, как факта, может модифицироваться в каждой новой ситуации, но результат, как правило, двойственен

Изучая и зная более глубокое обозначения везения, то можно выразить его количественно, но в повседневно жизни трудно предугадать: повезет или нет, хотя именно это вопрос всех и волнует. Мне кажется, это так и останется загадкой для всех, рождая новые мифы.

Основоположниками разработки теории вероятности стали Героламо Гардано, Пьер де Ферма и Блеиз Паскаль. Все трое были математиками-физиками. Теория вероятностей как наука возникла к средним векам и первым попыткам математического анализа азартных игр. Независимо от Паскаля Ферма разработал основы теории вероятностей. Именно с переписки Ферма и Паскаля, в которой они, в частности, пришли к понятию математического ожидания и теоремам сложения и умножения вероятностей, отсчитывает свою историю эта замечательная наука. Результаты Ферма и Паскаля были приведены в книге Гюйгенса «О расчётах в азартной игре», первом руководстве по теории вероятностей. Гюйгенс ввел такое понятие, как математическое ожидание и приложил его к решению задачи о разделении ставки при разном числе игроков и количестве недостающих партий и к задачам, связанным с бросанием игральных костей. Кардано в своей работе «Об азартной игре» привел расчеты, очень близкие к полученным позднее, когда теория вероятностей уже утвердилась как наука. Кардано сумел подсчитать, сколькими способами даст метание двух или трех костей то или иное число очков. Он определил полное число возможных выпадений. Он правильно подсчитал числа различных случаев, которые могут произойти при бросании двух и трех костей. Кардано указал число возможных случаев появления хотя бы на одной из двух костей определенного числа очков Исследуя прогнозирование выигрыша в азартных играх, Блез Паскальи Пьер де Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Математическое ожидание стало первым основным теоретико-вероятностным понятием. в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений. Нимало не завидуя Ферма, Паскаль, наоборот, радовался совпадению результатов и писал: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».

Таким образом, в результате работы над темой было рассмотрено: возникновения теории вероятностей и различные виды вычисления задач. Рассмотрев историю развития теории вероятности, можно увидеть, что не случайно она возникла в науке, ведь с её помощью развиваются будущие технологии. Теория вероятностей продолжает активно развиваться, появляются новые направления исследований, значительный общетеоретический и прикладной интерес представляют эти направления.

Список литературы:

1. Основы теории вероятностей (П. Ферма, Х. Гюйгенс, Я. Бернулли, Б. Паскаль) [Электронный ресурс] — Режим доступа: http://www.decoder.ru/list/all/topic_131/

2.Лосев А.Ф. История античной эстетики. Итоги тысячелетнего развития. / А.Ф. Лосев. — Кн.1.- М., 1992. — 321 c.

Технологии для принятия решений с учетом их веса и вероятности возникновения их последствий

Эта техника поможет вам более точно принимать и оценивать решение. 

ОПИСАНИЕ МЕТОДА

За основу метода решения берется квадрат Декарта с подробным перечнем возможных представлений о последствиях сделанного и несделанного выбора/действия в каждом из квадрантов; весе каждого действия/бездействия; вероятности возникновения последствия.

Мощности/риски в классической терминологии каждого события (МОЩНОСТЬ = ВЕС СОБЫТИЯ * ВЕРОЯТНОСТЬ).

Дальше сравнивается мощность последствий, сделанного в 1, 3 квадрантах  и мощность последствий НЕсделанного выбора во 2, 4 квадрантах.

  1. Что необходимо будет делать, и какие ресурсы для этого понадобятся, если это произойдет/будет сделано?
  2. Что необходимо будет делать, и какие ресурсы для этого понадобятся, если это не произойдет/не будет сделано?
  3. Необходимость деланья чего отпадет, и какие ресурсы будут сэкономлены, если это произойдет/будет сделано?
  4. Необходимость деланья чего отпадет, и какие ресурсы будут сэкономлены, если это не произойдет/не будет сделано? 

 1.Этапы работы:

1.1. В 1 и 3 квадранте расписываются возможные результаты действия, а во 2 и 4 возможные результаты бездействия.

1.2. Оценивается сила, вес результатов каждого действия/бездействия по 100 балльной шкале. 

1.3. Расписывается ваше представление о вероятности реализации действия/бездействия (принятия или непринятия тех или иных решений). Вероятность оцениваем от 0 до 1.

1.4. Перемножаем вес событий на их вероятность и получаем мощность/риск в классическом представлении события. 

1.5. Суммируем мощности событий отдельно в каждом из 4 квадрантов.

1.6. Сравниваем “положительные” мощности в 1 и 3 квадранте (что не/будет, если произойдет).

1.7. Сравниваем “отрицательные” мощности во 2 и 4 квадранте (чего не/будет, если не произойдет). 

2.Решение в команде. 

При общем обсуждении сначала выписываются все действия/бездействия и их последствия. 

Для наглядности надо взять большую доску и заполнить возможные последствия действия/бездействия в каждом квадранте.

2.1. Можно принять вес и вероятность каждого фактора на основе общей дискуссии. В этом случае сначала высказывается самый низкоранговый сотрудник, а далее высказываются все более высокоранговые. По итогам дискуссии находится компромисс по действиям/бездействиям и результатам, их весу и вероятности.

2.2. Если вы хотите, чтобы члены команды своим авторитетом или мнением не давили друг на друга, то возможен другой вариант. 

Каждый член команды тайно оценивает уровень экспертности другого члена по каждому из квадрантов (или, если это необходимо, по каждому из задаваемых вопросов, или это может сделать руководитель команды самостоятельно). 

2.3. Компетентность членов команды оцениваем по шкале от 0 до 1. Например, директор финансового отдела может более точно указать на последствия нехватки финансов, а сотрудник отдела продаж может более точно указать на последствия недопоставки товара, т.е. у каждого из них есть своя зона компетенции. 

2.4. Перемножаем мощность последствий на уровень компетенций каждого члена/эксперта команды в соответствующем квадранте и получаем общую предсказательную мощность команды по каждому квадранту. В каждом квадранте мощность будет как положительная, так и отрицательная. Суммируем общий баланс по 1 и 3, также по 2 и 4, принимаем на его основании решение.

Надеемся, что с помощью данной технологии вы сможете принимать более оптимальные решения.

ЧАСТЬ 2

Вероятности удачи

Эвристики, позволяющие избежать искажения при оценке ситуации и принятия решений с учетом их психологического восприятия и часто встречающихся когнитивных искажений

1. Для принятия правильного решения недостаточно собраться с мыслями, надо еще и разобраться с чувствами. Сначала почувствуйте, какое решение/ответ вам больше нравится/не нравится и учтите это искажение в процессе принятия решений

Полезно? Поделись статьей в Вконтакте или Фейсбук в 1 клик!

Чтобы посчитать точное количество, заменим каждую из трёх последних цифр на дополняющую её до 9. D заменим на K = (9 – D), E на M = (9 – E), F на N = (9 – F). Так как исходно A + B + C = D + E + F, то теперь для числа ABCKMN:

A + B + C + K + M + N

=

A + B + C + 9 – D + 9 –E + 9 – F

=

27

Итак, количество счастливых билетов в точности равно количеству чисел от 000000 до 999999, сумма цифр которых равна 27. Стало немного легче, но предстоит ещё немало работы. Сперва вычислим искомое количество. Для этого нарисуем таблицу, в которой по горизонтали укажем количество используемых цифр, а по вертикали — искомую сумму. Таким образом мы последовательно ответим на все вопросы вида «Сколько существует способов представить число k в виде суммы n цифр». Делать это мы будем рекурсивно, то есть выражать большие значения через меньшие. Поехали!

Очевидно, что в первом столбце у нас будет по одному способу получить числа от 0 до 9 (с помощью одной цифры), а всё, что больше 9, — 0 способов.

Далее, если перейти ко второму столбцу и взять, допустим, число на пересечении второго столбца и шестой строки (k = 5), сколько существует способов представить 5 в виде суммы двух цифр? Логика тут простая. В качестве второй цифры мы можем выбрать любой из вариантов от 0 до 5. Если выбираем 0, то сумма всех цифр, кроме второй, должна быть равна 5 (да-да, понятно, что в данном случае «всех, кроме второй» — это только первая цифра, но давайте сразу составим алгоритм в общем виде). Если выбираем в качестве второй цифры 1, то сумма оставшихся должна быть равна 4 и т. д. Но ведь тогда мы просто должны сложить способы из предыдущего столбца — для всех чисел от 0 до 5! И получить 6 вариантов.

Ещё пример: допустим, я хочу заполнить во втором столбце поле для k = 11. Несложно увидеть, что тогда вторая цифра 0 или 1 не даёт ни одного варианта, так как первая не может быть больше 9. Иначе говоря, мы обращаемся к пустым ячейкам первого столбца, которые соответствуют k = 10 и k = 11. Впрочем, можно считать, что там не пустота, а нули — это не важно. Так или иначе, мы должны сложить все варианты из предыдущего столбца, от k = 2 до k = 11. Это даёт 8. Таким же образом заполняем второй столбец. Последнее число мы впишем при k = 18, так как максимальная сумма двух цифр равна 18.

Переходим к третьему столбцу. Давайте ещё раз посмотрим на примере, как он заполняется. Допустим, k = 15. Тогда, поскольку последняя цифра может быть от 0 до 9, сумма первых двух должна быть равна 6, 7, 8, 9, …, 15. А для всех этих чисел мы уже знаем количество способов представить их в виде суммы двух цифр. Берём эти значения из таблички (это числа 7, 8, 9, 10, 9, 8, 7, 6, 5 и 4), складываем их и получаем результат: 73 способа представить 15 в виде суммы трёх цифр.

Действуя аналогично, продолжаем заполнять табличку. Занятие это весьма муторное, но конечное. Особенно если написать программу. Но можно сделать всё и руками — главное, нигде не обсчитаться. И если довести таблицу до шестого столбца, число, соответствующее k = 27, и будет искомым ответом. Если вы не ошибётесь, то получите ровно 55 252.

На чтение 16 мин Просмотров 127к. Опубликовано 25 мая, 2018

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И  как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

вероятность

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Содержание

  1. Вероятность нескольких событий
  2. Задачи и решения задач на вероятность
  3. Вероятность нескольких событий
  4. Дополняющая вероятность

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: формула 1

Ответ: 0,8.

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

формула 2

Вероятность что второй дежурный мальчик:

формула 3

Раз оба должны быть мальчики, вероятности перемножим:

формула 4

Ответ: 0,2.

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12.  В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение: 

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение: 

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1 Игра №2 Вероятность данного варианта
3 1 0,4 · 0,2 = 0,08
1 3 0,2 · 0,4 = 0,08
3 3 0,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение: 

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 5

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 6

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 7

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 8

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение: 

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение: 

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

… США, КАН, КИТ …

… США, КИТ, КАН …

… КИТ, США, КАН …

… КАН, США, КИТ …

… КАН, КИТ, США …

… КИТ, КАН, США …

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

формула 9

≈ 0,33.

Дополняющая вероятность

Задача 1. 

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение: 

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: 

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение: 

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля 12 апреля 13 апреля Вероятность данного варианта
X – 0,9 X – 0,9 O – 0,1 0,9 ·0,9 ·0,1 = 0,081
X – 0,9 O – 0,1 O – 0,9 0,9 ·0,1 ·0,9 = 0,081
O – 0,1 O – 0,9 O – 0,9 0,1 ·0,9 ·0,9 = 0,081
O – 0,1 X – 0,1 O – 0,1 0,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля 5 июля 6 июля Вероятность данного варианта
X – 0,8 X – 0,8 O – 0,2 0,8 · 0,8 · 0,2 = 0,128
X – 0,8 O – 0,2 O – 0,8 0,8 · 0,2 · 0,8 = 0,128
O – 0,2 O − 0,8 O − 0,8 0,2 · 0,8 · 0,8 = 0,128
O – 0,2 X – 0,2 O – 0,2 0,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

Понравилась статья? Поделить с друзьями:
  • Как найти аудиозапись в телефоне редми
  • Как найти мультик домовой
  • Как исправить вкус кислого вина
  • Кумир как найти максимальное число
  • Как найти человека по номеру стс