Как найти вероятность выпадения монеты

Бросание монет. Решение задач на нахождение вероятности

На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей — задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например «Симметричную монету бросают дважды…» или «Бросают 3 монеты …», но принцип решения от этого не меняется, вот увидите.

найти вероятность, что при бросании монеты

Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

Для задач о подбрасывании монеты существуют два основных метода решения, один — по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй — по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.

Нужна помощь? Решаем теорию вероятностей на отлично

Лучшее спасибо — порекомендовать эту страницу

1. Классическое определение вероятности

Для начала надо вспомнить саму формулу, по которой будем считать. Итак, вероятность находится как $P=m/n$, где $n$ — число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а $m$ — число тех исходов, которые благоприятствуют событию (то есть тому, что указано в условии задачи). Но как найти эти загадочные исходы? Проще всего пояснить на примерах.

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Итак, монету бросают дважды. Если обозначить буквой Р выпадение решки (цифры), а буквой О — выпадение орла (герба), то все возможные выпадения можно записать так: РР, ОР, РО и ОО (соответствено, выпали две решки, орел потом решка, решка потом орел и два орла). Подсчитываем число этих комбинаций и получаем $n=4$. Теперь из них надо отобрать только те, что удовлетворяют условию «орел выпадет ровно один раз», это комбинации ОР и РО и их ровно $m=2$. Тогда искомая вероятность равна $P=2/4=1/2=0.5$. Готово!

Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.

Так как монета снова подбрасывается два раза, множество всех элементарных исходов эксперимента (или комбинаций, как мы их называем здесь для удобства), точно такое же: РР, ОР, РО и ОО, $n=4$. А вот условию «оба раза выпала одна сторона» удовлетворяют другие комбинации: РР и ОО, откуда $m=2$. Нужная вероятность равна $P=2/4=1/2=0.5$.

Как видим, все довольно просто. Перейдем к чуть более сложной задаче.

Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Снова применим формулу классической вероятности. Шаг первый — выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Смотри-ка, бросков всего на один больше, а комбинаций возможных уже $n=8$ (кстати, они находятся по формуле $n=2^k$, где $k$ — число бросков монеты).

Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет $m=3$. Тогда вероятность события $P=m/n=3/8=0.375$.

Взяли разгон и переходим к 4 монетам.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Приступаем к вычислению. Шаг первый — выписываем все возможные комбинации для 4 бросков монеты. Чтобы проверить себя, сразу подсчитаем, что их должно получиться $n=2^4=16$ штук! Вот они:

OOOO, OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, OPPP,
POOO, POOP, POPO, POPP, PPOO, PPOP, PPPO, PPPP.

Теперь выбираем те, где герб (он же орел, он же буква О) встречается 2 или 3 раза:
OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, POOO, POOP, POPO, PPOO,

их будет $m=10$. Тогда вероятность равна $P=m/n=10/16=5/8=0.625$.

Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.

2. Комбинаторика + классическая вероятность

Надо заметить, что если действовать исключительно переборным методом (как это делалось выше), с ростом числа монет быстро растет число комбинаций (для 5 монет — 32, для 6 монет — 64 и так далее), так что и вероятность ошибиться при выписывании исходов велика, метод решения теряет свою простоту и привлекательность.

Один из способов решения этой проблемы — остаться в рамках формулы классической вероятности, но использовать комбинаторные методы (см. формулы комбинаторики тут) для подсчета числа исходов. Поясню на примере последней задачи, решив ее другим способом.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 4 монет. Все исходы можно закодировать некоторой последовательностью вида $X_1 X_2 X_3 X_4$, где $X_i=O$ (в $i$-ый раз выпал орел) или $X_i=P$ (в $i$-ый раз выпала решка). Найдем число всех таких последовательностей. Значение $X_1$ (результат первого броска) может быть выбран 2 способами (орел или решка), значение $X_2$ (результат второго броска) может быть выбран 2 способами (орел или решка), и так далее. Итого получим всего $n=2cdot 2cdot 2cdot 2=16$ различных исходов. Или, если использовать формулу комбинаторики для числа размещений с повторениями из 2 объектов по 4 позициям, сразу получим $n=A_4^2=2^4=16$.

Найдем число благоприятствующих исходов с использованием комбинаторики. Сначала найдем число таких последовательностей, где О встречается ровно 2 раза. Выбираем $C_4^2$ способами 2 позиции, где будет стоять О (на остальных тогда ставим решки). Аналогично для последовательностей, где О встречается ровно 3 раза — $C_4^3$ способами выбираем 3 позиции, где будет стоять О (на оставшейся позиции записывается решка). Подсчитывая число сочетаний и складывая, найдем количество благоприятствующих комбинаций:
$$
m=C_4^2+C_4^3=frac{4!}{2!2!}+frac{4!}{3!1!}=frac{3cdot 4}{1cdot 2}+4=6+4=10.
$$
Итого получаем такое же значение вероятности: $P=m/n=10/16=0.625$.

Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.

Например, если рассмотреть подобную задачу:

Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза

Ответ можно получить без выписывания 256 комбинаций (!!!), просто по аналогии с примером выше:
$$
n=2^8=256;\
m=C_8^4=frac{8!}{4!4!}=frac{5cdot 6cdot 7 cdot 8}{1cdot 2 cdot 3 cdot 4}=70;\
P=frac{n}{n}=frac{70}{256}=0.273.
$$

Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).

Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 6 монет. Так как каждый бросок дает 2 возможных исхода (О или Р), всего получим $n=2^6=64$ элементарных исхода (комбинации вида ОРОРОР, ОООРРР и т.д.).

Найдем число благоприятствующих исходов. Мысленно объединим два герба, которые должны появиться рядом, в один объект (ОО). Остается выбрать ему место среди остальных 4 решек (так гербов должно выпасть 2, то решек — 6-2=4). Существует $m=C_5^1=5$ способов выбрать позицию в последовательности из 5 объектов. Для наглядности, если выбрана позиция 2, то есть оба герба стоят на втором месте, это комбинация Р(ОО)РРР, если выбрана позиция 4 — РРР(ОО)Р.
Искомая вероятность: $P=m/n=5/64=0.078$.

Способ 3. Формула Бернулли

Рассмотрим общую задачу о подбрасывании монет.

Пусть бросается $n$ монет (или, что тоже самое, монета бросается $n$ раз). Нужно вычислить вероятность того, что герб появится в точности $k$ раз.

Так как броски монет — события независимые (результат броска одной монеты не влияет на последующие броски), вероятность выпадения герба в каждом броске одинакова (и равна $p=1/2=0.5$), то можно для вычисления вероятности применить формулу Бернулли:
$$
P=P_n(k)=C_n^k cdot p^k cdot (1-p)^{n-k} = C_n^k cdot left(1/2right)^k cdot left(1-1/2right)^{n-k}=C_n^k cdot left(1/2right)^n.
$$

То есть, мы вывели общую формулу, дающую ответ на вопрос «какова вероятность того, что герб появится в точности $k$ раз из $n$» (запишем в трех эквивалентных видах, выбирайте удобный для себя):
$$
P=C_n^k cdot left(1/2right)^n=frac{C_n^k}{2^n}=C_n^k cdot 0.5^n, quad C_n^k=frac{n!}{k!(n-k)!}.
$$

А теперь все задачи решаются проще простого, вот глядите!

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Подставляем $n=2, k=1$ и получаем $P=C_2^1 cdot left(1/2right)^2=2 cdot frac{1}{4}=frac{1}{2}=0.5.$

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Это уже третий способ решения задачи!
Подставляем $n=4, k=2$ и $k=3$, получаем
$$P=C_4^2 cdot left(1/2right)^4+C_4^3 cdot left(1/2right)^4=(6+4) cdot frac{1}{16}=frac{10}{16}=0.625.$$

Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

Подставляем $n=3, k=0$ и получаем $P=C_3^0 cdot left(1/2right)^3=1 cdot frac{1}{8}=frac{1}{8}=0.125.$

Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.

Подставляем $n=8, k=7$ и $k=8$ и получаем
$$P=C_8^8 cdot left(1/2right)^8+ C_8^7 cdot left(1/2right)^8=(1+8) cdot frac{1}{256}=frac{9}{256}=0.035.$$

Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.

Пригодится: онлайн калькулятор для формулы Бернулли

Полезная страница? Сохрани или расскажи друзьям

Полезные ссылки

  • Онлайн калькуляторы
  • Онлайн учебник
  • Более 200 примеров
  • Решенные контрольные
  • Формулы и таблицы
  • Сдача тестов
  • Решение на заказ
  • Онлайн помощь

Решебник по вероятности

А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):

30 мая 2012

Задачи на подбрасывание монет считаются довольно сложными. И перед тем как решать их, требуется небольшое пояснение. Задумайтесь, любая задача по теории вероятностей в итоге сводится к стандартной формуле:

Основная формула теории вероятностей

где p — искомая вероятность, k — число устраивающих нас событий, n — общее число возможных событий.

Большинство задач B6 решаются по этой формуле буквально в одну строчку — достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n. В этом и состоит вся сложность.

Тем не менее, существует как минимум два принципиально различных метода решения:

  1. Метод перебора комбинаций — стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные;
  2. Специальная формула вероятности — стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами.

Для решения задачи B6 надо знать оба метода. К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали!

Метод перебора комбинаций

Этот метод еще называется «решение напролом». Состоит из трех шагов:

  1. Выписываем все возможные комбинации орлов и решек. Например: ОР, РО, ОО, РР. Число таких комбинаций — это n;
  2. Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. Считаем отмеченные комбинации — получаем число k;
  3. Осталось найти вероятность: p = k : n.

К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Для 3 монет их уже 8, а для 4 — 16, и вероятность ошибки приближается к 100%. Взгляните на примеры — и сами все поймете:

Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

Итак, монету бросают два раза. Выпишем все возможные комбинации (O — орел, P — решка):

OO OP PO PP

Итого n = 4 варианта. Теперь выпишем те варианты, которые подходят по условию задачи:

OP PO

Таких вариантов оказалось k = 2. Находим вероятность:

Вероятность для n = 4 и k = 2

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Вероятность для n = 16 и k = 1

Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я — не уверен. Поэтому давайте рассмотрим второй способ решения.

Специальная формула вероятности

Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните:

Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле:

Специальная формула вероятности для задачи B6

Где Cnk — число сочетаний из n элементов по k, которое считается по формуле:

Формула числа сочетани из n элементов по k элементов

Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.

На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться — и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.

Задача. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.

По условию задачи, всего бросков было n = 4. Требуемое число орлов: k = 3. Подставляем n и k в формулу:

Специальная формула вероятности для n = 4 и k = 3

С тем же успехом можно считать число решек: k = 4 − 3 = 1. Ответ будет таким же.

Задача. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем числа n и k. Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу:

Специальная формула вероятности для n = 3 и k = 0

Напомню, что 0! = 1 по определению. Поэтому C30 = 1.

Задача. В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.

Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.

Пусть p1 — вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем:

Специальная формула вероятности для n = 4 и k = 3

Теперь найдем p2 — вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем:

Специальная формула вероятности для n = 4 и k = 4

Чтобы получить ответ, осталось сложить вероятности p1 и p2. Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:

p = p1 + p2 = 0,25 + 0,0625 = 0,3125

Смотрите также:

  1. Правила комбинаторики в задаче B6
  2. Комбинаторика в задаче B6: легкий тест
  3. Что такое числовая дробь
  4. Задачи B12, сводящиеся к линейным уравнениям
  5. Сложные задачи на проценты
  6. Задача B4 с таблицами: тарифы на интернет

На чтение 16 мин Просмотров 127к. Опубликовано 25 мая, 2018

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И  как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

вероятность

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Содержание

  1. Вероятность нескольких событий
  2. Задачи и решения задач на вероятность
  3. Вероятность нескольких событий
  4. Дополняющая вероятность

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: формула 1

Ответ: 0,8.

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

формула 2

Вероятность что второй дежурный мальчик:

формула 3

Раз оба должны быть мальчики, вероятности перемножим:

формула 4

Ответ: 0,2.

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12.  В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение: 

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение: 

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1 Игра №2 Вероятность данного варианта
3 1 0,4 · 0,2 = 0,08
1 3 0,2 · 0,4 = 0,08
3 3 0,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение: 

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 5

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 6

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 7

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 8

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение: 

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение: 

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

… США, КАН, КИТ …

… США, КИТ, КАН …

… КИТ, США, КАН …

… КАН, США, КИТ …

… КАН, КИТ, США …

… КИТ, КАН, США …

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

формула 9

≈ 0,33.

Дополняющая вероятность

Задача 1. 

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение: 

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: 

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение: 

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля 12 апреля 13 апреля Вероятность данного варианта
X – 0,9 X – 0,9 O – 0,1 0,9 ·0,9 ·0,1 = 0,081
X – 0,9 O – 0,1 O – 0,9 0,9 ·0,1 ·0,9 = 0,081
O – 0,1 O – 0,9 O – 0,9 0,1 ·0,9 ·0,9 = 0,081
O – 0,1 X – 0,1 O – 0,1 0,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля 5 июля 6 июля Вероятность данного варианта
X – 0,8 X – 0,8 O – 0,2 0,8 · 0,8 · 0,2 = 0,128
X – 0,8 O – 0,2 O – 0,8 0,8 · 0,2 · 0,8 = 0,128
O – 0,2 O − 0,8 O − 0,8 0,2 · 0,8 · 0,8 = 0,128
O – 0,2 X – 0,2 O – 0,2 0,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

Каждый год я участвую примерно в сотне собеседований в образовательных проектах JetBrains: собеседую абитуриентов в Computer Science Center и корпоративную магистратуру ИТМО (кстати, набор на программу идёт прямо сейчас). Все собеседования устроены по одному шаблону: мы просим на месте порешать задачи и задаём базовые вопросы по дисциплинам, которые студенты изучали в университетах. Большинство вопросов, которые мы задаём, довольно простые — нужно дать определение некоторого понятия, сформулировать свойство или теорему. К сожалению, у значительной доли студентов все эти определения выветриваются сразу после экзаменов в университетах. Казалось бы, что тут удивительного? В современном мире любое определение можно за пару секунд нагуглить, если это нужно. Но невозможность восстановить базовое определение свидетельствует о непонимании сути предмета.

Если непонимание алгебры или математического анализа может мало влиять на вашу жизнь, то непонимание теории вероятностей делает из вас лёгкую мишень для обмана и манипулирования. Суждения о вероятностях различных событий настолько глубоко вошли в нашу повседневную жизнь, что умение правильно рассуждать и отличать правду от невежества или манипуляции является необходимым. В этом небольшом обзоре мы поговорим о базовых понятиях теории вероятностей, научимся правильно формулировать утверждения про простые случайные процессы и разберём несколько парадоксов. Часть материала позаимствована из брошюры А. Шеня «Вероятность: примеры и задачи», которую я очень рекомендую для самостоятельного изучения.

Перед тем, как говорить об определениях, нам нужно договориться о том, откуда же в нашем мире берётся случайность. Например, почему мы считаем, что подбрасывание монеты — это случайный процесс? С точки зрения классической физики, описывающей процессы в макромире, всё детерминировано, поэтому по параметрам подброса монеты можно однозначно определить, какой стороной она упадёт. Однако на практике оказывается, что измерить и учесть все силы, которые действуют на монетку фактически, невозможно, и поэтому результат этого эксперимента принято считать случайным. Важно понимать, что этот вопрос не является вопросом теории вероятностей. Теория вероятностей работает с моделями — для неё монетка, у которой орёл и решка выпадают одинаково часто, и монетка, у которой орлов в два раза больше, чем решек, — это просто две разные модели. Вопрос о том, какая из моделей больше соответствует наблюдаемой действительности — это вопрос нашего опыта (опыт показывает, что частота орла и решки примерно одинаковая). Таким образом, первым делом мы должны договориться о модели.

Определения

Для определения модели, которая позволит нам говорить о вероятностях, нужно описать вероятностное пространство.

Вероятностное пространство в самом простом конечном случае состоит из множества элементарных исходов

$Omega = {a_1, a_2, dotsc, a_n}$ и набора неотрицательных чисел

${p_1,p_2,dotsc, p_n}$, таких что их сумма равна

$1$. Довольно часто все исходы считаются равновероятными, т.е.

$p_1=p_2=dotsb=p_n$. В более сложном бесконечном случае нужно отдельно выделять множество интересующих нас событий и задавать вероятности событий при помощи функции, называемой вероятностной мерой. Событием называется множество, состоящее из элементарных событий, т.е. любое подмножество

$Omega$. Вероятность события

$Esubseteq Omega$, обозначается

$Pr[E]$, — это сумма всех таких

$p_i$, что

$a_iin E$. В частности, вероятность пустого события

$E = emptyset$ равна нулю, а события

$E=Omega$ равна 1. В случае, когда все исходы считаются равновероятными, вероятность события просто равна отношению количества исходов, содержащихся в событии, к общему количеству элементарных исходов, т.е.

$Pr[E] = |E| / |Omega|$.

Вероятность любого события заключена между 0 и 1. Если вероятность события нулевая, то такое событие называется невозможным, если же вероятность события равна единице, то такое событие называется достоверным.

Важно, что без определения вероятностного пространства нельзя (в математическом смысле) говорить о вероятности чего-либо.

Замечание

На основе определения вероятностного пространства легко провести разделение между теорией вероятностей и статистикой: теория вероятностей предсказывает частоты на основе знания вероятностного пространства, а статистика решает обратную задачу — на основе наблюдаемых частот определяет параметры неизвестного вероятностного пространства.

Пример: подбрасывание монетки

Будем считать, что монетка

чеканная

«правильная» или «симметричная», т.е. она одинаково часто выпадает орлом и решкой, а на ребро никогда не встаёт. Тогда множество элементарных исходов состоит из двух элементов,

$Omega = { text{ОРЁЛ}, text{РЕШКА}}$. Так как мы договорились, что монетка «правильная», то разумно считать, что

$p_1 = p_2 = 1/2$. Теперь давайте перечислим все возможные события и их вероятности.

  1. Не выпадет ни орёл, ни решка. Это соответствует событию $E = emptyset$, $Pr[E] = 0$.
  2. Выпадет орёл, $E = {text{ОРЁЛ}}$, $Pr[E] = 1/2$.
  3. Выпадет решка, $E = {text{РЕШКА}}$, $Pr[E] = 1/2$.
  4. Выпадет орёл или решка, $E = {text{ОРЁЛ}, text{РЕШКА}}$, $Pr[E] = 1/2 + 1/2 = 1$.

Пример: подбрасывание игрального кубика

Как и в случае с монеткой мы будем предполагать, что игральный кубик выпадает всеми гранями одинаково часто. Тогда множество элементарных исходов состоит из шести элементов,

$Omega = { 1, 2, 3, 4, 5, 6}$, все их вероятности равны

$p_1 = p_2 = dotsb = p_6 = 1/6$. Количество различных событий в этом эксперименте равно

$64 = 2^6$ (это количество всех подмножеств множества из 6 элементов). Удивительным образом вопрос «сколько существует различных событий в эксперименте с подбрасывание игрального кубика?», по моим наблюдения, ставит в тупик 9 из 10 абитуриентов.
Давайте рассмотрим некоторые примеры событий.

  1. Выпадет 1, $E = {1}$, $Pr[E] = 1/6$.
  2. Выпадет число большее трёх, $E = {4, 5, 6}$, $Pr[E] = 1/6 + 1/6 + 1/6 = 1/2$.
  3. Выпадет число кратное трём, $E = {3, 6}$, $Pr[E] = 1/6 + 1/6 = 1/3$.

Пример: два подбрасывания монетки

В тех же предположениях о «симметричености» монеты мы определим множество элементарных исходов как множество упорядоченных пар

$Omega = { (text{ОРЁЛ}, text{ОРЁЛ}), (text{ОРЁЛ}, text{РЕШКА}), (text{РЕШКА}, text{ОРЁЛ}), (text{РЕШКА}, text{РЕШКА})}.$

Симметриченость монетки позволяет нам заключить, что все элементарные исходы равновероятны, т.е.

$p_1 = p_2 = p_3 = p_4 = 1/4$.
Примеры событий.

  1. В первом броске выпадет решка, $E = {(text{РЕШКА},text{ОРЁЛ}), (text{РЕШКА}, text{РЕШКА})}$, $Pr[E] = 1/4 + 1/4 = 1/2$.
  2. Выпадет хотя бы одна решка, $E = {(text{РЕШКА},text{ОРЁЛ}), (text{РЕШКА}, text{РЕШКА}),(text{ОРЁЛ}, text{РЕШКА})}$, $Pr[E] = 1/4+1/4+1/4 = 3/4$.
  3. Монетка дважды выпадет одной стороной, $E = {(text{ОРЁЛ}, text{ОРЁЛ}), (text{РЕШКА}, text{РЕШКА})}$, $Pr[E] = 1/4 + 1/4 = 1/2$.

Пример: выбираем случайное число из календаря 2020 года

Множество элементарных исходов

$Omega = {1, 2,dotsc,31}$. Как выбрать вероятности? Это зависит от того, как устроен эксперимент. Например, мы можем вырвать случайный лист отрывного календаря и посмотреть число на нем. Наиболее точной моделью, описывающей этот эксперимент, было бы вероятностное пространство с

$366$ исходами, где одинаковые числа разных месяцев различаются. И тогда вероятность того, что выпадет число 1, была бы суммой вероятностей элементарных исходов, соответствующих первым числам разных месяцев, т.е.

$12cdot 1/366$. Но мы можем для удобства рассмотреть более простое множество элементарных исходов

$Omega$ с 31 исходом, но с разными вероятностями:

$p_1 = p_2 =dotsb =p_{29} = 12/366$,

$p_{30} = 11/366$,

$p_{31} = 7/366$.

Пример события: «выпавшее число месяца делится на 10». Это соответствует событию

$E = {10,20,30}, Pr[E] = p_{10} + p_{20} + p_{30} = (12+ 12+11)/366 = 35/366$.

Замечание

Как только мы определили вероятностное пространство (т.е. определились с множеством

$Omega$ и вероятностями, которые мы приписываем элементарным исходам), то вопрос о вероятности некоторого события становится чисто арифметическим. Другими словами, как только мы выбрали некоторую математическую модель, которая с нашей точки зрения описывает физический процесс, то вероятности всех событий однозначно определены.

Задачи для самопроверки

В каждой задаче следует сначала описать вероятностное пространство, а уже только потом производить вычисления.

  1. Бросаем два игральных кубика: красный и синий. Определите вероятность того, что цифры на красном и синем кубиках совпадут.
  2. В этом же эксперименте с кубиками нужно найти наиболее вероятную сумму цифр на кубиках.
  3. Наудачу выбирается одно число от 1 до 20. Считая все числа равновозможными, определите вероятность того, что выбранное число:
    • чётно;
    • делится на 3;
    • делится и на 2, и на 3;
    • не делится ни на 2, ни на 3;
    • имеет сумму цифр 9;
    • имеет сумму цифр, делящуюся на 3.

Пример вероятностного пространства, не соответствующего физическому миру

Рассмотрим следующий эксперимент: подбрасываем две монетки и смотрим на то, какими сторонами они выпали. Можно было бы сказать, что в данной задаче всего три исхода: две решки, два орла и орёл и решка. Если предполагать, что все исходы равновозможны, то получается, что вероятность выпадения двух орлов равна 1/3. Математика не запрещает нам рассматривать такое вероятностное пространство, но экспериментальная проверка подсказывает, что в физическом мире ответ скорее ближе к 1/4. Поэтому не стоит по умолчанию предполагать все исходы равновозможными, иначе мы получим 1/2 в ответ на вопрос о вероятности встречи динозавра.

Формула суммы вероятностей

Будем называть два события несовместными, если их пересечение равно пустому множеству. Т.е., нет исходов, которые соответствовали бы обоим событиям. Пример: события «на игральном кубике выпало чётное число» и «на игральном кубике выпала единица или тройка» несовместны.

Несовместные события обладают следующим свойством. Пусть

$A$ и

$B$ — два несовместных события. Вероятность того, что произойдёт хотя бы одно из них, равна сумме вероятностей

$A$ и

$B$, другими словами

$Pr[Acup B] = Pr[A] + Pr[B]$, событие

$Acup B$ также называют суммой событий $A$ и $B$ и обозначают

$A+B$. Это свойство не выполняется для произвольных событий. Например, события «на игральном кубике выпало чётное число» и «на игральном кубике выпало число больше четырёх» не несовместны и сумма их вероятностей (5/6) больше вероятности их суммы (4/6).

Рассмотрим следующую задачу. В мешке лежат шарики трёх цветов: белые, жёлтые и чёрные. Причём известно, что белых

$10%$ от общего числа, а жёлтых —

$15%$. Какова вероятность того, что случайно вытащенный шар будет светлым? Аккуратный подсчёт показывает, что если в мешке

$N$ шаров, то рассматриваемому событию соответствует

$0.1N + 0.15N = 0.25N$ шаров, т.е.

$25%$ от общего числа шаров. События «вытащен белый шар» и «вытащен жёлтый шар» несовместны, поэтому вероятность, что шар будет светлым равна сумме вероятностей этих событий.

События называются противоположными, если всегда происходит ровно одно из них. Из этого определения можно заключить, что во-первых, эти события несовместны, а во-вторых, их суммарная вероятность равна 1. Событие, противоположное событию

$E$, выражается, как

$Omegasetminus E$ (если все элементарные исходы имеют положительную вероятность, то это единственное такое событие).

Задача для самопроверки

Наудачу выбирается число

$n$ от 1 до 100. Рассмотрим следующие события:

  1. число $n$ чётно;
  2. число $n$ нечётно;
  3. число $n$ делится на 4;
  4. число $n$ имеет остаток 2 при делении на 4;
  5. число $n$ имеет остаток 1 при делении на 4.

Какие из этих событий несовместны? (укажите все пары)

Формула включений и исключений

Как определить вероятность суммы двух событий, которые не являются несовместными? Рассмотрим следующий пример. Среди учеников школы

$15%$ процентов знают французский язык и

$20%$ знают немецкий. Доля тех, кто владеет обоими языками всего

$5%$. Какова доля учеников, знающих хотя бы один из этих двух языков? Если нарисовать диаграмму, если мы сложим доли знающих французский и знающих немецкий, то мы дважды посчитаем тех, кто знает оба языка. Поэтому ответ:

$15% + 20% - 5%= 30%$.

Этот же вопрос можно сформулировать и на языке теории вероятностей: с какой вероятностью случайно выбранный школьник знает хотя бы один из двух языков? Аналогичное рассуждение приводит нас к следующей формуле:

$Pr[Acup B] = Pr[A] + Pr[B] - Pr[Acap B],$

где

$Acap B$ — это пересечение событий

$A$ и

$B$, т.е. это событие состоящее из тех элементарных исходов, которые входят одновременно и в

$A$, и в

$B$ (такое событие также называют произведением событий $A$ и $B$ и обозначают

$Pr[AB]$).

Задача для самопроверки

Известно, что ученики класса, имеющие двойки по алгебре, составляют 25%, а ученики, имеющие двойки по геометрии, составляют 15%. Сколько учеников имеют двойки и по алгебре, и по геометрии, если ученики, не имеющие двоек ни по одному из предметов, составляют 70%?

Условная вероятность

Снова рассмотрим задачу про учеников и иностранные языки. Какая доля среди школьников знающих немецкий знает и французский? Ответ легко вычислить, посмотрев на картинку. Нужно вычислить отношение количества школьников знающих оба языка к количеству школьников знающих немецкий, т.е.

$frac{0.05N}{0.2N} = 25%$. Переходя к языку теории вероятностей можно задаться следующим вопросом: какова вероятность, что случайно выбранный школьник знает французский при условии, что он знает немецкий? Пусть события

$A$ и

$B$ соответствуют тому, что случайно выбранный школьник знает французский и немецкий соответственно. Тогда искомая вероятность называется условной вероятностью наступления $A$ при условии $B$ и обозначается

$Pr[Amid B]$. По аналогии получаем следующую формулу для условной вероятности:

$Pr[Amid B] = frac{Pr[Acap B]}{Pr[B]}.$

Какова вероятность, что случайно выбранный школьник знает немецкий при условии, что он знает французский?

Из формулы условной вероятности можно получить формулу для вероятности произведения двух событий.

$Pr[Acap B] = Pr[B] cdot Pr[Amid B].$

Словами: чтобы найти вероятность того, что произойдут оба события

$A$ и

$B$, надо умножить вероятность события

$B$ на условную вероятность события

$A$ при известном

$B$.

Задача для самопроверки

В классе 50% мальчиков; среди мальчиков 60% любит мороженое. Какова доля мальчиков, любящих мороженое, среди учеников класса? Как это переформулировать на языке теории вероятностей?

Независимость

Рассмотрим эксперимент с бросанием двух игральных кубиков: красного и синего. В этом эксперименте имеются 36 исходов, которые мы считаем равновозможными. Вероятность того, что на красном кубике выпадет тройка, равна

$1/6$ (6 исходов из 36), вероятность того, что на синем кубике выпадет тройка, тоже равна

$1/6$. Какова вероятность того, что на синем кубике выпадет тройка при условии, что на красном выпала тройка? По формуле условной вероятности нужно посчитать отношение вероятности выпадения тройки на обоих кубиках к вероятности выпадения тройки на красном. Получаем

$frac{1/36}{1/6} = 1/6$. Заметим, что наличие информации о том, что на красном кубике выпала тройка, никак не влияет на вероятность выпадения тройки на синем. Такие события будем называть независимыми. Будем говорить, что события

$A$ и

$B$ независимы, если

$Pr[Amid B] = Pr[A].$

(В этом определении предполагаются, что обе вероятности событий

$A$ и

$B$ строго больше нуля.)

Альтернативное определение можно получить, если воспользоваться определением условной вероятности: два события называются независимыми, если вероятность их произведения равна произведению их вероятностей.

$Pr[AB] = Pr[A]cdot Pr[B].$

Задачи для самопроверки

  1. Являются ли события «знать немецкий» и «знать французский» независимыми?
  2. Бросаем один игральный кубик. Являются ли независимыми события:
    1. «выпало чётное» и «выпало нечётное»,
    2. «выпало чётное» и «выпало 2»,
    3. «выпало чётное» и «выпало кратное трём».

Следующий шаг — это разговор про формулу Байеса, которая выводится из определения условной вероятности. Перепишем определение:

$P[Bmid A] = frac{P[Acap B]}{P[A]}quad Rightarrowquad P[Acap B] = P[Bmid A]cdot P[A].$

И подставив это в определение получаем формулу Байеса

$P[Amid B] = frac{P[Acap B]}{P[B]} = frac{P[Bmid A]cdot P[A]}{P[B]},$

которая позволяет менять местами событие и условие под знаком вероятности. Думаю, что про применение формулы Баейса нужно писать отдельный пост, например, такой.

На этом мы закончим с определениями и перед тем, как перейти к парадоксам, давайте обсудим, а в каких случаях мы можем говорить о вероятности.

Когда мы можем говорить о вероятности?

Предлагаю рассмотреть несколько вопросов, которые проиллюстрируют важность формулировок.

Какова вероятность того, что гуляя по улице вы встретите динозавра?

Я думаю, что всем ясно, что это не 1/2. Но всё же, как правильно ответить на этот вопрос? Проблема этого вопроса в том, что он сформулирован некорректно — из него нельзя однозначным образом определить вероятностное пространство, а следовательно и о вероятности говорить нельзя. Можно предложить какую-нибудь другую формулировку вопроса, в которой это будет очевидно. Например, начиная с завтрашнего дня на каждой улице города каждую минуту с вероятностью 0.00001 материализуется динозавр и существует в течение часа, никуда не уходя. В данной формулировке понятен случайный процесс и можно оценить вероятность встречи, если определить, как устроена прогулка, сколько длится и сколько улиц она затрагивает.

Вы подбросили монетку и не подглядывая накрыли её рукой. Какова вероятность того, что монетка повёрнута орлом вверх?

Очень хочется сказать, что в данном случае уж точно вероятность — 1/2. Однако, строго говоря, никакого случайного процесса уже нет. Монетка уже упала какой-то стороной. От того, что вы чего-то не знаете, не значит, что это что-то случайное. Например, если вы не знаете решение уравнения — это не значит, что его решением с одинаковой вероятностью может быть любое число. Поэтому в данном случае описать вероятностное пространство не получится. Можно переформулировать вопрос, например, так: «Какова вероятность, что вы угадаете сторону монетки, если наугад равновероятно выберите орёл или решку?». В такой формулировке уже ясно, что является случайным процессом (выбор орла или решки), как определить вероятностное пространство и получить ответ 1/2. При этом, в такой формулировке уже совершенно неважно, была монетка «честной» или нет.

Замечание. Нашу уверенность в чём-то тоже можно описывать в терминах теории вероятностей — это делается в рамках Байесовской интерпретации теории вероятностей. Эта интерпретации позволяет использовать аппарат теории вероятностей для оценки нашей уверенности в истинности каких-то утверждений (не обязательно случайных) основываясь на информации, которая нам известна. Однако стоит заметить, что в этом случае понятие вероятности становится субъективным — у одного и того же события с точки зрения разных наблюдателей может быть разная вероятность. Например, в покере вы можете считать вероятность выпадения пиковой дамы положительной (так как вы не видите её на столе и в своей руке), а ваш противник, у которого в руке уже есть пиковая дама, будет оценивать вероятность её выпадения как нулевую. При этом можно придумать и такой вариант, в котором обе оценки окажутся отличными от «реальной», объктивной, вероятности. В этом нет противоречия, т.к. в это три различные величины (игроки обладают разной информацией, а объективная вероятность в данном случае соответствует полной информации).

Вы проснулись утром. Какова вероятность того, что сегодня воскресенье?

Думаю, что вы уже поняли, что ответ 1/7 — неправильный, а точнее, вопрос некорректный. Не понятно, что является случайный процессом. Для того, чтобы получить 1/7 нужно уточнить вопрос, например, так: вы засыпаете в воскресенье вечером и случайным образом просыпаетесь в любое утро на следующей неделе, какова вероятность, что вы проснётесь в воскресенье? Но даже с этим уточнением, если спросить вас о дне недели уже после того, как вы проснулись (после того, как случайный выбор был сделан), то такой вопрос останется некорректным — иначе придётся предполагать, что вы находитесь в суперпозиции всех дней недели до тех пор, пока не посмотрите на календарь.

Я написал на доске некоторое (конкретное) число и утверждаю, что дважды успешно проверил его на простоту вероятностным алгоритмом, который ошибается с вероятность менее 1%. С какой вероятностью это число простое?

Хотелось бы сказать, что это число простое с вероятностью более 99.99%. Однако, с математической точки зрения число может быть либо простым, либо нет. Поэтому так говорить некорректно. После того, как алгоритм завершил работу, ничего случайного в этой постановке задачи уже нет, следовательно нет и вероятности. Правильно было бы сказать, что вы уверены на 99.99%, что это число простое, но и это вы можете заявить только в том случае, если доверяете мне на 100% :)

Парадоксы

В этом разделе мы попробуем разобрать несколько известных «парадоксов» теории вероятностей и понять, что в них либо нет противоречий, либо вопросы поставлены некорректно.

Парадокс Монти-Холла

Этот очень известный парадокс. Об него было сломано много копий, в том числе даже именитые математики давали неправильный ответ.

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Как подсказывает Википедия, для того, чтобы задача была определена корректно, нам требуется уточнить, что участнику игры заранее известны следующие правила:

  1. автомобиль равновероятно размещён за любой из трёх дверей;
  2. ведущий знает, где находится автомобиль;
  3. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  4. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.

Если вы не знакомы с этим парадоксом, то я предлагаю вам несколько минут подумать о том, каким будет правильный ответ.

Для того, чтобы ответить на заданный вопрос, давайте разберёмся, что тут является случайным процессом. По уточнению видно, что случайный процесс упоминается только в пунктах 1 и 4: «автомобиль равновероятно размещён за любой из трёх дверей» и «если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью». Вопрос, на который мы должны научиться отвечать, звучит так: «Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор». Т.е. нас спрашивают о том, какая из двух стратегий даёт большую вероятность выигрыша. Замечу, что условие номер 4 никак не влияет на факт выигрыша игрока, поэтому нет смысла включать его в вероятностное пространство. Поэтому предлагается выбрать вероятностное пространство с множеством элементарных исходов

$Omega = {1,2,3}$, соответствующим номеру двери, за которым находится автомобиль, и вероятностями

$p_1=p_2=p_3 = 1/3$. Теперь рассмотрим две стратегии игрока: «оставить выбранную дверь», обозначим

$S_1$, и «сменить дверь», обозначим

$S_2$.

Мы не знаем, как игрок делает выбор первой двери, но нам и не нужно это знать. Достаточно проверить, как работает стратегия при всех выборах первой двери. Обозначим через

$d$ дверь, которую игрок выбрал изначально, а через

$x$ — дверь, за которой спрятан автомобиль. Тогда для любого

$d in {1,2,3}$ событие «игрок выиграл при использовании стратегии

$S_1$» соответствует тому, что он угалад правильную дверь с первой попытки. Говоря формально, нас интересует событие

$E_1 = {d}$, т.е.

$x = d$, и его вероятность

$1/3$. Событие «игрок выиграл при использовании стратегии

$S_2$» соответствует противоположному событию

$E_2 = Omegasetminus {d}$, т.е.

$x neq d$, и его вероятность

$2/3$. Осталось ещё раз отметить, что, если этот анализ верен для любого выбора

$d$, поэтому верен и при любой стратегии выбора первой двери. Кроме того, заметим, что мы никак не использовали условие 4.

Как видите, никаких неоднозначностей тут нет, парадоксом эта задача называется только потому, что ответ может не соответствовать интуиции. Но так в математике случается довольно часто.

Парадокс мальчика и девочки

Цитирую Википедию.

Впервые задача была сформулирована в 1959 году, когда Мартин Гарднер опубликовал один из самых ранних вариантов этого парадокса в журнале Scientific American под названием «The Two Children Problem», где привёл следующую формулировку:

  • У мистера Джонса двое детей. Старший ребёнок — девочка. Какова вероятность того, что оба ребёнка — девочки?
  • У мистера Смита двое детей. Хотя бы один ребёнок — мальчик. Какова вероятность того, что оба ребёнка — мальчики?

Сам Гарднер изначально давал ответ $1/2$ и $1/3$ соответственно, но впоследствии понял, что ситуация во втором случае неоднозначна. Ответом на второй вопрос может быть и $1/2$ в зависимости от того, как было выяснено, что один из детей — мальчик.

Вероятностное пространоство задано

$Omega = {text{ММ},text{МД},text{ДМ},text{ДД}}$ и все вероятности равны

$1/4$. В первом случае нам известно, что выполнено событие

$E = {text{ДМ},text{ДД}}$. Поэтому при условии

$E$ вероятность двух девочек равна 1/2.

Во втором случае всё сложнее, т.к. не понятно, как мы узнали, что у мистера Смита один из детей мальчик. Можно предположить два варианта:

  1. Выбирается случайный человек с двумя детьми и его спрашивают, есть ли среди его детей мальчик. Тогда вероятность двух мальчиков получится 1/3, т.к. это соответствует вероятности ММ при условии события $E = {text{ММ},text{МД},text{ДМ}}$.
  2. Выбирается случайный человек с двумя детьми, выбирается случайный его ребёнок (старший или младший) и спрашивается его пол. Этот эксперимент соответствует другому вероятностному пространству, в котором нужно ещё учесть выбор того ребёнка, про которого спрашивают. В нём будет 8 элементарных исходов, и нам подойдут четыре из них (ММ и спросили про старшего, ММ и спросили про младшего, МД и спросили про старшего, ДМ и спросили про младшего). Нам подходят два исхода, поэтому ответом будет 1/2.

Парадокс Спящей Красавицы

Обсуждение этого парадокса мотивировано вот этим постом на хабре, который вызвал широкое обсуждение, но описание этого парадокса есть и в википедии.

Испытуемой («Спящей Красавице») делается укол снотворного. Бросается симметричная монетка. В случае выпадения орла её будят, и эксперимент на этом заканчивается. В случае выпадения решки её будят, делают второй укол (после чего она забывает о побудке) и будят на следующий день, не бросая монеты (в таком случае эксперимент идёт два дня подряд). Вся эта процедура Красавице известна, однако у неё нет информации, в какой день её разбудили.

Представьте себя на месте Спящей Красавицы. Вас разбудили. Какова вероятность того, что монетка упала решкой?

Предлагается рассмотреть два альтернативных решения с разными результатами.

Решение 1

У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монетка честная, можно предположить, что вероятность выпадения решки равна

$1/2$.

Решение 2

Проведём эксперимент 1000 раз. Спящую Красавицу будят в среднем 500 раз с орлом и 1000 раз с решкой (т.к. при выпадении решки Спящую Красавицу спрашивают 2 раза). Поэтому вероятность выпадения решки равна

$2/3$.

Кажется, что оба решения могут претендовать на звание правильного. Однако, при попытке определить вероятностное пространство нас ожидают серьёзные трудности. Что же является случайным процессом? Дело в том, что когда Спящая Красавица просыпается, никакого случайного процесса уже нет. Выбор уже сделан. Ей не известен результат этого выбора, но ничего случайного уже нет. Это возвращает нас к примеру с динозавром. Если вы не знаете, есть ли за углом динозавр, то это не значит, что он там есть с вероятностью 1/2. Поэтому «Решение 1» отвечает не на вопрос про вероятность, а на вопрос про степень уверенности Спящей Красавицы. А «Решение 2» предлагает рассмотреть совершенно другой эксперимент, в котором задаётся в общем-то совершенно другой вопрос, на который предлагается ответить внешнему наблюдателю до начала эксперимента.

Для того, чтобы придать этому вопросу математический смысл и получить желаемый ответ 2/3, придётся воспользоваться каким-нибудь философским приёмом, вроде «подселения душ». Например, так: вы заходите в аппарат переселения душ, после этого подбрасывается монетка для Спящей Красавицы, которая создаёт две параллельные вселенные: одну, где монетка выпала орлом, и другую, где выпала решкой. Суммарно в пространстве-времени этих двух альтернативных вселенных есть три различных пробуждения Спящей Красавицы. Аппарат по переселению душ с вероятностью 1/3 подселяет вашу душу в тело Спящей Красавицы незадолго до одного из этих пробуждений. Какова вероятность, что вы проснетесь в параллельной вселенной, где выпала решка?

Как видите, для придания математического смысла этому вопросу, придётся хорошенько пофантазировать, но этим занимаются не математики, а философы (подробнее в этом посте). Утверждать, что «оба решения правильные», некорректно с математической точки зрения.

Задача для самопроверки

Объясните, почему в задаче о детях моряка, с которой начинается этот пост, вопрос поставлен некорректно (т.е. ни 1/2, ни 1/3 не являются правильным ответом).

Бесконечный случай

Когда мы переходим к бесконечному случаю, т.е. рассматриваем эксперименты с бесконечным числом элементарных исходов, то всё становится значительно сложнее. Я не буду вдаваться в детали и даже не буду определять вероятностное пространство для бесконечного случая, т.к. это требует более сложной математики. Однако, для иллюстрации отмечу, что в бесконечном случае могут быть такие (плохие) множества элементарных исходов, которые не имеют вероятности (неизмеримые множества). При этом для всех хороших (измеримых) событий вероятность определена однозначно. Поэтому и те «парадоксы», которые возникают в бесконечном случае, тоже возникают из-за неоднозначности выбора вероятностного пространства. Хорошим наглядным примером служит парадокс Бертрана, показывающий, как казалось бы эквивалентные (на самом деле нет) вероятностные пространства приводят к разным результатам.

Вместо заключения

Даже если вы не собираетесь никуда поступать или проходить собеседования на технические позиции в IT-компании, то вы всё равно можете захотеть освежить знания по математике, которые могут пригодиться в программировании. Могу посоветовать онлайн-курс СS центра по теории вероятностей, который читает А.И. Храбров.

БОНУС

Приглашаю всех послушать лекция Александра Шеня «Генераторы «случайных чисел»: теория и практика» в это воскресенье 26 апреля в 14:00 в Computer Science клубе. Лекция будет читаться в zoom-е, для участия нужно записаться на курс или подписаться на рассылку.

Основы теории вероятностей

Данное введение в теорию вероятностей и математическую статистику ни в коем случае не претендует на полноту изложения. Дается только минимально необходимый материал для трейдеров, работающих на Форексе, фондовой бирже и бинарных опционах.

Данное изложение ведется на достаточно простом языке, понятным для выпусника средней школы, который не изучал эти предметы в ВУЗе. Этот материал также будет полезен тем, кто когда-то знал эти вещи, но подзабыл, и теперь надо очень быстро вспомнить хотя бы основы.

Определения

Теория вероятностей, это раздел математики, который изучает закономерности случайных событий и случайных величин, а также операции над случайными величинами.

Случайное событие, это такое событие, которое может и произойти, и не произойти при выполнении некоторых условий.

Будем считать, что эти условия могут быть воспроизведены неограниченное количество раз.

Испытанием называется каждое воспроизведение этих условий.

Закономерности

Я подкинул монету 10 раз. В результате, орел выпал 7 раз, а решка выпала 3 раза. Получилась разница 7 — 3 = 4.

Я подкинул монету 100 раз. В результате, орел выпал 56 раз, а решка выпала 54 раза. Разница получилась еще больше 56 — 44 = 12.

Я подкинул монету 1000 раз. Теперь, наоборот, орлов выпало меньше, всего 485 раз. А решек выпало 515 раз. Разница стала еще больше, но со знаком минус, так как орлов теперь меньше: 485 — 515 = -30.

Где же закономерность?

  • 10 подбрасываний. 10:2=5. Абсолютные отклонения от 5: орлы 7-5=+2, решки 3-5=-2. Относительные отклонения от 5: орлы +2/5=+0.4, решки -2/5=-0.4.
  • 100 подбрасываний. 100:2=50. Абсолютные отклонения от 50: орлы 56-50=+6, решки 44-50=-6. Относительные отклонения от 50: орлы +6/50=+0.12, решки -6/50=-0.12.
  • 1000 подбрасываний. 1000:2=500. Абсолютные отклонения от 500: орлы 485-500=-15, решки 515-500=+15. Относительные отклонения от 500: орлы -15/500=-0.03, решки +15/500=+0.03.
  • 10 подбрасываний. Отклонение 40%.
  • 100 подбрасываний. Отклонение 12%.
  • 1000 подбрасываний. Отклонение 3%.

Вы можете провести свои испытания, и Вас получатся другие цифры. Но тенденция будет такая же.

Еще одна закономерность будет проявляться в том, что отклонений в пользу большего числа решек будет столько же, сколько отклонений в пользу большего числа орлов. Например, если проводить серию по 10 испытаний, то у меня получилось в первой серии, что орлов больше, чем решек. Но когда я провел 10 таких серий по 10 испытаний, то орлов было больше в семи сериях из 10 серий.

Затем я провел 100 серий по 10 бросаний в каждой. Теперь решек было больше в 55 серий, а орлов было больше в 45 сериях. Хотя по абсолютной величине не получается, чтобы в 50% всех серий было больше отклонений в пользу решек, а в 50% всех серий в пользу орлов, но, тем не менее, относительная разница стремиться к нулю при увеличении числа серий испытаний.

Третья закономерность, это симметрия в отклонениях в пользу решек и в пользу орлов. Если делать много серий испытаний с одинаковыми длинами этих серий, то примерно сколько раз было больше в серии орлов, столько же раз было больше и решек. И чем большее число серий сделать, тем относительная разница между большим выпадением орлов и большим выпадением решек будет стремиться к нулю.

Четвертая закономерность, это распределение отклонений от теоретического. Если провести большое число серий одинаковой длины с подбрасыванием монеты, то можно увидеть, что больше всего будет таких серий, где отклонений от 50% не будет. Поменьше будет таких серий, где отклонений от 50% будет всего на единицу. Еще меньше будет серий, где отклонений от 50% будет на 2. И так далее. Чем больше отклонение от теоретического выпадения 50% решек и 50% орлов, тем реже встречается серия подбрасываний с таким отклонением.

Относительная частота случайного события, это отношение количества случаев появления этого события M к общему числу проведенных испытаний N.

Эксперименты показывают, что при многократном повторении испытаний относительная частота M/N случайного события обладает некоторой устойчивостью. Эта устойчивость относительной частоты объясняется существованием объективных свойств и закономерностей случайного события.

Вероятность и случайная величина

Вероятность, это количественная мера наступления какого-нибудь случайного события.

Вероятность является первичным базовым понятием в математике, и ее нельзя определить через более простые термины и понятия.

Случайная величина, это такая величина, которая принимает те или иные значения с определенными вероятностями.

Вероятность может принимать значение от нуля до единицы (0⩽P⩽1). Ноль означает невозможное событие (P=0). Единица означает достоверное событие, которое обязательно случится (P=1).

Например, Вы держите в руке тяжелую гирю и выпускаете её из рук. С вероятностью P=1 гиря упадет вниз. С вероятностью P=0 гиря зависнет в воздухе как в невесомости.

Еще пример. Вы подбрасываете 6-гранный кубик с пронумерованными гранями. Два очка выпадет с вероятностью P=1/6, то есть примерно в каждом шестом испытании. Пять очков тоже выпадет с вероятностью P=1/6, то есть тоже в каждом шестом испытании.

А теперь более хитрый пример. Вы подбрасываете монету. Вероятность выпадения решки равна вероятности выпадения орла. И та и другая вероятность равна половине (P=1/2).

А может ли монета после подбрасывания встать вертикально на ребро? В прошлом примере мы считали, что это невозможное событие, то есть вероятность такого события P=0. Однако, теоретически такое случайное событие может произойти. Но вероятность такого случайного события очень-очень маленькая. Возможно, более вероятно, что Вам на голову когда-нибудь упадет метеорит, чем Вы увидите, как после подбрасывания, монета встала на своё ребро.

Пусть вероятность того, что монета встанет на своё ребро будет P=0.0000002. (Это на самом деле не так, это число взято только для примера.) Чему тогда равна вероятность выпадения орла?

Эта вероятность уже не будет равной P=0.5, так как сумма вероятности всех возможных событий не может быть равной чему-то больше единицы. В самом деле, если мы подбрасываем монету, то или выпадет решка или выпадет орел или она встанет на ребро. Ничего другого не случится. Значит, вероятность выпадения решки или орла или ребра будет равна единице (P=1). Достоверно произойдет одно из трех событий.

Поэтому, в силу симметрии между решкой и орлом, получаем, что вероятность выпадения орла будет P=0.4999999. И такая же будет вероятность выпадения решки.

0.4999999 + 0.4999999 + 0.0000002 = 1.

А если монета не может становиться на ребро, то

Для 6-гранного кубика вероятность выпадения каждой из его граней P=1/6. Значит, вероятность того, что выпадет хотя бы одна грань (а это достоверное событие, которое обязательно произойдет) будет

1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1.

Дискретные и непрерывные случайные величины

Случайные величины могут быть дискретными и непрерывными.

Дискретная случайная величина, это такая величина, все возможные значения которой образуют конечную или бесконечную последовательность чисел (x1,x2. xn) и принятие ей каждого из указанных значений есть случайное событие, характеризующееся соответствующей вероятностью (P1,P2. Pn).

При этом выполняется условие нормировки на единицу, то есть сумма всех этих вероятностей должна быть равна единице.

Непрерывная случайная величина, это такая величина, все возможные значения которой целиком заполняют некоторый промежуток и попадание в любой интервал (x1,x2) есть случайное событие, характеризующееся соответствующей вероятностью P1⩽x⩽x2>.

При этом также выполняется условие нормировки на единицу, то есть вероятность достоверного события равна единице.

Генеральная совокупность, это все возможные значения, которые может принимать случайная величина.

Сложение и умножение вероятностей

Для вычисления вероятности сложного события используют вероятности более простых событий и математические действия над ними.

Когда вероятности надо складывать, а когда их надо умножать?

Правило очень простое. Если при формулировке задачи можно использовать союз «ИЛИ«, значит, вероятности надо складывать. Если при формулировке задачи можно использовать союз «И«, значит, вероятности надо умножать. Посмотрим примеры с подбрасыванием 6-гранного кубика.

Какова вероятность того, что, при подбрасывании кубика, выпадет двойка или пятерка?

Используется союз «или». Значит, нужно сложить вероятность выпадения двойки с вероятностью выпадения пятерки.

P = 1/6 +1/6 = 1/3. То есть примерно треть всех подбрасываний кубиков будет приводить к тому, что выпадет или 2 или 5.

Какова вероятность того, что, при подбрасывании двух кубиков, на одном выпадет двойка, а на другом пятерка?

Можно эту задачу переформулировать через союз «и». Какова вероятность того, что, при подбрасывании двух кубиков, на одном выпадет двойка и на другом выпадет пятерка? (Союз «или» совершенно неуместен.)

Значит, нужно перемножить вероятность выпадения двойки и вероятность выпадения пятерки.

P = 1/6 x 1/6 = 1/36. То есть примерно в каждом 36-м случае всех подбрасываний кубиков будет одновременно выскакивать 2 и 5.

Аналогичная задача с таким же решением. Какова вероятность того, что, при двух подбрасываниях одного и того же кубика, один раз выпадет двойка, а второй раз выпадет пятерка? Этот вопрос снова можно переформулировать через союз «и» не меняя сути вопроса. Например, так. Какова вероятность того, что, при двух подбрасываниях одного и того же кубика, выпадет двойка и выпадет пятерка?

Теперь более сложный пример. Какова вероятность того, что, при подбрасывании двух кубиков, сумма очков будет равна четырем?

Сумма очков может быть равной 4, если или выпадает на каждом кубике по 2 очка, или если на одном кубике выпадает 1 очко, а на другом 3 очка. Переформулируем этот вопрос через наши союзы. Какова вероятность того, что, при одновременном подбрасывании двух кубиков, на одном выпадет 2 и на другом выпадет 2 или на одном выпадет 1 и на другом выпадет 3?

Два союза «и» означает, что в формуле будет два умножения. Один союз «или» означает, что в формуле будет одно сложение. Вероятности складываются и умножаются как обычные числа. То есть, если нет скобок, то сначала делается умножение, а потом сложение. Получаем

P = 1/6 x 1/6 + 1/6 x 1/6 = 1/18. То есть примерно в каждом 18-м случае сумма очков на двух кубиках будет равна 4.

Вероятность противоположного события

Противоположное событие, это дополнительное событие. То есть такие события, что появление одного или другого является достоверным событием. Другими словами, сумма противоположных событий равна единице.

Значит, чтобы найти вероятность противоположного события к данному событию, нужно от единицы отнять вероятность данного события.

Например, пусть монета не может становиться на ребро. Значит, при подкидывании монеты может выпасть или орел или решка. Выпадение орла и выпадение решки, это два противоположных события. Если вероятность выпадения орла P=0.5, то вероятность выпадения решки будет 1 — P = 1/2.

А если монета немножко кривая и вероятность выпадения орла P=0.55, то вероятность выпадения решки будет 1 — P = 0.44.

Если подбрасываем 6-гранный кубик, то событие выпадения шестерки будет противоположным событию невыпадения шестерки. А что это за событие такое невыпадение шестерки? Это событие выпадения всего остального, кроме шестерки. То есть это событие выпадения 1 или 2 или 3 или 4 или 5.

Стоят союзы «или». Значит, нужно сложить вероятности выпадения 1, 2, 3, 4, 5 очков.

P = 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 5/6. Значит, вероятность выпадения шестерки будет 1 — P = 1 — 5/6 = 1/6, как и должно быть.

Разность вероятностей

Бывает так, что какое-нибудь событие может быть подмножеством другого более широкого события. Это записывается так A⊂B. Здесь событие A является подмножеством события B.

Тогда вероятность наступления события B при ненаступлении событий A будет

Здесь P — вероятность события B, а P — вероятность события A.

Например, при подкидывании кубика событие выпадения шестерки является подмножеством события выпадения четного числа очков. Значит, чтобы найти вероятность выпадения любого четного числа очков, кроме шестерки, надо от вероятности выпадения четного числа очков отнять вероятность выпадения шестерки. Это будет

P = P — P = 1/2 — 1/6 = 1/3. (Половина всех номеров четные, поэтому P=1/2.)

Действительно, вероятность выпадения 2 или 4 будет равна 1/6 + 1/6 = 1/3.

Сложение пересекающихся событий

Если есть событие A и событие B, то в общем случае вероятность наступления события A или события B определяется формулой

Здесь P — вероятность одновременного события A и B.

Например, пусть событие A, это выпадение четного числа очков при подбрасывания кубика, а B, это выпадение маленького числа очков, то есть 1, 2 или 3 очка. Вероятность выпадения четного числа P=1/2. Вероятность выпадения маленького числа очков P=1/2. Нужно найти вероятность выпадения или четного числа очков или маленького числа очков.

Просто сложить эти две вероятности нельзя, так как эти два события совместимы. Если выпадет двойка, то значит, что одновременно выпало и четное число очков, и маленькое число очков. Поэтому при простом сложении вероятностей будет дважды учтена вероятность выпадения двойки. Значит, нужно от простой суммы вероятностей отнять вероятность одновременного события. Вероятность выпадения двойки P=1/6. Итак

Как подсчитать шанс выпадения монеты?

Тут нужно различать два случая (события):
1) вероятность выпадения решки при следующем броске монеты
2) вероятность того, что при четырёх бросках все четыре раза выпадет решка.

Это разные события с разной вероятностью. В 1 случае поведение монеты не зависит от её предыстории (считаем, что при броске монета не деформируется и внешние факторы всегда примерно одинаковые). Вероятность выпадения орла и решки равная — 50%
А вот второе событие действительно маловероятное (1/16). Но если мы его разбиваем на 2 части: три броска подряд с выпадением решки + 1 бросок, то видим, что малая вероятность этого события обеспечивается тем, что у нас УЖЕ произошло другое маловероятное событие — выпадение решки 3 раза подряд.

Собственно формула вычисления вероятности последовательных событий это и показывает:

1/16 = 1/2 * 1/2 *1/2 *1/2. Это произведение мало не потому, что мал последний множитель, а потому, что мало произведение трёх первых (мала вероятность трёхкратного выпадения решки). А последний бросок лишь делит эту вероятность ещё пополам.

razuznaika

Продолжаю тему, начатую здесь — http://razuznaika.livejournal.com/25064.html
Вообще, спорить о том, работает теория вероятности или не работает, может ли выпасть 20 раз подряд одна и та же сторона монетки или не может — дело неблагодарное.
Сразу приходит на ум история:

. Спорили два схоласта, как обычно напористо, во всеоружии ученых средств: есть ли у крота глаза? Их диспут долго слушал садовник, наконкц не выдержал, подошел и предложил: «Зачем же спорить, господа? Вы лишь прикажите, и я мигом доставлю вам крота. Вы и увидите, есть ли у него глаза». На эту инициативу схоласты ответили единодушным отказом. «Пошел вон отсюда! Нам не нужен настоящий крот! Мы спорим в принципе!».

И все же, сегодня хочется именно ПОСПОРИТЬ о том — «есть у крота глаза или же их нет?«. 🙂

Но прежде чем спорить, ответьте СНАЧАЛА на простой вопрос:

Вы подбрасываете монетку. Пять раз подряд она выпала орлом. Какова вероятность того, что и в шестой раз выпадет орел?

. и только ПОСЛЕ ЭТОГО — заглядывайте под кат! 😉

Так вот, обычно, вместо спора, я предлагаю оппоненту проверить «теорию вероятности» НА ПРАКТИКЕ, используя обчную монетку.
Просто возьмите обычную монету и начните ее поддбрасывать, тщательно записывая в тетрадь результаты своего эксперимента.

Только подкидывайте монетку серьезно и честно (вы же это для себя будете делать!) — досчтаточно высоко и что б по-настоящему хаотично вертелась. Поподкидывайте монетку и посмотрите: случится ли такое чудо, чтобы монетка Ваша 20 раз ПОДРЯД(. ) упала одной и той же сторной. 😉

Боюсь, кидать монетку вам придется до старости (причем совсем не в том смысле, как в фильме Тома Стоппарда «Розенкранц и Гильденстерн мертвы»). 🙂

А математика — да, математика на нашей стороне!
Ведь если случайное событие повторилось несколько раз, то с каждым разом вероятность его повторения обязана падать, просто потому, что решка один раз — вероятность 0.5, решка дважды подряд — 0.5*0.5=0.25, трижды — 0.5^3=0.125, десять раз подряд — 0.510=0.00098, а одиннадцать повторений подряд могут выпасть только с вероятностью 0.00049, и т.д.

Кто не согласен — представьте, что вы пришли в казино и у вас есть две разных игры:

1. Один раз подкинуть монетку и угадать орел или решка. Если 1 раз выпало то, что Вы загадали, получаете выигрыш.
2. Нужно загадать «орел» или «решка» и 20 раз подкинуть монетку. Если 20 раз ПОДРЯД выпадет то, что Вы загадали, то выигрыш Ваш.

— Так в какую игру Вы будете играть?
— Конечно же, в первую!
— А почему?
— Да потому, что в первой игре Ваш шанс выиграть = 50%, тогда как во второй он равен лишь 0.5^20.

И пожалуйста, не надо заводить аццкую песнь о том, что рулетка/монетка не имеет памяти и что, де — вероятность выпадения любого значения при броске одинакова, при любом количестве бросков! Тех, кто не понимает разницы между одиночным событием и цепью событий — сразу же отправляю проверять «теорию вероятности» НА ПРАКТИКЕ , используя обчную монетку. 😉

Всем, зафрендившим меня, обещаю немедленный ответный френдинг!

Понравилась статья? Поделить с друзьями:
  • Как найти импульс частицы формула
  • Как найти вход в метро remnant
  • Как найти друзей по телефону в контакте
  • Как найти проститутки в питере
  • Как найти боковую грань правильной шестиугольной пирамиды