Как найти вероятность в математике формула огэ

Задания на вероятность в ОГЭ

Опубликовано 28.05.2021

Чтобы понять – что такое вероятность и записать основные формулы, которые нам понадобятся, советуем прочить статью про вероятность. Мы же с вами рассмотрим решение некоторых задач. В ОГЭ по математике они идут под номером 10 в каждом варианте.

Задача 1

На экзамене 40 билетов, Олег не выучил 12 из них. Найдите вероятность того, что ему попадется выученный билет.

Источник: тексты задач взяты из сборника заданий по математике ОГЭ 2021 под ред Ященко.

Решение.

Используем формулу нахождения вероятностей:

P=frac{m}{n},

где m – число случаев, вероятность выпадения которых надо определить;

n – общее число случаев.

В нашей задаче m=40-12=28 – это число выученных билетов, вероятность попадания которых на экзамене и нужно было определить.

n=40.

Тогда P=frac{28}{40}=frac{7}{10}=0,7.

Ответ: 0,7

Задача 2

В среднем из 150 садовых насосов, поступивших в продажу, 6 подтекает. Найдите вероятность того, что случайно выбранный для контроля насос подтекает.

Решение. Используем ту же формулу, что и в задаче 1. В нашей задаче m=6, n=150.

Тогда P=frac{6}{150}=0,04.

Ответ: 0,04.

Задача 3

Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 71 спортсмен, среди которых 22 спортсмена из России, в том числе Т. Найдите вероятность того, что в первом туре Т. будет играть с каким-либо спортсменом из России.

Решение:

Для нашего спортсмена благоприятных исходов будет 21: 22-1=21, так как спортсмен Т. не может играть сам с собою. А вот с любым другим участником из России он сыграть может. Тогда число всех событий 71-1=70, потому что спортсменов без Т. всего 70.

Подставляем полученные значения в формулу нахождения вероятности и получаем:

P=frac{m}{n}=frac{21}{70}=0,3.

Ответ: 0,3.

Решим аналогичную задачу.

Задача 4

Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Д. Найдите вероятность того, что в первом туре Д. будет играть с каким-либо спортсменом не из России.

чемпионата по теннису участников разбивают на игровые пары

Решение:

Формула для определения вероятностей та же. Определим числитель и знаменатель в ней. Так как Д. – из России должен играть со спортсменом не из России – то спортсменов не из России 51-14=37. Всего спортсменов, с которыми может играть Д. 50, так как Д. не может играть с собой: 51-1=50.

Тогда получим: P=frac{m}{n}=frac{37}{50}=frac{74}{100}=0,74

Ответ: 0,74.

Задача 5

На экзамене 60 билетов, Николай не выучил 9 из них. Найдите вероятность того, что ему попадется выученный билет.

Решение:

Выученных билетов 60-9=51. Находим вероятность того, что Николаю попадется выученный билет.

P=frac{m}{n}=frac{51}{60}=0,85

Ответ: 0,85.

Таким образом, основная сложность в таких задачах – это определение числа благоприятных исходов. В дальнейшем мы просто делим число благоприятных исходов на число всех исходов и находим десятичную дробь, которая и будет являться вероятностью благоприятного события.

( 4 оценки, среднее 5 из 5 )

Теория вероятностей для сдачи ОГЭ и ЕГЭ

Справится с задачей по теории вероятности можно запросто, если знаешь формулу нахождения вероятности и если повезет с задачей. Пока практика показывает, что на экзамене даются задачи проще, чем на пробнике. 

К таким простым задачам будем относить задачи из разряда «на тарелке лежат столько-то пирожков, найти вероятность, что попадется пирожок с вишней», с кубиками/монетками и задачки на подобие «найти вероятность того, что ручка не пишет, если вероятность того, что она пишет равна 0,6».

Все остальные типы задач будем считать сложными, т.к. не каждый сможет к ним подступиться без определенных знаний.

Начнем разбор задач с формулы нахождения вероятности:

P=m:n, где P – вероятность какого-либо события, m – благоприятные события (то, что нас спрашивают в вопросе), n – всевозможные события.

Разберемся с поиском благоприятных событий на примере.

#1.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А=«сумма очков равна 10»?

Задаем себе вопрос: в каких случаях сумма очков будет равна 10?

  1 кубик 2 кубик
1 4 6
2 5 5
3 6 4

Это и есть все благоприятные события. Итого, их 3.

Ответ: 3.

Ну и теперь рассмотрим несколько простейших задач.

Простейшие задачи на нахождение вероятности.

#2.

На тарелке лежат 15 пирожков. Из них 4 с вишней, 5 с яблоком, остальные с абрикосом. Вова наугад берет пирожок. Найдите вероятность того, что ему попадется пирожок с абрикосом.

Благоприятные события – это пирожки с абрикосом. Их в тарелке 15-4-5=6.

Всевозможные события – это все пирожки. Их 15.

Вероятность=Благоприятные : Всевозможные, т.е.

P=6:15=0,4.

!!! Обратите внимание на то, что вероятность не может быть больше 1! Это связано с тем, что 100%-ая вероятность равна 1.

Ответ: 0,4.

#3.

На научной конференции будут выступать 3 докладчика из Германии, 2 из России и 5 из Японии. Найдите вероятность того, что последним будет выступать докладчик из России, если порядок выступления определяется жребием.

Благоприятные события – это российские докладчики. Их 2.

Всевозможные события – это все прибывшие докладчики. Их 3+2+5=10.

P=2:10=0,2

Ответ: 0,2

#4.

Из слова «МАТЕМАТИКА» случайным образом выбирается одна буква. Найдите вероятность того, что эта буква окажется гласной.

Благоприятные события – это гласные буквы. Их 5.

Всевозможные события – это все буквы в слове. Их 10.

Р=5:10=0,5

Ответ: 0,5

#5.

Из класса, в котором учатся 12 мальчиков и 8 девочек, выбирают по жребию одного дежурного. Найдите вероятность того, что дежурным окажется мальчик.

Благоприятные события – это все мальчики. Их 12.

Всевозможные события – все дети в классе. Их 12+8=20.

Р=12:20=0,6

Ответ: 0,6

#6.

В партии из 1000 компьютеров оказалось 5 бракованных. Какова вероятность купить исправный компьютер?

Благоприятные события – это исправные компьютеры. Их 1000-5=995.

Всевозможные события – это все компьютеры. Их 1000.

 Р=995:1000=0,995

Ответ: 0,995

#7.

В урне лежат 3 белых, 2 желтых и 5 красных шаров. Найдите вероятность того, что извлеченный наугад шар будет красного цвета.

Благоприятные события – это красные шарики. Их 5.

Всевозможные события – это все шарики. Их 3+2+5=10.

Р=5:10=0,5

Ответ: 0,5

#8.

В каждой пятой банке кофе есть приз. Призы распределены случайно. Галя покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Галя не найдет приз.

Благоприятные события – это банки, в которых нет приза. Их 4.

Всевозможные события – это все банки. Их 5.

P=4:5=0,8

Ответ: 0,8.

Из простых задач остались самые элементарные.

Мы уже знаем, что если какое-либо событие происходит стопроцентно, то его вероятность обозначают за 1. 

Если вероятность выпадения снега 50%, то логично предположить, что вероятность того, что снег не выпадет равна так же 50%. Избавимся от процентов. Вероятность выпадения снега равна 0,5, вероятность невыпадения – 0,5. В сумме эти два числа равны 1.

Если вероятность того, что при письме карандаш сломается равна 0,24, то, чтобы найти вероятность того, что он не сломается, надо из 1 вычесть 0,24. Получится 0,76.

#9.

Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,06. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что ручка пишет хорошо.

Р=1-0,06=0,94

Ответ: 0,94.

Задачи с кубиками.

Следующий тип простых задач – это задачи с кубиками.

У кубика, как известно, 6 сторон. Значит, при подбрасывании одного кубика, всевозможных событий у нас будет 6. А при подбрасывании двух кубиков? Можно, конечно, расписать все варианты, но если кубиков не два, а три/четыре/пять? Всё время экзамена уйдет на это.

Нужно запомнить, что если количество сторон кубика возвести в степень, равную количеству кубиков, то мы получим число всевозможных событий.

6количество кубиков=всевозможные события

Для нахождения благоприятных событий такой формулы нет, поэтому разминаем мозг и ищем все самостоятельно.

#10.

В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 10 очков. Результат округлите до сотых.

Найдем благоприятные события. В каких случаях сумма очков будет равна 10? Распишем, главное, ничего не забыть.

  1 кубик 2 кубик 3 кубик
1 1 3 6
2 1 4 5
3 1 5 4
4 1 6 3
5 2 2 6
6 2 3 5
7 2 4 4
8 2 5 3
9 2 6 2
10 3 1 6
11 3 2 5
12 3 3 4
13 3 4 3
14 3 5 2
15 3 6 1
16 4 1 5
17 4 2 4
18 4

3

3
19 4 4 2
20 4 5 1
21 5 1 4
22 5 2 3
23 5 3 2
24 5 4 1
25 6 1 3
26 6 2 2
27 6 3 1

Итого, благоприятных событий 27, а всевозможных – 63=216.

Р=27:216=0,125. Округляем до сотых – 0,13.

Ответ: 0,13.

#11.

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

С двумя кубиками совсем просто.

Всевозможных событий — 62=36

Благоприятных событий — 3 (в сумме выйдет 4, если выпадут 1 и 3, или 3 и 1, или 2 и 2)

Р=3:36=0,08333

Ответ: 0,08

Задачи с монетами.

Задачи с монетками похожи на задачки с кубиками, но придется все всевозможные варианты выписать, чтобы найти благоприятные. Не уверены, что выписали всё? По аналогии с кубиками, можно сделать проверку: количество сторон монеты возвести в степень, равную количеству монеток.

2количество монет=всевозможные события

#12.

Одновременно бросают две монеты. Найдите вероятность, что на обеих монетах выпадет орел.

О – орел, Р — решка

Благоприятных – 1

Всевозможных – 4

Р=1:4=0,25

Ответ: 0,25

#13.

Одновременно бросают три монеты. Найдите вероятность, что на выпадут два орла и одна решка.

Всевозможных событий у нас 23=8. Выпишем их.

О О О
О О Р
О Р О
О Р Р
Р О О
Р О Р
Р Р О
Р Р Р

Благоприятных событий 3.

Р=3:8=0,375

Ответ: 0,375.

На этом приятности заканчиваются, и начинаются неприятности. 

Задачи на нахождение вероятности совместных и несовместных событий.

В предыдущих задачах события были случайными. Но еще есть такие виды событий как совместные и несовместные. Из названий понятно, что совместные события могут происходить одновременно, а несовместные нет. Например, к совместным событиям относятся снег с дождем, т.е. одновременно идет снег И дождь; к несовместным событиям относятся наступление дня и наступление ночи, т.к. в природе может быть ИЛИ день, ИЛИ ночь. Что-то одно. 

Союзы и/или я выделила не просто так. В информатике есть тема «Логические операции». Правда не могу сказать, в каких классах ее изучают. Определенно в старших. В этой теме есть такие понятия как логическое сложение и логическое умножение. Так вот. Союз И отвечает за логическое умножение, а союз ИЛИ – за логическое сложение.  

О чем это говорит? Если в задаче нам даны вероятности совместных событий, то их необходимо умножать. Если даны вероятности несовместных событий, то их будем складывать.

И – умножаем

ИЛИ — складываем

#14.

В уличном фонаре три лампы. Вероятность перегорания лампы в течении года равно 0,8. Найдите вероятность того, что в течении года хотя бы одна лампа не перегорит.

Начинаем рассуждать. Если лампа перегорает с вероятностью 0,8, то она не перегорает с вероятностью 1-0,8=0,2.

Возможны несколько случаев. 

1) 1 лампа остается И 2 лампы перегорают. Вероятность такого расклада равна 0,2*0,8*0,8=0,128. Причем остаться гореть может первая лампа, вторая ИЛИ третья. Т.е. первый случай разбивается еще на три таких же. Учитывая этот факт, вероятность того, что одна лампа не перегорит, равна 0,128*3=0,384.

2) 2 лампы остаются И 1 перегорает. Этот случай так же разбивается на три. Найдем вероятность: (0,2*0,2*0,8)*3=0,096.

3) 3 лампы остаются гореть. И первая, и вторая, и третья. Вероятность данного события равна 0,2*0,2*0,2=0,008.

Что получаем на выходе? Произойти может или первый случай, или второй, или третий. Найдем вероятность:

Р=0,384+0,096+0,008=0,488

И решим задачу вторым способом. Более коротким. 

Вероятность того, что все лампы перегорят (и первая, и вторая, и третья) равна 0,8*0,8*0,8=0,512

Т.к. нас интересует противоположный результат, то вероятность того, что в течении года хотя бы одна лампа не перегорит равна 1-0,512=0,488

Ответ: 0,488

#15.

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Вероятность ничьей = 1-0,4-0,4=0,2.

Команду ожидают две игры. За эти игры она должна набрать 4 очка. Это возможно осуществить тремя способами. Либо они одерживают победу в обоих играх, либо одерживают победу в первой игре и играют вничью во второй, либо играют вничью в первой игре и побеждают во второй. Расставим союзы и/или, чтобы составить полноценную формулу:

(победа и победа) или (победа и ничья) или (ничья и победа)

Заменяем союзы на знаки и получим, что вероятность того, что команда попадет в следующий тур равна 0,4*0,4+0,4*0,2+0,2*0,4=0,32.

Ответ: 0,32.

Успехов в учебе!

Автор статьи, но не задач: Васильева Анна

Вероятность, Теория вероятности, вычисление экспериментальной вероятности

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является «честной» и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая.

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз — скажем, 1000 — и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете,


www.math10.com

Основы теории вероятностей и математической статистики

Разделы:
Математика


ВВЕДЕНИЕ

Многие вещи нам непонятны не потому, что
наши понятия слабы;
но потому, что сии вещи не входят в круг наших
понятий.
Козьма Прутков

Основная цель изучения математики в средних
специальных учебных заведениях состоит в том,
чтобы дать студентам набор математических
знаний и навыков, необходимых для изучения
других программных дисциплин, использующих в той
или иной мере математику, для умения выполнять
практические расчеты, для формирования и
развития логического мышления.

В данной работе последовательно вводятся все
базовые понятия раздела математики «Основы
теории вероятностей и математической
статистики», предусмотренные программой и
Государственными образовательными стандартами
среднего профессионального образования
(Министерство образования Российской Федерации.
М., 2002г.), формулируются основные теоремы, большая
часть которых не доказывается. Рассматриваются
основные задачи и методы их решения и технологии
применения этих методов к решению практических
задач. Изложение сопровождается подробными
комментариями и многочисленными примерами.

Методические указания могут быть использованы
для первичного ознакомления с изучаемым
материалом, при конспектировании лекций, для
подготовки к практическим занятиям, для
закрепления полученных знаний, умений и навыков.
Кроме того, пособие будет полезно и студентам-
старшекурсникам как справочное пособие,
позволяющее быстро восстановить в памяти то, что
было изучено ранее.

В конце работы приведены примеры и задания,
которые студенты могут выполнять в режиме
самоконтроля.

Методические указания предназначены для
студентов заочной и дневной форм обучения.

ОСНОВНЫЕ ПОНЯТИЯ

Теория вероятностей изучает объективные
закономерности массовых случайных событий. Она
является теоретической базой для математической
статистики, занимающейся разработкой методов
сбора, описания и обработки результатов
наблюдений. Путем наблюдений (испытаний,
экспериментов), т.е. опыта в широком смысле слова,
происходит познание явлений действительного
мира.

В своей практической деятельности мы часто
встречаемся с явлениями, исход которых
невозможно предсказать, результат которых
зависит от случая.

Случайное явление можно охарактеризовать
отношением числа его наступлений к числу
испытаний, в каждом из которых при одинаковых
условиях всех испытаний оно могло наступить или
не наступить.

Теория вероятностей есть раздел математики, в
котором изучаются случайные явления (события) и
выявляются закономерности при массовом их
повторении.

Математическая статистика — это раздел
математики, который имеет своим предметом
изучения методов сбора, систематизации,
обработки и использования статистических данных
для получения научно обоснованных выводов и
принятия решений.

При этом под статистическими данными
понимается совокупность чисел, которые
представляют количественные характеристики
интересующих нас признаков изучаемых объектов.
Статистические данные получаются в результате
специально поставленных опытов, наблюдений.

Статистические данные по своей сущности
зависят от многих случайных факторов, поэтому
математическая статистика тесно связана с
теорией вероятностей, которая является ее
теоретической основой.

I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И
УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

1.1. Основные понятия комбинаторики

В разделе математики, который называется
комбинаторикой, решаются некоторые задачи,
связанные с рассмотрением множеств и
составлением различных комбинаций из элементов
этих множеств. Например, если взять 10 различных
цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то
будем получать различные числа, например 143, 431,
5671, 1207, 43 и т.п.

Мы видим, что некоторые из таких комбинаций
отличаются только порядком цифр (например, 143 и
431), другие — входящими в них цифрами (например, 5671
и 1207), третьи различаются и числом цифр (например,
143 и 43).

Таким образом, полученные комбинации
удовлетворяют различным условиям.

В зависимости от правил составления можно
выделить три типа комбинаций: перестановки,
размещения, сочетания
.

Предварительно познакомимся с понятием факториала.

Произведение всех натуральных чисел от 1 до n
включительно называют n-факториалом и
пишут .

Пример 1.

Вычислить: а) ; б) ; в) .

Решение. а) .

б) Так как и
, то можно
вынести за скобки

Тогда получим

.

в) .

Перестановки.

Комбинация из n элементов, которые отличаются
друг от друга только порядком элементов,
называются перестановками.

Перестановки обозначаются символом Рn,
где n- число элементов, входящих в каждую
перестановку. (Р — первая буква французского
слова permutation— перестановка).

Число перестановок можно вычислить по формуле

или с помощью факториала:

Запомним, что 0!=1 и 1!=1.

Пример 2. Сколькими способами можно
расставлять на одной полке шесть различных книг?

Решение. Искомое число способов равно числ

xn--i1abbnckbmcl9fb.xn--p1ai

Как найти вероятность события 🚩 Математика

svyatoslav1997

Эксперт + Математик

336

49 подписчиков

Спросить

8 июня 2017

Любые ситуации обладают набором исходов, каждый из которых имеет свою вероятность. Анализом таких ситуаций занимается наука под названием теория вероятностей, основной задачей которой и является поиск вероятностей каждого из исходов.

Статьи по теме:

Инструкция

Исходы бывают дискретные и непрерывные. Дискретные величины обладают собственными вероятностями. Например вероятность выпадения орла составляет 50%, как и решки — тоже 50 %. Вместе эти исходы образуют полную группу — совокупность всех возможных событий. Вероятность появления непрерывной величины стремится к нулю, так как она находится по принципу отношения площадей. При этом нам известно, что точка не имеет площади соответственно и вероятность попадания в точку равна 0.

При исследовании непрерывных исходов имеет смысл считать вероятность исходов, попадающих в какой-либо интервал значений. Тогда вероятность будет равна отношению площадей благоприятных исходов и полной группы исходов. Площадь полной группы исходов, как и сумма всех вероятностей должна равняться единице или 100%.

Для описания вероятностей всех возможных исходов используют ряд распределения для дискретных величин и закон распределения для непрерывных величин. Ряд распределения состоит из двух строк, причем в первой строке записываются все возможные исходы, а под ними — их вероятности. Сумма вероятностей должна удовлетворять условию полноты — их сумма равна единице.

Для описания распределения вероятностей непрерывной величины используют законы распределения в виде аналитической функции y = F(x), где x — интервал непрерывных значений от 0 до x, а y — вероятность того, что случайная величина попадет в заданный интервал. Существует несколько таких законов распределения:
1. Равномерное распределение
2. Нормальное распределение
3. Распределение Пуассона
4. Распределение Стьюдента
5. Биноминальное распределение

Случайная величина может вести себя совершенно по-разному. Для описания ее поведения используют тот закон, который более всего согласуется с реальным распределением. Для того чтобы определить, подходит ли какой-либо из законов, нужно применить критерий согласия Пирсона. Эта величина характеризует отклонение реального распределения от теоретического распределения по данному закону. Если эта величина меньше 0,05, то такой теоретический закон нельзя применять.

www.kakprosto.ru

Как найти вероятность в математике формула

Please complete the security check to access znanija.com

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 407d9afc26aa9ab2 • Your IP : 5.189.134.229 • Performance & security by Cloudflare

Вероятность — это величина, которая измеряет возможность воплощения в реальности того или иного события. Отрицательные и положительные основания вероятности позволяют определить её степень. Чем больше отрицательных оснований, тем меньше вероятность, и наоборот.

Вероятность как систему впервые описали Б. Паскаль, Я. Бернулли и П. Лаплас в семнадцатом веке. Учёные анализировали возможность исхода азартных игр и сформулировали вероятность как отношение положительных факторов к числу всех возможных в равной степени. Чтобы находить вероятность того или иного события, необходимо знать соответствующие формулы.

Быстрая навигация по статье

Классическое вычисление вероятности

Для вычисления вероятности используется классическая формула: Р(А)=m/n, где:

  • m-количество благоприятных исходов;
  • n- количество равновероятных исходов (при этом m<n).

Можно привести несколько примеров вычисления вероятности согласно данной формуле:

В коробке находится 200 карандашей красного и зелёного цвета, при этом зелёных карандашей 10 штук. Следует рассчитать вероятность того, что карандаш, вытянутый наугад, будет зелёного цвета.

Количество равновероятных исходов в этой ситуации равно 200 (то есть, n=200). Количество исходов того, что карандаш окажется зелёным равно 10 (то есть, m=10).

Расчёт: Р(А)=10/200=0,05 (согласно формуле Р(А)=m/n). Следовательно, вероятность того, что карандаш окажется зелёным, равна 5% (результат 0,05 умножается на 100, чтобы получить значение в процентах).

В мешке лежат фишки красного, чёрного и белого цвета. Красных фишек — 20 штук, чёрных — 40 штук, а белых – 60 штук. Какова вероятность того, что первой попавшейся будет фишка:

А) Красного цвета; В) Чёрного цвета; С) Белого цвета

В этом случае три возможных исхода события: фишка окажется белого, красного или чёрного цвета. Общее количество возможных равновероятных исходов равно 120. Для вычисления вероятности каждого из событий используется стандартная формула Р=m/n:

В коробке находится десять карандашей: 6 красных и 4 зелёных. Какова вероятность того, что оба вытянутых карандаша окажутся красными?

Эта задача содержит элементы комбинаторики. В данном случае существует возможность смешения элементов и число способов вытянуть два карандаша из десяти высчитывается по формуле:

Следующим шагом будет вычисление количества случаев, когда два карандаша будут красными:

Вероятность того, что оба вытянутых карандаша окажутся красными, высчитывается по классической формуле:

У системы вероятностей есть несколько основных свойств:

  • Достоверное событие имеет величину вероятности, равную единице;
  • Вероятность невозможного события равна нулю;
  • Вероятность любого события находится в числовом промежутке между нулём и единицей;
  • Согласно теории сложения вероятностей, сумма вероятности двух несовместимых событий равна вероятности суммы этих событий.

Сайт не хранит личную информацию граждан Российской Федерации (регистрация закрыта, комментарии отключены). Некоторые опубликованные на сайте материалы могут содержать информацию, предназначеную для пользователей старше 16 лет (согласно №436-ФЗ от 29.12.2010 года «О защите детей от информации причиняющей вред их здоровью и развитию»). 16+. Использование данного сайта подразумевает принятие условий пользовательского соглашения.

© Google Inc., 2016. Все права защищены. Наименование Google и логотип Google являются товарными знаками компании Google Inc.

GoogleTM, Android™, Google Maps™, Google Play™, Google Docs™, Google Picasa™, Gmail™, Google Chrome™, Google Plus™, YouTube™ и соответствующие логотипы являются товарными знаками Google, Inc. в США и других странах.

Microsoft®, Windows®, Windows XP®, Windows Vista®, Xbox®, Zune®, SharePoint®, Internet Explorer®, Hotmail®, Bing®, Office®, Word®, PowerPoint®, Excel®, Outlook® и их логотипы являются товарными знаками Microsoft Corporation в США и других странах.

Mozilla®, Mozilla Firefox® и их логотипы являются товарными знаками Mozilla Foundation в США и других странах.

Skype® и соответствующий логотип являются товарными знаками Skype в США и других странах.

Понять формулу проще всего на примерах.

Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат — исход. Нужно заметить, что на результат можно смотреть по-разному. «Мы вытащили какой-то шар» — тоже результат. «Мы вытащили синий шар» — результат. «Мы вытащили именно вот этот шар из всех возможных шаров» — такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.

Событие А: «выбранный шар оказался синего цвета»

Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)

Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, — то есть, количество синих шаров)

Посчитаем для той же задачи вероятность выбора красного шара.

Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.

Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.

Итак,

При этом вероятность равна нулю у событий, которые не могут произойти — невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)

Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» — для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.

На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы 285926, 285927), бракованные и качественные сумки или садовые насосы (прототипы 282857, 282856) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. (285922, 285923) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.

А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.

По формуле вероятность P(A)= 20/50=2/5=4/10=0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы 282855, 282858, 285924, 285928):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.

Благоприятные исходы – французы. 8 человек.

Искомая вероятность: 8/16=1/2=0,5

Немного отличается прототип 285925. Остались задачи про монеты (282854) и игральные кости (285853), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?

Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?

Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:

1) PP – оба раза выпала решка

2) PO – первый раз решка, второй раз орел

3) OP – первый раз орел, второй раз решка

4) OO – оба раза выпал орел

Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?

Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.

Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.

Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·29middot;2=2 3 =8, для четырех: 2·29middot;29middot;2=2 4 =16, … для N бросаний возможных результатов будет 2·29middot;. ·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.

Общее число элементарных исходов: 2 5 =32.

Благоприятных исходов: 1. (РРРРР – все 5 раз решка)

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·69middot;6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.

Благоприятных: 3 исхода. (2, 4, 6)

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.

Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?

10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:

(6 на первом и 4 на втором)

(4 на первом и 6 на втором)

(5 на первом и 5 на втором)

Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

Внимание, только СЕГОДНЯ! Загрузка…

amvtrade.ru

Справится с задачей по теории вероятности можно запросто, если знаешь формулу нахождения вероятности и если повезет с задачей. Пока практика показывает, что на экзамене даются задачи проще, чем на пробнике. 

К таким простым задачам будем относить задачи из разряда «на тарелке лежат столько-то пирожков, найти вероятность, что попадется пирожок с вишней», с кубиками/монетками и задачки на подобие «найти вероятность того, что ручка не пишет, если вероятность того, что она пишет равна 0,6».

Все остальные типы задач будем считать сложными, т.к. не каждый сможет к ним подступиться без определенных знаний.

Начнем разбор задач с формулы нахождения вероятности:

P=m:n, где P – вероятность какого-либо события, m – благоприятные события (то, что нас спрашивают в вопросе), n – всевозможные события.

Разберемся с поиском благоприятных событий на примере.

#1.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А=«сумма очков равна 10»?

Задаем себе вопрос: в каких случаях сумма очков будет равна 10?

  1 кубик 2 кубик
1 4 6
2 5 5
3 6 4

Это и есть все благоприятные события. Итого, их 3.

Ответ: 3.

Ну и теперь рассмотрим несколько простейших задач.

Простейшие задачи на нахождение вероятности.

#2.

На тарелке лежат 15 пирожков. Из них 4 с вишней, 5 с яблоком, остальные с абрикосом. Вова наугад берет пирожок. Найдите вероятность того, что ему попадется пирожок с абрикосом.

Благоприятные события – это пирожки с абрикосом. Их в тарелке 15-4-5=6.

Всевозможные события – это все пирожки. Их 15.

Вероятность=Благоприятные : Всевозможные, т.е.

P=6:15=0,4.

!!! Обратите внимание на то, что вероятность не может быть больше 1! Это связано с тем, что 100%-ая вероятность равна 1.

Ответ: 0,4.

#3.

На научной конференции будут выступать 3 докладчика из Германии, 2 из России и 5 из Японии. Найдите вероятность того, что последним будет выступать докладчик из России, если порядок выступления определяется жребием.

Благоприятные события – это российские докладчики. Их 2.

Всевозможные события – это все прибывшие докладчики. Их 3+2+5=10.

P=2:10=0,2

Ответ: 0,2

#4.

Из слова «МАТЕМАТИКА» случайным образом выбирается одна буква. Найдите вероятность того, что эта буква окажется гласной.

Благоприятные события – это гласные буквы. Их 5.

Всевозможные события – это все буквы в слове. Их 10.

Р=5:10=0,5

Ответ: 0,5

#5.

Из класса, в котором учатся 12 мальчиков и 8 девочек, выбирают по жребию одного дежурного. Найдите вероятность того, что дежурным окажется мальчик.

Благоприятные события – это все мальчики. Их 12.

Всевозможные события – все дети в классе. Их 12+8=20.

Р=12:20=0,6

Ответ: 0,6

#6.

В партии из 1000 компьютеров оказалось 5 бракованных. Какова вероятность купить исправный компьютер?

Благоприятные события – это исправные компьютеры. Их 1000-5=995.

Всевозможные события – это все компьютеры. Их 1000.

 Р=995:1000=0,995

Ответ: 0,995

#7.

В урне лежат 3 белых, 2 желтых и 5 красных шаров. Найдите вероятность того, что извлеченный наугад шар будет красного цвета.

Благоприятные события – это красные шарики. Их 5.

Всевозможные события – это все шарики. Их 3+2+5=10.

Р=5:10=0,5

Ответ: 0,5

#8.

В каждой пятой банке кофе есть приз. Призы распределены случайно. Галя покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Галя не найдет приз.

Благоприятные события – это банки, в которых нет приза. Их 4.

Всевозможные события – это все банки. Их 5.

P=4:5=0,8

Ответ: 0,8.

Из простых задач остались самые элементарные.

Мы уже знаем, что если какое-либо событие происходит стопроцентно, то его вероятность обозначают за 1. 

Если вероятность выпадения снега 50%, то логично предположить, что вероятность того, что снег не выпадет равна так же 50%. Избавимся от процентов. Вероятность выпадения снега равна 0,5, вероятность невыпадения – 0,5. В сумме эти два числа равны 1.

Если вероятность того, что при письме карандаш сломается равна 0,24, то, чтобы найти вероятность того, что он не сломается, надо из 1 вычесть 0,24. Получится 0,76.

#9.

Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,06. Покупатель в магазине выбирает одну шариковую ручку. Найдите вероятность того, что ручка пишет хорошо.

Р=1-0,06=0,94

Ответ: 0,94.

Задачи с кубиками.

Следующий тип простых задач – это задачи с кубиками.

У кубика, как известно, 6 сторон. Значит, при подбрасывании одного кубика, всевозможных событий у нас будет 6. А при подбрасывании двух кубиков? Можно, конечно, расписать все варианты, но если кубиков не два, а три/четыре/пять? Всё время экзамена уйдет на это.

Нужно запомнить, что если количество сторон кубика возвести в степень, равную количеству кубиков, то мы получим число всевозможных событий.

6количество кубиков=всевозможные события

Для нахождения благоприятных событий такой формулы нет, поэтому разминаем мозг и ищем все самостоятельно.

#10.

В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 10 очков. Результат округлите до сотых.

Найдем благоприятные события. В каких случаях сумма очков будет равна 10? Распишем, главное, ничего не забыть.

  1 кубик 2 кубик 3 кубик
1 1 3 6
2 1 4 5
3 1 5 4
4 1 6 3
5 2 2 6
6 2 3 5
7 2 4 4
8 2 5 3
9 2 6 2
10 3 1 6
11 3 2 5
12 3 3 4
13 3 4 3
14 3 5 2
15 3 6 1
16 4 1 5
17 4 2 4
18 4

3

3
19 4 4 2
20 4 5 1
21 5 1 4
22 5 2 3
23 5 3 2
24 5 4 1
25 6 1 3
26 6 2 2
27 6 3 1

Итого, благоприятных событий 27, а всевозможных – 63=216.

Р=27:216=0,125. Округляем до сотых – 0,13.

Ответ: 0,13.

#11.

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

С двумя кубиками совсем просто.

Всевозможных событий — 62=36

Благоприятных событий — 3 (в сумме выйдет 4, если выпадут 1 и 3, или 3 и 1, или 2 и 2)

Р=3:36=0,08333

Ответ: 0,08

Задачи с монетами.

Задачи с монетками похожи на задачки с кубиками, но придется все всевозможные варианты выписать, чтобы найти благоприятные. Не уверены, что выписали всё? По аналогии с кубиками, можно сделать проверку: количество сторон монеты возвести в степень, равную количеству монеток.

2количество монет=всевозможные события

#12.

Одновременно бросают две монеты. Найдите вероятность, что на обеих монетах выпадет орел.

О – орел, Р — решка

Благоприятных – 1

Всевозможных – 4

Р=1:4=0,25

Ответ: 0,25

#13.

Одновременно бросают три монеты. Найдите вероятность, что на выпадут два орла и одна решка.

Всевозможных событий у нас 23=8. Выпишем их.

О О О
О О Р
О Р О
О Р Р
Р О О
Р О Р
Р Р О
Р Р Р

Благоприятных событий 3.

Р=3:8=0,375

Ответ: 0,375.

На этом приятности заканчиваются, и начинаются неприятности. 

Задачи на нахождение вероятности совместных и несовместных событий.

В предыдущих задачах события были случайными. Но еще есть такие виды событий как совместные и несовместные. Из названий понятно, что совместные события могут происходить одновременно, а несовместные нет. Например, к совместным событиям относятся снег с дождем, т.е. одновременно идет снег И дождь; к несовместным событиям относятся наступление дня и наступление ночи, т.к. в природе может быть ИЛИ день, ИЛИ ночь. Что-то одно. 

Союзы и/или я выделила не просто так. В информатике есть тема «Логические операции». Правда не могу сказать, в каких классах ее изучают. Определенно в старших. В этой теме есть такие понятия как логическое сложение и логическое умножение. Так вот. Союз И отвечает за логическое умножение, а союз ИЛИ – за логическое сложение.  

О чем это говорит? Если в задаче нам даны вероятности совместных событий, то их необходимо умножать. Если даны вероятности несовместных событий, то их будем складывать.

И – умножаем

ИЛИ — складываем

#14.

В уличном фонаре три лампы. Вероятность перегорания лампы в течении года равно 0,8. Найдите вероятность того, что в течении года хотя бы одна лампа не перегорит.

Начинаем рассуждать. Если лампа перегорает с вероятностью 0,8, то она не перегорает с вероятностью 1-0,8=0,2.

Возможны несколько случаев. 

1) 1 лампа остается И 2 лампы перегорают. Вероятность такого расклада равна 0,2*0,8*0,8=0,128. Причем остаться гореть может первая лампа, вторая ИЛИ третья. Т.е. первый случай разбивается еще на три таких же. Учитывая этот факт, вероятность того, что одна лампа не перегорит, равна 0,128*3=0,384.

2) 2 лампы остаются И 1 перегорает. Этот случай так же разбивается на три. Найдем вероятность: (0,2*0,2*0,8)*3=0,096.

3) 3 лампы остаются гореть. И первая, и вторая, и третья. Вероятность данного события равна 0,2*0,2*0,2=0,008.

Что получаем на выходе? Произойти может или первый случай, или второй, или третий. Найдем вероятность:

Р=0,384+0,096+0,008=0,488

И решим задачу вторым способом. Более коротким. 

Вероятность того, что все лампы перегорят (и первая, и вторая, и третья) равна 0,8*0,8*0,8=0,512

Т.к. нас интересует противоположный результат, то вероятность того, что в течении года хотя бы одна лампа не перегорит равна 1-0,512=0,488

Ответ: 0,488

#15.

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Вероятность ничьей = 1-0,4-0,4=0,2.

Команду ожидают две игры. За эти игры она должна набрать 4 очка. Это возможно осуществить тремя способами. Либо они одерживают победу в обоих играх, либо одерживают победу в первой игре и играют вничью во второй, либо играют вничью в первой игре и побеждают во второй. Расставим союзы и/или, чтобы составить полноценную формулу:

(победа и победа) или (победа и ничья) или (ничья и победа)

Заменяем союзы на знаки и получим, что вероятность того, что команда попадет в следующий тур равна 0,4*0,4+0,4*0,2+0,2*0,4=0,32.

Ответ: 0,32.

Успехов в учебе!

Автор статьи, но не задач: Васильева Анна

Джамиля Агишева

Задание 10 ОГЭ по математике – это задача по теории вероятностей.

Теория вероятностей рассматривает случайные действия, явления, процессы, исход которых заранее неизвестен. Например, высаживая семена огурцов, мы проводим эксперимент. В результате из десяти семечек может взойти от 0 до 10 ростков, т.е. случайное количество.

Событие – результат некоторого действия. Случайное событие – событие, которое может произойти или не произойти в данном эксперименте. Например, проигрыш или выигрыш нашей любимой футбольной команды заранее предсказать невозможно – это стечение обстоятельств, а сам исход игры мы узнаем по её окончании.

События принято обозначать заглавными латинскими буквами: A, B, C  и т.д.

Пример: A – взошло ровно 9 ростков из десяти посаженных семян огурцов. Оно может произойти или не произойти.

Вероятность события P(A) – это отношение числа  исходов, благоприятствующих событию , к числу всех исходов , возможных в данном эксперименте. Итак,

Pleft(Aright)=frac{m}{n}

Имейте в виду, что числитель такой дроби не может быть больше знаменателя, а значит, вероятность всегда меньше либо равна 1.

Приступим к решению задач.

Пример 1. Бабушка испекла одинаковые на вид пирожки: 7 с мясом, 8 с капустой и 5 с яблоками. Внучка Даша наугад выбирает один пирожок. Найдите вероятность того, что пирожок окажется с мясом.

Выбор пирожка – несомненно, испытание для Даши. А вдруг попадётся нелюбимый, с капустой?

Решение. Событие A – достался пирожок с мясом. Найдём m и n.

m – число исходов, благоприятствующих событию A.

n – число всех исходов, возможных в данном эксперименте.

Давайте перефразируем на языке пирожков: m – количество пирожков с мясом, т.е. m=7, n  – количество всех испечённых пирожков, т.е. n=7+8+5=20

Осталось найти вероятность. Вспомним формулу и вычислим. Итак,

Pleft(Aright)=frac{m}{n}=frac{7}{20}=0,35.

Замечание: не забудьте ответ представить в виде десятичной дроби!

Ответ: 0,35.

Давайте рассмотрим задачу посложнее.

Пример 2. В коробке хранятся жетоны с номерами от 5 до 54 включительно. Какова вероятность того, что на извлечённом наугад из коробки жетоне написано двузначное число?

Решение. Событие A – извлечённый наугад жетон содержит двузначное число. Найдём m и n.

m – число жетонов с двузначным номером,  n – число всех жетонов.

Сначала определимся с n. Типичная ошибка считать так: n=54-5=49. На самом деле когда-то были жетоны от 1 до 54. Но номера 1, 2, 3 и 4 со временем потерялись, т.е. пропало четыре штуки. Тогда,  n=54-4=50.

Сколько жетонов с двузначными номерами? Всего 50, номера 5, 6, 7, 8, 9 (их пять штук) – однозначные. Тогда, m=50-5=45.

Итак,

Pleft(Aright)=frac{m}{n}=frac{45}{50}=frac{9}{10}=0,9.

Ответ: 0,9.

Пример 3. В лыжных гонках участвуют 10 спортсменов из России, 8 спортсменов из Швеции и 7 спортсменов из Норвегии. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что спортсмен из Швеции будет стартовать последним.

Решение. Событие A – спортсмен из Швеции будет стартовать последним.

m=8 – число спортсменов из Швеции, n=10+8+7=25 – число всех спортсменов.

Т.к. старт определяется жребием, то не важно, под каким стартовым номером будет выступать тот или иной лыжник, под вторым или последним.

Итак,

Pleft(Aright)=frac{m}{n}=frac{8}{25}=0,32.

Ответ: 0,32.

Пример 4. Оля наугад выбирает трёхзначное число. Найдите вероятность того, что оно делится на 51.

Решение. Событие A – выбранное число делится на 51. Найдём m и n.

m – количество трёхзначных чисел, кратных 51, n – число всех трёхзначных чисел.

Последнее трёхзначное число 999. Найдём все числа, кратные 51 среди чисел от 1 до 999 (их даже можно попробовать пересчитать непосредственно: 51, 102, 153, …, 969). Разделим 999 на 51. Получим  999 :51=19frac{30}{51}, т.е. ровно 19 чисел, кратных 51. Но среди этого количества окажется двузначное число 51, которое не учитывается в задаче, значит, m=18.

Теперь определим n. Чисел от 1 до 999 ровно 999, исключим из них однозначные и двузначные числа от 1 до 99. Таким образом,  .

Итак,

Pleft(Aright)=frac{m}{n}=frac{18}{900}=frac{2}{100}=0,02.

Ответ: 0,02.

Пример 5. Фабрика выпускает сумки. В среднем на 200 качественных сумок приходится двадцать сумок с дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

Обратите внимание на условие задачи. Здесь не говорится, что из 200 сумок двадцать – с дефектами. В тексте чётко обозначено, что качественных – 200 штук, а некачественных – 20 штук.

Решение. Событие A – купленная сумка окажется качественной. Найдём m и n.

Всё просто, m=200n=200+20=220.

Итак,

Pleft(Aright)=frac{m}{n}=frac{200}{220}=frac{10}{11}.

Что-то пошло не так? Полученный результат невозможно будет записать в бланк ответов, т.к. ответом может быть либо целое число, либо конечная десятичная дробь. Ещё раз внимательно перечитываем задачу, а точнее, вопрос задачи. Там сказано: результат округлите до сотых. Помним, калькулятор использовать нельзя. Честно делим в столбик. Т.к. округлить нужно до сотых, то мы найдём три цифры после запятой и только потом запишем результат.

Ответ: 0,91.

Больше задач по теории вероятностей: https://ege-study.ru/teoriya-veroyatnostej/ и  https://ege-study.ru/teoriya-veroyatnostej-na-ege-po-matematike/

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 10 ОГЭ по математике. Вероятность и статистика.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Простое решение заданий ОГЭ по теории вероятности

Для решения заданий данного типа следует различать совместные и противоположные события, а также учиться применять основные формулы вероятности наступления событий.

ОГЭ математика – теория вероятности основные определения

Теория вероятностей — раздел математики, который изучает количественные оценки случайных событий для прогнозирования процессов и явлений в будущем. Основой таких прогнозов являются числовые данные, накопленные в результате наблюдений в реальной жизни. Сбором, изучением и обработкой этих данных занимается наука, основанная на законах теории вероятностей — статистика.

Среднее арифметическое ряда чисел — это сумма данных чисел, поделенная на количество слагаемых. Среднее арифметическое называют средним значением числового ряда.

Пример

Найти среднее арифметическое чисел 2, 6, 9, 15.

Решение

У нас четыре числа. Значит, надо их сумму разделить на 4. Это и будет среднее арифметическое данных чисел: (2 + 6 + 9 + 15) : 4 = 8.

Среднее геометрическое ряда чисел — это корень n-й степени из произведения этих чисел.

Пример

Найдем среднее геометрическое чисел 2, 4, 8.

Решение

 У нас три числа. Значит, надо найти корень третьей степени из их произведения. Это и будет среднее геометрическое данных чисел: 

    [3sqrt{2*4*8}=3sqrt{64}=4]

Размах ряда чисел — это разность между наибольшим и наименьшим из этих чисел.

Пример

Найти размах чисел 2, 5, 8, 12, 33.

Решение

Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31: 33 – 2 = 31.

Мода ряда чисел — это число, которое встречается в данном ряду чаще других.

Пример

Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8.

Решение

Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

Медиана – теория вероятности ОГЭ 9 класс

В упорядоченном ряде чисел

Медиана нечетного количества чисел — это число, записанное посередине.

Пример: В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине.

Медиана четного количества чисел — это среднее арифметическое двух чисел, находящихся посередине.

Пример: Найти медиану чисел 4, 5, 7, 11, 13, 19.

Решение: Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 и является медианой данного ряда чисел.

В неупорядоченном ряде чисел

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Пример: Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21.

Решение: Располагаем числа в порядке возрастания: 1, 3, 5,17, 19, 21, 25. Посередине оказывается число 17. Оно и является медианой данного ряда чисел.

Классическое определение вероятности

Вероятностью события A  называется отношение числа исходов m, благоприятствующих его наступлению к числу всех исходов n (несовместных, единственно возможных и равновозможных): 

    [P(A)=frac{m}{n}]

Будем различать достоверные и невозможные события. По определению, их вероятности соответственно равны 1 и 0.

Теоремы о вероятностях событий – ОГЭ по математике 9 класс теория вероятности

Произведением событий A и B называется событие C=A*B , состоящее в том, что в результате испытания произошло и событие A, и событие B, т.е. оба события произошли.

Два события A и B называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае события A и B называются зависимыми.

Теорема. Вероятность произведения двух независимых событий A и B равна произведению этих вероятностей: 

    [P(AB)=P(A)*P(B)]

Противоположные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же испытании.

Два события называются противоположными, если в данном испытании они несовместны, и одно из них обязательно происходит. Вероятности противоположных событий в сумме дают 1.

Если событие A может произойти с вероятностью p и опыт повторяют n раз, то вероятность, что оно наступит хотя бы один раз, есть:  1-qn, где q =1-p

Сложение вероятностей

Суммой событий A и B называется событие C=A+B, состоящее в наступлении, по крайней мере, одного из событий A или B, т.е. в наступлении события A или события B, или обоих этих событий вместе, если они совместны.

Теорема. Вероятность суммы двух несовместных событий A и B равна сумме вероятностей этих событий: P(A+B)=P(A)+P(B)

ОГЭ теория вероятности – решение задач

Пример 1 

У бабушки 20 чашек: 6 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

Решение

Найдем общее число чашек — в данном случае это известно по условию — 20 чашек. Нам необходимо найти число синих чашек: 20 ‒ 6 = 14. Теперь мы можем найти вероятность: 14 / 20 = 7 / 10 = 0,7.

Ответ: 0,7

Пример 2

В магазине канцтоваров продаётся 138 ручек, из них 34 красные, 23 зелёные, 11 фиолетовые, ещё есть синие и чёрные, их поровну. Найдите вероятность того, что при случайном выборе одной ручки будет выбрана красная или чёрная ручка.

Решение

Найдем сначала число черных ручек, для этого из общего числа вычитаем все известные цвета и делим на два, так как синих и чёрных ручек поровну: (138 ‒ 34 ‒ 23 ‒ 11) / 2 = 35. После этого можем найти вероятность, сложив количество чёрных и красных, разделив на общее количество: (35 + 34) / 138 = 0,5.

Ответ: 0,5.

Пример 3

В фирме такси в данный момент свободно 12 машин: 1 чёрная, 3 жёлтых и 8 зелёных. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет жёлтое такси.

Решение

Найдем общее число машин: 1 + 3 + 8 = 12. Теперь оценим вероятность, разделив количество жёлтых на общее число: 3 / 12 = 0,25.

Ответ: 0,25

Пример 4

Фирма «Вспышка» изготавливает фонарики. Вероятность того, что случайно выбранный фонарик из партии бракованный, равна 0,03. Какова вероятность того, что два случайно выбранных из одной партии фонарика окажутся не бракованными?

Решение

Вероятность того, что один случайно выбранный из партии фонарик — не бракованный, составляет 1 − 0,03 = 0,97. Вероятность того, что мы выберем одновременно два небракованных фонарика, равна 0,97 · 0,97 = 0,9409.

Ответ: 0,9409

Понравилась статья? Поделить с друзьями:
  • Как найти точку на теле вращения
  • Как в телеграмме найти стикеры для вк
  • Как найти среднее геометрическое на калькуляторе
  • Как составить резюме если нет достижений
  • Как найти платежное поручение в домклике