Как найти вершину d если известны abc

Вершина треугольника – определение

В геометрии нередко рассматривают такое понятие, как «вершина треугольника». Это точка пересечения двух сторон данной фигуры. Практически в каждой задаче встречается это понятие, поэтому имеет смысл рассмотреть его более подробно.

Определение вершины треугольника

В треугольнике есть три точки пересечения сторон, образующие три угла. Их называют вершинами, а стороны, на которые они опираются – сторонами треугольника.

Рис. 1. Вершина в треугольнике.

Вершины в треугольниках обозначают большими латинскими буквами. Поэтому чаще всего в математике стороны обозначают двумя заглавными латинскими буквами, по названию вершин, которые входят в стороны. Например стороной АВ называют сторону треугольника, соединяющую вершины А и В.

Рис. 2. Обозначение вершин в треугольнике.

Характеристики понятия

Если взять произвольно ориентированный в плоскости треугольник, то на практике очень удобно выразить его геометрические характеристики через координаты вершин этой фигуры. Так, вершину А треугольника можно выразить точкой с определенными числовыми параметрами А(х; y).

Зная координаты вершин треугольника можно найти точки пересечения медиан, длину высоты, опущенную на одну из сторон фигуры, и площадь треугольника.

Для этого используются свойства векторов, изображаемых в системе декартовой системе координат, ведь длина стороны треугольника определятся через длину вектора с точками, в которых находятся соответствующие вершины этой фигуры.

Использование вершины треугольника

При любой вершине треугольника можно найти угол, который будет смежным внутреннему углу рассматриваемой фигуры. Для этого придется продлить одну из сторон треугольника. Поскольку сторон при каждой вершин две, то и внешних углов при каждой вершине два. Внешний угол равен сумме двух внутренних углов треугольника, несмежных с ним.

Рис. 3. Свойство внешнего угла треугольника.

Если построить при одной вершине два внешних угла, то они будут равны, как вертикальные.

Что мы узнали?

Одним из важных понятий геометрии при рассмотрении различных типов треугольников является вершина. Это точка, где пересекаются две стороны угла данной геометрической фигуры. Ее обозначают одной из больших букв латинского алфавита. Вершину треугольника можно выразить через координаты x и y, это помогает определять длину стороны треугольника как длину вектора.

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Свойства треугольника

1.Свойства углов и сторон треугольника.

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c
sin α sin β sin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO = BO = CO = 2
OD OE OF 1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

Как найти вершины тупоугольного треугольника

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Расположение высот у треугольников различных типов

Фигура Рисунок Описание
Остроугольный треугольник Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Остроугольный треугольник
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Расположение ортоцентров у треугольников различных типов

Фигура Рисунок Описание
Остроугольный треугольник

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Прямоугольный треугольник

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Тогда справедливы равенства

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

что и требовалось доказать.

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

Рассмотрим, как построить высоту треугольника с помощью чертежного угольника.

Чтобы построить высоту остроугольного треугольника, надо приложить угольник так, чтобы одна сторона прямого угла проходила через вершину треугольника, а вторая — через противоположную этой вершине сторону.

AK — высота треугольника ABC, проведённая из вершины A к противолежащей стороне BC.

BF⊥AC.

BF — высота треугольника ABC, опущенная из вершины B на сторону AC.

CH — высота треугольника ABC, проведённая из вершины C к стороне AB.

Все высоты треугольника пересекаются в одной точке.

В остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Если требуется построить все высоты треугольника, достаточно построить две, а третью провести из вершины треугольника через точку пересечения двух высот.

В прямоугольном треугольнике две стороны (катеты) являются также его высотами. Остаётся построить третью высоту.

Угольник прикладываем прямым углом так, чтобы одна сторона проходила через гипотенузу, а другая — через прямой угол.

CD — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла C к гипотенузе AB.

Точка пересечения высот прямоугольного треугольника — вершина прямого угла.

Высоты AC, BC и CD прямоугольного треугольника ABC пересекаются в точке C, ∠C=90°.

В тупоугольном треугольнике проще всего построить высоту, выходящую из вершины тупого угла.

Прикладываем угольник прямым углом так, чтобы одна его сторона проходила через наибольшую сторону треугольника, а другая — через тупой угол.

AP — высота тупоугольного треугольника ABC, проведённая из вершины тупого угла A к стороне BC.

Только высота, проведённая из вершины тупого угла, лежит внутри треугольника. Две другие высоты находятся вне него.

Высоты тупоугольного треугольника, выходящие из вершин острых углов, проведены не к противолежащим сторонам, а к прямым, содержащим эти стороны.

Чтобы построить высоту, продлеваем противолежащую сторону и прикладываем угольник прямым углом таким образом, чтобы одна сторона угольника проходила через построенную прямую, а другая — через вершину острого угла.

BM — высота тупоугольного треугольника ABC, проведённая из вершины острого угла B к прямой, содержащей противолежащую сторону AC.

CN⊥AB,

CN — высота тупоугольного треугольника ABC, проведённая из вершины острого угла С к прямой, содержащей противолежащую сторону AB.

Точка пересечения высот тупоугольного треугольника лежит вне него, за тупым углом, напротив наибольшей стороны.

Чтобы построить точку пересечения высот треугольника ABC, продлим прямые BM, CN и AP до пересечения.

Мы рассмотрели, как строить высоты треугольника с помощью угольника.

Построение высот с помощью циркуля и линейки будем рассматривать в теме «Задачи на построение».

Определения

Тупоугольным треугольником будет называться любой треугольник, содержащий тупой угол. Тупоугольный треугольник может быть равнобедренным, но при этом не может быть равносторонним или прямоугольным. Собственно на этом свойства этой фигуры заканчиваются. В остальном это обычный треугольник и подход к решению таких фигур ничем не отличается.

Рис. 1. Тупоугольный треугольник.

В треугольнике сумма углов равна 180 градусам, поэтому только один угол треугольника может быть тупым, два других при этом всегда острые. Площадь тупоугольного треугольника находится так же, как площадь произвольного треугольника.

Рис. 2. Высота в тупоугольном треугольнике.

Только в тупоугольном треугольнике высота может лежать за пределами треугольника.

Рассмотрим несколько интересных задач на нахождение данных в тупоугольном треугольнике.

Пример решения задачи

Рис. 3. Рисунок к задаче.

Для решения любой задачи можно найти несколько способов. В данной ситуации можно пойти через площадь треугольников, достроить тупоугольный треугольник до прямоугольного или воспользоваться теоремой косинусов. Каждый из способов дает представление о том, как можно решать задачи с тупоугольным треугольником. Воспользуемся каждым из них.

Ответ в каждом случае должен быть одинаков. Но если округлять неточные ответы, то в одной задаче при одинаковых решениях можно получить разные величины. Будьте внимательны, результат не должен отличаться больше, чем на 1.

  • Через площадь треугольников. Площадь можно найти как половину произведения основания на высоту, проведенную к этому основанию. А можно как половину произведения двух сторон на синус угла между ними. Нам известен косинус угла, а через косинус всегда можно найти синус.

Теперь запишем две формулы площади, выразим через них высоту и найдем ее значение.

  • Второй способ это достроить тупоугольный треугольник до прямоугольного. Если присмотреться, то можно заметить на чертеже два прямоугольных треугольника – это треугольники АМС и АМВ. В треугольнике АМВ можно найти косинус угла АВМ с помощью формул-приведений. Затем через значение косинуса найти значение синуса того же угла. А синус это отношение противолежащего катета к гипотенузе. Противолежащей катет – это искомая нами высота, а гипотенуза это сторона АВ прямоугольного треугольника.

Тогда синус, как и в первом способе, выразим через основное тригонометрическое тождество.

  • Третий метод это теорема синусов и косинусов. Для того, чтобы воспользоваться этим способом, через теорему косинусов найдем значение АС, потом через теорему синусов найдем синус угла АСВ и определим АМ из синуса угла АСВ большого прямоугольного треугольника АМС.

$$sqrt =sqrt =sqrt =3sqrt $$ – по теореме косинусов.

Значение синуса угла АВС определим по основному тригонометрическому тождеству.

Выразим искомый синус угла АСВ.

Выразим из треугольника АМС и найденного значения синуса сторону АМ.

Ответы всех трех способов совпали, а значит задача решена верно.

Что мы узнали?

Мы поговорили об определении тупоугольного треугольника. Узнали и посмотрели на практике, какие методы решения тупоугольных треугольников существуют, а так же выяснили ,какие формулы и теоремы необходимо знать для успешного решения тупоугольного треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 134.

Не понравилось? — Напиши в комментариях, чего не хватает.

Содержание

  1. Определения
  2. Пример решения задачи
  3. Что мы узнали?

Бонус

    Тест по теме
  • Площадь прямоугольного треугольника
  • Высота треугольника
  • Площадь правильного треугольника
  • Площадь прямого треугольника
  • Площадь равностороннего треугольника
  • Площадь равнобедренного треугольника
  • Медиана треугольника
  • Правильный треугольник Тупоугольный треугольник
  • Остроугольный треугольник
  • Свойства прямоугольного треугольника
  • Стороны прямоугольного треугольника
  • Средняя линия прямоугольного треугольника
  • Признаки подобия прямоугольных треугольников
  • Высота равностороннего треугольника
  • Медиана равностороннего треугольника
  • Неравенство треугольника
  • Длина медианы правильного треугольника
  • Равнобедренный тупоугольный треугольник
  • Средняя линия прямоугольного треугольника
  • Длина средней линии треугольника

По многочисленным просьбам теперь можно: сохранять все свои результаты, получать баллы и участвовать в общем рейтинге.

  1. 1. Михаил Тяпин 214
  2. 2. Наталия Дробот 198
  3. 3. Мария Кауфман 192
  4. 4. Игорь Проскуренко 157
  5. 5. Соня Зверева 153
  6. 6. Василиса Варавкина 119
  7. 7. Иоанн Стефановский 107
  8. 8. Софья Холена 94
  9. 9. Оля Проскурина 85
  10. 10. Татьяна Бежина 83
  1. 1. Мария Николаевна 13,500
  2. 2. Лариса Самодурова 12,695
  3. 3. Liza 12,310
  4. 4. Кристина Волосочева 11,445
  5. 5. TorkMen 11,441
  6. 6. Ekaterina 11,176
  7. 7. Влад Лубенков 11,100
  8. 8. Лиса 11,070
  9. 9. Юлия Бронникова 11,060
  10. 10. Вячеслав 10,840

Самые активные участники недели:

  • 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
  • 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
  • 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.

Три счастливчика, которые прошли хотя бы 1 тест:

  • 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
  • 2. Николай З — подарочная карта книжного магазина на 500 рублей.
  • 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.

Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.

источники:

http://binary2hex.ru/triangle.html

http://hd01.ru/info/kak-najti-vershiny-tupougolnogo-treugolnika/

Как найти вершину треугольника?

Как найти вершину треугольника?

Для того чтобы найти координаты вершины равностороннего треугольника, если известны координаты двух других его вершин, нужно воспользоваться одним из предложенных способов.

1 способ (графический)

Треугольник

  1. В системе координат отмечаем две заданные вершины.
  2. Ставим ножку циркуля в одну из построенных точек.
  3. Проводим окружность с радиусом, равным расстоянию между отмеченными вершинами.
  4. Таким же образом чертим вторую окружность с тем же радиусом, но из второй отмеченной точки.
  5. Точки пересечения проведённых окружностей определяют вершины треугольников (их получится два).
  6. Определяем координаты полученных точек, исходя из полученного чертежа.

Данный способ позволяет точно построить третью вершину. Однако определение координат является приблизительным. Метод хорошо использовать для иллюстрации.

2 способ (аналитический)

Решение задачи основано на применении формулы нахождения расстояния между двумя точками: d(A(x1;y1);B(x2;y2))=√((x2-x1)^2+(y2-y1)^2)

  1. Пусть имеются вершины A(x1;y1) и B(x2;y2) треугольника АВС. Обозначим координаты третьей вершины x и y (то есть, С(x;y))
  2. Составляем соотношения
    AC=√((x-x1)^2+(y-y1)^2)
    BC=√((x-x2)^2+(y-y2)^2)
    AB=√((x2-x1)^2+(y2-y1)^2)
  3. Учитывая, что треугольник равносторонний, составляем систему уравнений:
    AC=BC
    AC=AB
    Или система уравнений:
    √((x-x1)^2+(y-y1)^2)= √((x-x2)^2+(y-y2)^2)
    √((x-x1)^2+(y-y1)^2)= √((x2-x1)^2+(y2-y1)^2)
  4. Методом подстановки решаем полученную систему.

Теперь вы знаете, как найти вершину треугольника.

Внимание! Оба случая применимы только для равностороннего треугольника.
Для равнобедренного или любого другого произвольного треугольника для нахождения координат третьей вершины требуются дополнительные данные (например, значение некоторых отрезков или углов).

Уравнение описанной окружности

Как составить уравнение описанной около треугольника окружности по координатам его вершин? Как найти координаты центра описанной окружности? Как найти радиус описанной окружности, зная координаты вершин треугольника?

Решение всех этих задач сводится к одной — написать уравнение окружности, проходящей через три данные точки. Для этого достаточно подставить координаты точек (вершин треугольника) в уравнение окружности. Получим систему из трёх уравнений с тремя неизвестными: координатами центра и радиусом окружности.

Составить уравнение описанной окружности для треугольника с вершинами в точках A(2;1), B(6;3), C(9;2).

Подставив координаты вершин треугольника в уравнение окружности

[ (x - a)^2 + (y - b)^2 = R^2 , ]

получим систему уравнений

[ left{ begin{array}{l} (2 - a)^2 + (1 - b)^2 = R^2 , \ (6 - a)^2 + (3 - b)^2 = R^2 , \ (9 - a)^2 + (2 - b)^2 = R^2 . \ end{array} right. ]

Вычтем из первого уравнения системы второе:

[ (2 - a)^2 + (1 - b)^2 - (6 - a)^2 - (3 - b)^2 = 0 ]

[ 4 - 4a + a^2 + 1 - 2b + b^2 - 36 + 12a - a^2 - 9 + 6b - b^2 = 0 ]

[ 8a + 4b - 40 = 0 ]

[ b = - 2a + 10. ]

Теперь из второго уравнения системы вычтем третье:

[ (6 - a)^2 + (3 - b)^2 - (9 - a)^2 - (2 - b)^2 = 0 ]

[ 36 - 12a + a^2 + 9 - 6b + b^2 - 81 + 18a - a^2 - 4 + 4b - b^2 = 0 ]

[ b = 3a - 20. ]

Приравняем правые части равенств b=-2a+10 и b=3a-20:

[ - 2a + 10 = 3a - 20 ]

[ - 5a = - 30 ]

[ a = 6, ]

[ b = 3 cdot 6 - 20 = - 2. ]

Подставим в первое уравнение системы a=6 и b=-2:

[ (2 - 6)^2 + (1 - ( - 2))^2 = R^2 ]

[ R^2 = 16 + 9 = 25, ]

[ R = 5. ]

a и b — координаты центра окружности, R — её радиус. Таким образом, точка (6;-2) — центр описанной около треугольника ABC окружности, радиус R=5, а уравнение описанной окружности

[ (x - 6)^2 + (y + 2)^2 = 25. ]

Для решения аналогичной задачи для четырёхугольника либо многоугольника достаточно знать координаты трёх его вершин.

Прямая на плоскости

Алгоритм исследования построения графика функции

Построение графика функции методом дифференциального исчисления

Экстремум функции двух переменных

Пример . В задачах даны координаты точек A , B , C . Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC .
Решение.
1) Координаты векторов в системе орт. Координаты векторов находим по формуле:
X=xj-xi; Y=yj-yi
здесь X , Y координаты вектора; xi , yi — координаты точки Аi ; xj , yj — координаты точки Аj
Например, для вектора AB: X=x2-x1=12-7=5 ; Y=y2-y1=-1-(-4)=3
AB(5;3), AC(3;5), BC(-2;2)
2) Длина сторон треугольника. Длина вектора a(X;Y) выражается через его координаты формулой:




3) Угол между прямыми. Угол между векторами a1(X1;Y1) , a2(X2;Y2) можно найти по формуле:

где a1a2=X1X2+Y1Y2
Найдем угол между сторонами AB и AC

γ = arccos(0.88) = 28.07 0
8) Уравнение прямой. Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2) , представляется уравнениями:

Уравнение прямой AB . Каноническое уравнение прямой:
или
y= 3 /5x- 41 /5 или 5y-3x+41=0

Все ответы



0 Голосов

Вячеслав Морг
Posted Октябрь 18, 2016 by Вячеслав Моргун

Дано: параллелограмм ABCD и координаты вершин  A(-2;-1), B(3;0), C(1;-2)
Найти: координаты вершины D
Решение: Параллелограмм — это четырехугольник у которого противоположные стороны попарно параллельны (лежат на параллельных прямых).

Отсюда получаем алгоритм решения задачи
1. Находим уравнения двух сторон по известным координатам вершин.
2. Находим уравнения параллельных сторон по известной координате одой из вершин и воспользовавшись условием параллельности сторон.
3. Находим координаты точки пересечения, полученных сторон. 

Алгоритм решения:

1. Находим уравнения сторон AB и BC.
Из условия задачи известны координаты вершин A(-2;-1), B(3;0), C(1;-2), поэтому уравнения сторон будем находить по формуле уравнения прямой, проходящей через две заданные точки $$ frac{x-x_1}{x_2-x_1} = frac{y-y_1}{y_2-y_1} quad (1)$$
Уравнение стороны AB при известных координатах вершин   A(-2;-1), B(3;0). Подставляем координаты в уравнение (1), получаем $$  frac{x+2}{3+2} = frac{y+1}{0+1} => y = frac{1}{5}x — frac{3}{5}$$
Уравнение стороны BC при известных координатах вершин   B(3;0), C(1;-2). Подставляем координаты в уравнение (1), получаем $$  frac{x-3}{1-3} = frac{y-0}{-2-0} => y = x — 3$$ 

2. Находим уравнения параллельных сторон параллелограмма.
Через вершины параллелограмма проходят прямые (AD||BC) и (CD||AB). О прямых AD и CD известно, что они проходят через вершины с известными координатами и параллельны известным прямым. Воспользуемся свойством параллельных прямых: угловые коэффициенты параллельных прямых равны (k_1=k_2).

Найдем уравнение прямой (AD)
Для этой прямой известна координата A(-2;-1) и угловой коэффициент, который равен угловому коэффициенту прямой (k_{BC} = 1 => k_{AD} = 1).
Воспользуемся уравнением прямой, проходящей через заданную точку в заданном направлении $$ y — y_0 = k(x-x_0) quad (2)$$ Подставляем данные A(-2;-1) и (k_{AD} = 1), получаем $$ y +1 = 1(x+2) => y = x+1 $$
Найдем уравнение прямой (CD). 
Для этой прямой известна координата C(1;-2) и угловой коэффициент, который равен угловому коэффициенту прямой (k_{AB} = frac{1}{5} => k_{CD} = frac{1}{5}).
Воспользуемся уравнением прямой, проходящей через заданную точку в заданном направлении $$ y — y_0 = k(x-x_0) $$ Подставляем данные C(1;-2) и (k_{CD} = frac{1}{5}), получаем $$ y +2 = frac{1}{5}(x-1) => y = frac{1}{5}x-frac{11}{5} $$ 

3. Находим координаты точки пересечения, полученных сторон(AD) и (CD).
Решим систему уравнений $$ begin{cases} y = x+ 1 \ y = frac{1}{5}x-frac{11}{5} end{cases} => $$$$ begin{cases} 0 = frac{4}{5}x+frac{16}{5} \ y = frac{1}{5}x-frac{11}{5} end{cases} =>  begin{cases} x = -4 \ y = -3 end{cases} $$  Подучили координаты точки (D(-4; -3) )

Ответ: координаты искомой вершины параллелограмма (D(-4; -3) ).
 

Пример 1:

Построить треугольник, вершины которого находятся в точках А (2; 4), В (-3; 2), С (-3; -4). Найти:

1) уравнения сторон треугольника АВС;

2) координаты точки пересечения медиан;

3) длину и уравнение высоты, опущенной из вершины А;

4) площадь треугольника.

Решение от преподавателя:

Уравнение, прямой проходящей через две точки
1) Уравнения сторон треугольника АВС

2) Координаты точки пересечения медиан

Медиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Координаты т. E как середины отрезка ВС.

Уравнение АЕ

Координаты т. К как середины отрезка АВ.

Уравнение СК

3) Длина и уравнение высоты, опущенной из вершины А

Расстояние от точки до прямой

Уравнение прямой, проходящей через точку перпендикулярно другой прямой

Уравнение AN

4) Площадь треугольника

Длина ВС

Пример 2:

Решение от преподавателя:


Пример 3:

По координатам вершин треугольника ABC найти:

  • периметр треугольника;
  • уравнения сторон AB и BC;
  • уравнение высоты AD; угол ABC;
  • площадь треугольника.

Сделать чертеж.

А(1; 2); В (–1; 2); С(3; 0).

Решение от преподавателя:



Пример 4:

Даны координаты вершин треугольникаА, В, С.

Требуется найти:

1) уравнение и длину стороны ВС;

2) уравнение и длину высоты, проведённой из вершиныА;

3) уравнение медианы, проведённой из вершиныА;

4) площадь треугольника.

Сделать чертёж.

А(4;-3), B(-2;-1), C(3;-2).

Решение от преподавателя:

Пример 5:

Решение от преподавателя:

1)

2)

3) Находим координаты точки М – середины стороны ВС:

       

Определяем длину медианы АМ:

4) Составляем уравнение медианы – прямой АМ:

5) Если ВН – высота, проведенная из вершины В к стороне АС, то, поскольку ВН проходит через точку В перпендикулярно вектору , то составляем уравнение высоты по формуле , где (a,b) – координаты вектора перпендикулярного искомой прямой,  – координаты точки, принадлежащей этой прямой. Находим координаты вектора АС:

и подставляем в формулу, ,

6) Длину высоты ВН находим как расстояние от точки В до прямой АС:

7) Площадь треугольника АВС:

8) Находим угол ВАС треугольника:

9) Составляем уравнение прямой, проходящей через т.А параллельно ВС:

Ответ:

Пример 6:

Решение от преподавателя:

  1. Уравнение прямой 
    Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b1%7d%7d%7bx_%7b2%7d%20-%20x_%7b1%7d%7d%20=%20frac%7by%20-%20y_%7b1%7d%7d%7by_%7b2%7d%20-%20y_%7b1%7d%7d
    Уравнение прямой AB 
    Каноническое уравнение прямой: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%2010%7d%7b-4%20-%2010%7d%20=%20frac%7by%20%2B%202%7d%7b4%20-%20(-2)%7d
    или 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%2010%7d%7b-14%7d%20=%20frac%7by%20%2B%202%7d%7b6%7d
    или 
    y = -3/7x + 16/7 или 7y + 3x — 16 = 0 
  2. Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 
    https://chart.googleapis.com/chart?cht=tx&chl=x_%7bm%7d%20=%20frac%7bx_%7bA%7d%20%2B%20x_%7bB%7d%7d%7b2%7d%20=%20frac%7b10%20%2B%20(-4)%7d%7b2%7d%20=%203
    https://chart.googleapis.com/chart?cht=tx&chl=y_%7bm%7d%20=%20frac%7by_%7bA%7d%20%2B%20y_%7bB%7d%7d%7b2%7d%20=%20frac%7b-2%20%2B%204%7d%7b2%7d%20=%201
    M(3;1) 
    Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-8;2) и М(3;1), поэтому: 
    Каноническое уравнение прямой: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%208%7d%7b3%20-%20(-8)%7d%20=%20frac%7by%20-%202%7d%7b1%20-%202%7d
    или 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%208%7d%7b11%7d%20=%20frac%7by%20-%202%7d%7b-1%7d
    или 
    y = -1/11x + 14/11 или 11y + x — 14 = 0 
  3. Уравнение высоты через вершину C 
    Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d
    Найдем уравнение высоты через вершину C 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-8)%7d%7b3%7d%20=%20frac%7by%20-%202%7d%7b7%7d
    y = 7/3x + 62/3 или 3y -7x — 62 = 0
  4. уравнение параллельной прямой AB, проходящей через точку (-8,2)
    Уравнение прямой AB: y = -3/7x + 16/7
    Уравнение KN параллельно AB находится по формуле:
    y — y0 = k(x — x0)
    Подставляя x0 = -8, k = -3/7, y0 = 2 получим:
    y-2 = -3/7(x-(-8))
    или
    y = -3/7x — 10/7 или 7y + 3x +10 = 0

Пример 7:

Даны координаты вершин треугольника: A(1,1), B(4,13), C(10,5). 

Решение от преподавателя:

4) Уравнение высоты через вершину C 
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 

Найдем уравнение высоты через вершину C 

y = -1/4x + 15/2 или 4y +x -30 = 0 
Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k1 прямой AB. 
Уравнение AB: y = 4x -3, т.е. k1 = 4 
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. 
Подставляя вместо k1 угловой коэффициент данной прямой, получим: 
4k = -1, откуда k = -1/4 
Так как перпендикуляр проходит через точку C(10,5) и имеет k = -1/4,то будем искать его уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 10, k = -1/4, y0 = 5 получим: 
y-5 = -1/4(x-10) 
или 
y = -1/4x + 15/2 или 4y + x — 30 = 0 
Найдем точку пересечения с прямой AB: 
Имеем систему из двух уравнений: 
y -4x +3 = 0 
4y + x — 30 = 0 
Из первого уравнения выражаем y и подставим во второе уравнение. 
Получаем: 
x = 42/17 
y = 117/17 
D(42/17;117/17
Длина высоты треугольника, проведенной из вершины C 
Расстояние d от точки M1(x1;y1) до прямой Ax + By + С = 0 равно абсолютному значению величины: 

Найдем расстояние между точкой C(10;5) и прямой AB (y -4x +3 = 0) 

5,7) Уравнение медианы треугольника 
Обозначим середину стороны BC буквой Е. Тогда координаты точки Е найдем по формулам деления отрезка пополам. 


Е(7;9) 
Уравнение медианы AЕ найдем, используя формулу для уравнения прямой, проходящей через две заданные точки A(1;1) иЕ(7;9), поэтому: 
Каноническое уравнение прямой: 

или 

или 
y = 4/3-1/3 или 3y -4x +1 = 0 
Найдем длину медианы. 
Расстояние между двумя точками выражается через координаты формулой: 

6) CDдиаметр окружности. Центр окружности точка О лежит в середине отрезка CD

Уравнение окружности  (x-x0)2+(y-y0)2=r2

(x-106/17)2+(y-101/17)2=256/17 

8) Уравнение прямой, параллельной CD, проходящей через точку A 

Так как прямая  проходит через точку А(1,1) и имеет k = -1/4, ( так как уравнение CD:y = -1/4x + 15/2 или 4y + x — 30 = 0 ),
то будем искать уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 1, k = -1/4, y0 = 1получим: 
y-1 = -1/4(x-1) 
или 
y = -1/4x + ¼+1 или 4y + x — 5 = 0 

Пример 8:

Решение от преподавателя:

Точка D – середина стороны АВ , ее координаты равны полусумме координат А и В. Получим D(1, -1)

Пример 9:

Даны координаты вершин треугольника АВС: А (3,-2), В (-5,-4),  С (-1,6).

Найдите: 1) уравнения сторон треугольника АВ, ВС и АС;

2) периметр (сумму длин) треугольника;

3) уравнение высоты СН;

4) расстояние d от точки С до прямой АВ;

5) сделайте чертеж.

Решение от преподавателя:

Решение.

1) уравнения сторон треугольника АВ, ВС и АС

Уравнение, прямой проходящей через две точки

2) периметр (сумму длин) треугольника

Расстояние между двумя точками

3) уравнение высоты СН

Уравнение прямой, проходящей через точку перпендикулярно другой прямой

4) расстояние d от точки С до прямой АВ

Расстояние от точки до прямой

Пример 10:

Даны вершины A (x1; y1), B (x2; y2), C (x3; y3)    треугольника.

Найти: 1) уравнение стороны AB;

2) уравнение медианы, проведенной из вершины C;

3) уравнение высоты, проведенной из вершины C ;

4) уравнение прямой, проходящей через вершину C параллельно стороне AB .

A (6; 0), B (2; − 6), C (−3; −9).

Решение от преподавателя:

Пример 11:

Решение от преподавателя:

Пример 12:

Дан треугольник  с координатами вершин найти:

а) длину стороны AB;

б) косинус угла ABC;

в) площадь треугольника ABC (через векторное произведение);

Решение от преподавателя:

Пример 13:

Решение от преподавателя:

Даны координаты вершин треугольника: A(6,0), B(2,-6), C(-3,-9). 
1) Уравнение прямой 
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 

Уравнение прямой AB 
Каноническое уравнение прямой: 

или 

или 
y = 3/2x -9 или 2y -3x +18 = 0 

2) Уравнение медианы треугольника 
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 


M(4;-3) 
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-3;-9) и М(4;-3), поэтому: 
Каноническое уравнение прямой: 

или 

или 
y = 6/7-45/7 или 7y -6x +45 = 0 
3) Уравнение высоты через вершину C 
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 

Найдем уравнение высоты через вершину C 

y = -2/3x -11 или 3y +2x + 33 = 0 
4) Уравнение прямой, параллельной AB, проходящей через С(-3,-9) 
Уравнение прямой AB: 2y -3x +18 = 0 
Уравнение СN параллельно AB находится по формуле: 

Или     2y -3x +9 = 0 

Пример 14:

Даны вершины треугольника А(8,1), В(0,3), С(-2,-3). Напишите уравнения стороны AB, медианы AD, высоты BE.

Решение от преподавателя:

Даны координаты вершин треугольника: A(8,1), B(0,3), C(-2,-3). 
1) Уравнение прямой (АВ)
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 

Уравнение прямой AB 


или 

или 
 4y + x — 12 = 0 

2)Уравнение медианы (АD)

Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 


M(-1;0) 
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(8;1) и М(-1;0), поэтому: 

или 

или 
y = 1/9x + 1/9 или 9y -x — 1 = 0 
3) Уравнение высоты через вершину B

Найдем уравнение высоты через вершину B 

Для этого найдем угловой коэффициент k1 прямой AC. 

Уравнение прямой AC 
уравнение прямой, проходящей через 2 точки: 

или 

или 
y = 2/5-11/5  т.е. k1 = 2/5 
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. 
Подставляя вместо k1 угловой коэффициент данной прямой, получим: 
2/5k = -1, откуда k = -5/2 
Так как перпендикуляр проходит через точку B(0,3) и имеет k = -5/2,то будем искать его уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 0, k = -5/2, y0 = 3 получим: 
y-3 = -5/2(x-0) 
или 
y = -5/2x + 3 или 2y + 5x — 6 = 0    — уравнение (ВЕ)

Пример 15:

Дан треугольник АВС. Найти:

а) величину угла А;

б) уравнение стороны АС;

в) уравнение высоты и медианы, опущенных из вершины В.

Сделать чертеж.

А(-1,2); В(1,3); С(3,-4).

Решение от преподавателя:

Пример 16:

Треугольник задан вершинами А(-6; -2);  В(4; 8); С(2; -8). Найти:

а) уравнение прямой BN, параллельной  стороне АС;

б) уравнение медианы CD;

в) уравнение высоты АЕ;

Решение от преподавателя:

а) уравнение прямой BN, параллельной  стороне АС;

Уравнение прямой AC:

Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%206%7d%7b2%20-%20(-6)%7d%20=%20frac%7by%20%2B%202%7d%7b-8%20-%20(-2)%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%206%7d%7b8%7d%20=%20frac%7by%20%2B%202%7d%7b-6%7d
или
y = -3/4-13/2 или 4y + 3x +26 = 0

Уравнение BN параллельно AC находится по формуле:
y — y0 = k(x — x0)
Подставляя x0 = 4, k = -3/4, y0 = 8 получим:
y-8 = -3/4(x-4)
или
y = -3/4x + 11 или 4y + 3x — 44 = 0

б) уравнение медианы CD;

Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
https://chart.googleapis.com/chart?cht=tx&chl=x_%7bm%7d%20=%20frac%7bx_%7bA%7d%20%2B%20x_%7bB%7d%7d%7b2%7d%20=%20frac%7b-6%20%2B%204%7d%7b2%7d%20=%20-1
https://chart.googleapis.com/chart?cht=tx&chl=y_%7bm%7d%20=%20frac%7by_%7bA%7d%20%2B%20y_%7bB%7d%7d%7b2%7d%20=%20frac%7b-2%20%2B%208%7d%7b2%7d%20=%203
M(-1;3)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(2;-8) и М(-1;3), поэтому:
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%202%7d%7b-1%20-%202%7d%20=%20frac%7by%20%2B%208%7d%7b3%20-%20(-8)%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%202%7d%7b-3%7d%20=%20frac%7by%20%2B%208%7d%7b11%7d
или
y = -11/3-2/3 или 3y + 11x +2 = 0

в) уравнение высоты АЕ;

Прямая, проходящая через точку Е0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d
Найдем уравнение высоты через вершину A
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-6)%7d%7b-8%7d%20=%20frac%7by%20-%20(-2)%7d%7b1%7d
y = -1/8x — 11/4 или 8y +x + 22 = 0

Пример 17:

A(1, 2), В(5, 8), С(11, 3).

Решение от преподавателя:


Пример 18:

В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1).

Составить уравнения стороны (AB), высоты (ВК)  и медианы (CМ).

Решение от преподавателя:

Уравнение прямой AB
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b-4%20-%20(-4)%7d%20=%20frac%7by%20-%204%7d%7b-3%20-%204%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b0%7d%20=%20frac%7by%20-%204%7d%7b-7%7d
или
x +4 = 0 или x = -4
Уравнение прямой AC
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b8%20-%20(-4)%7d%20=%20frac%7by%20-%204%7d%7b1%20-%204%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b12%7d%20=%20frac%7by%20-%204%7d%7b-3%7d
или
y = -1/4x + 3 или 4y + x — 12 = 0

Найдем уравнение высоты через вершину B
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-4)%7d%7b1%7d%20=%20frac%7by%20-%20(-3)%7d%7b4%7d
y = 4x + 13 или y -4x — 13 = 0

Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(8;1) и М(-4;1/2), поэтому:
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%208%7d%7b-4%20-%208%7d%20=%20frac%7by%20-%201%7d%7b%7b1%20over%202%7d%20-%201%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%208%7d%7b-12%7d%20=%20frac%7by%20-%201%7d%7b%7b-1%20over%202%7d%7d
или
y = 1/24x + 2/3 или 24y -x — 16 = 0

Пример 19:

Дан треугольник ABC с координатами вершин A(-5;-3; 2), B(-2;-6;-3) и C(-2; 2;-1).
Найти:
а) длину стороны АВ;
б) косинус угла ABC;
в) площадь треугольника АВС (через векторное произведение).

Решение от преподавателя:

1 / 1 / 0

Регистрация: 11.09.2020

Сообщений: 69

1

Найти координаты вершины треугольника

17.11.2020, 16:24. Показов 2102. Ответов 6


Студворк — интернет-сервис помощи студентам

Найти координаты вершины С прямоугольного треугольника ABC, если известно, что вершины А(2,3) и В(6,-1) являются концами его гипотенузы, а вершина С лежит на прямой x+y-3=0.

Пусть (x,y) — координаты точки С. Тогда длина отрезка АС равна Название: 1.jpg
Просмотров: 48

Размер: 24.4 Кб , а длина отрезка ВС равна Название: 2.jpg
Просмотров: 48

Размер: 3.5 Кб. По теореме Пифагора получаем

Найти координаты вершины треугольника

Что можно сделать дальше, чтобы найти координаты С?



0



Programming

Эксперт

94731 / 64177 / 26122

Регистрация: 12.04.2006

Сообщений: 116,782

17.11.2020, 16:24

Ответы с готовыми решениями:

Как найти координаты третьей вершины треугольника, зная все стороны и две вершины?
Добрый день, подскажите как найти координаты третьей вершины треугольника?
Известны координаты…

Найти координаты вершины треугольника
Условие:
Высота, проведённая из вершины A(4, 4) треугольника ABC, пересекает прямую BC в точке…

Найти координаты вершины треугольника
Даны две вершины треуголькика: А(2,4,-1) и В(-2,3,4). Найти третью вершину С, зная, что середина…

Найти координаты 3ей вершины треугольника
Дан треугольник, известны две вершины А(x1,y1) и С(x2,y2). Известны также длины сторон АВ и АС….

6

1459 / 927 / 252

Регистрация: 05.10.2014

Сообщений: 4,589

17.11.2020, 16:30

2

Лучший ответ Сообщение было отмечено ddddw как решение

Решение

Цитата
Сообщение от ddddw
Посмотреть сообщение

Что можно сделать дальше

Добавить к полученному уравнению уравнение прямой и решить систему



1



Диссидент

Эксперт C

27488 / 17175 / 3784

Регистрация: 24.12.2010

Сообщений: 38,690

17.11.2020, 16:49

3

ddddw, не исключено, что решений получится два. Или вообще нету.
А привести подобные члены, я думаю, сам догадаешься

Добавлено через 3 минуты
Есть и другой путь. Записать условие перпендикулярности векторов https://www.cyberforum.ru/cgi-bin/latex.cgi?vec{CA}, vec{CB}



1



1 / 1 / 0

Регистрация: 11.09.2020

Сообщений: 69

17.11.2020, 16:56

 [ТС]

4

Цитата
Сообщение от Байт
Посмотреть сообщение

Записать условие перпендикулярности векторов

А вот здесь можно поподробней? Как можно реализовать данный метод?



0



Диссидент

Эксперт C

27488 / 17175 / 3784

Регистрация: 24.12.2010

Сообщений: 38,690

17.11.2020, 17:04

5

Цитата
Сообщение от ddddw
Посмотреть сообщение

реализовать данный метод?

CA =(x-2, y-3)
CB = (x-6, y+1)
(x-2)(x-6) +(y-3)(y+1) = 0
Должно получиться то же уравнение
Ну и про прямую не забыть…



0



1767 / 971 / 180

Регистрация: 24.02.2013

Сообщений: 2,790

Записей в блоге: 12

17.11.2020, 17:52

6

Можно так.См.картинку.

Миниатюры

Найти координаты вершины треугольника
 



1



Диссидент

Эксперт C

27488 / 17175 / 3784

Регистрация: 24.12.2010

Сообщений: 38,690

17.11.2020, 18:48

7

Вот и уважаемый Nacuott предложил свою решение. Оно основывается на том факте, что отрезок AB является диаметром описанной окружности.
Но окружность-то во всех решениях будет одинаковой! Правда, путь к ее построенния различен. Лично мне больше нравится последний (от Nacuott)



1



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

17.11.2020, 18:48

7

Понравилась статья? Поделить с друзьями:
  • Как найти контакт с матерью
  • Как найти мольные проценты
  • Как найти что то хорошее в плохом
  • Как составить завещание подписи
  • Как найти площадь под графиком в физике