Как найти вершину параболы квадратичной функции формула

Графиком квадратичной функции является парабола.

Если дана квадратичная функция

y=ax2+bx+c¯,гдеa,b,c∈ℝиa≠0,

то абсциссу вершины параболы

(xo;yo)

 можно вычислить по формуле:

xo=−b2a

.

Ординату можно вычислить, подставив полученное значение

xo

в формулу данной функции:

yo=axo2+bxo+c

.

Пример:

найти координаты вершины параболы

y=−x2+4x−3

.

(a = -1); (b = 4); (c = -3).

xo=−b2a=−42⋅−1=−4−2=2

.

Полученное значение подставляем в данную формулу функции:

yo=axo2+bxo+c=−1⋅(2¯)2+4⋅2¯−3=−4+8−3=1

.

Вершина параболы — точка ((2;1)).

Как найти вершину параболы

Общие сведения

Парабола — кривая, состоящая из равноудаленных точек от заданной точки (вершина) и прямой. Последняя называется директрисой. График функции имеет ось симметрии, которая проходит по определенной траектории и зависит от функции кривой (рис. 1). Ее вершина находится в центре координат.

Как находить вершину параболы

Рисунок 1. График квадратичной функции с вершиной в начале координат.

Однако существуют и другие случаи прохождения кривой. Она может пересекать оси абсцисс или ординат. В некоторых случаях ее ветви направлены вниз. При вращении вокруг оси симметрии получается поверхность, которая используется в различных устройствах. По этому принципу изготовлены фары автомобиля, зеркала в телескопах и т. д. Кроме того, парабола — это квадратичная зависимость переменных друг от друга. Парабола имеет некоторые свойства:

Формула нахождения вершины параболы

  1. Парабола — кривая второго порядка.
  2. Ось симметрии перпендикулярна директрисе и проходит через фокус и вершины.
  3. Оптическое свойство отражения.
  4. Отрезок, который соединяет середину любой хорды параболы и точку пересечения касательных прямых, является перпендикуляром относительно директрисы.
  5. Подобность всех парабол.
  6. Траектория фокуса, которая катится по произвольной прямой — цепная молния.

Следует отметить, что оптическое свойство — это способность отражать свет от источника. Если пучок лучей, которые являются параллельными ее оси, отражаются в параболе, то они собираются в фокусе кривой. При нахождении источника света в фокусе происходит отражение параллельного пучка лучей относительно ее оси.

Уравнения квадратичной функции

Параболу можно описать несколькими способами. Каждый из них нужно применять в конкретных случаях для удобства вычислений. Существует три формы описания кривой:

  1. Каноническая.
  2. Квадратичная.
  3. Общая.

В первой форме она имеет следующий вид: y 2 = 2px. Если поменять местами оси декартовой системы, то получится следующий вид: x 2 = 2yp. Коэффициент p — фокальный параметр. Он соответствует расстоянию между фокусом и директрисой. Кроме того, его значение всегда больше нуля. Вершина лежит всегда между фокусом и директрисой кривой на расстоянии, равном p/2 (рис. 2).

Нахождения вершины параболы формула

Рисунок 2. Директриса и фокус.

Пусть уравнение директрисы (прямая, которая параллельна оси ОУ) имеет следующий вид: х + p/2 = 0. Координаты фокуса F — (р/2;0). Начало координат делит луч, проходящий из точки F и точки пересечения с директрисой на 2 равных отрезка. Величина FM рассчитывается таким образом: FM = [(x — p/2)^2 + y 2 ]^0.5. Отрезок (луч) из точки М до директрисы равен p/2 + x. Если приравнять оба выражения, то равенство имеет такой вид: p/2 + x = [(x — p/2)^2 + y 2 ]^0.5. При возведении в квадрат и приведении подобных слагаемых, получается искомое уравнение параболы (y 2 = 2px).

Парабола может задаваться квадратичной функцией. Она имеет такой вид: y = ax 2 + bx + c. Следует учитывать, что коэффициент «a» не должен быть равен 0. Если a=1, b = 0 и с = 0, функция принимает такой вид: y = ax 2 . В этом случае формула нахождения вершины параболы выглядит таким образом:

Формула нахождения вершины параболы

  1. Абсцисса вершины параболы: xa = -b / 2a.
  2. Координата «игрек» по оси ординат: yb = — D / 2a.

В последней формуле переменная D является дискриминантом квадратного уравнения искомой функции. Он вычисляется с помощью такого соотношения: D = b 2 — 4ac. При а>0 фокус лежит на оси, и находится над вершиной. Ось симметрии параллельна оси ординат. Кроме того, она проходит через вершину кривой. Расстояние до нее равно ¼ величины «а». Если а<0, то ось ее симметрии параллельна оси абсцисс. Расстояние до фокуса также равно ¼а. Уравнение y = a (x — xa)^2 + ya — функция, определяющая кривую II порядка, как параболу.

Поскольку искомую функцию можно назвать кривой второго порядка, то ее уравнение может быть записано в виде квадратного многочлена в декартовой системе координат. Вид его имеет такой вид: Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0. Дискриминант равен нулю (при старших членах).

В полярной системе координат с осями p и v уравнение квадратичной функции имеет такой вид: p (1 + cos (v)) = p. Расстояние от фокуса до директрисы обозначается фокальным коэффициентом p. Кроме того, p соответствует удвоенной длине отрезка, проведенного от фокуса до вершины.

Методы нахождения вершины

В математике есть три способа нахождения координат точки вершины кривой: по формуле, выделением полного квадрата и нахождением производной. Следует отметить, что первый способ не подойдет в том случае, когда функция отличается от вида y = ax 2 + bx + c. Первый способ — расчет по формуле вершины параболы квадратичной функции. Координата x0 вычисляется таким образом: x0 = -b / 2a. Для нахождения координаты y0 следует подставить в функцию найденное значение x0.

Когда функция представлена неполным квадратом, нужно прибавить или отнять одинаковое число к двум частям уравнения. Если воспользоваться этим методом, то можно вычислить сразу значения х и у. Алгоритм нахождения вершины для функции у = x 2 + 4x + 2 имеет такой вид:

Общие сведения о квадратичной функции

  1. Приравнять многочлен к нулю, и перенести свободный член в правую сторону с противоположным знаком: x 2 + 4x = -2.
  2. Дополнить до полного квадрата. Необходимо вычислить свободный член по такому соотношению: с = (b/2)^2 = (4/2)^2 = 4.
  3. Записать полный квадрат, отняв и прибавив свободный член: x 2 + 4x + 4 — 4 = -2.
  4. Выделить квадрат: (x 2 + 2x + 4) — 4 = -2.
  5. Перенести свободное число в правую сторону с противоположным знаком: (x 2 + 2x + 4) = 4 — 2.
  6. Уравнение принимает следующий вид: (x + 2)^2 = 2.
  7. Для того чтобы вычислить x0, нужно решить уравнение (x + 2)^2 = 0. Следовательно, x = -2.
  8. Ординату точки определить очень просто, поскольку ее значение соответствует числу (нужно брать с противоположным знаком), которое находится в правой части уравнения, т. е. у = -2.

При изображении графика вершину нужно сместить в точку (-2;2). Третий способ позволяет узнать координаты вершины с помощью определения производной. Находить ее следует от заданной функции. Для вычисления координат вершины нужно действовать по следующему алгоритму:

  1. Найти производную и приравнять ее к нулю: f'(x) = (ax 2 + bx + c)’ = 2ax + b.
  2. Выразить х: х = -b / (2a).
  3. Подставить в функцию для вычисления y.
  4. Записать координаты точки.

Однако эти все три метода относятся к ручному вычислению. Автоматизация действий осуществляется с помощью специализированного программного обеспечения. Для этой цели подойдет онлайн-калькулятор, поддерживающий функцию нахождения точек вершины квадратичной кривой. Программы рекомендуется применять только для проверки решения, поскольку очень важно знать методы нахождения этой точки.

Алгоритм построения

В различных задачах нужно выполнить построение графика функции. В некоторых случаях даются координаты вершины, а в других — их следует искать, используя какой-либо метод. Чтобы построить квадратичную функцию, нужно воспользоваться таким алгоритмом:

Примеры решения задач

  1. Если вершина не задана, то нужно найти ее любым из методов.
  2. Определить точки пересечения с осями декартовой системы координат.
  3. Построить таблицу зависимости ординаты от абсциссы. Для этой цели нужно выделить минимум 3 значения «х». Вершина должна находиться по центру таблицы.
  4. Выполнить построение, соединив точки.

Если необходим более точный график, то необходимо брать больше точек. Значения рассчитываются при подстановке значений «х» в функцию. Когда парабола задана функцией y = x 2 + c, нет смысла брать разные значения. Нужно использовать для построения искомой таблицы числа с противоположными знаками. Например, x1 = 2 и x2 = -2.

Специалисты-математики настоятельно рекомендуют не усложнять вычисления. Возможно, в школьных программах и рассматриваются различные случаи. Однако в высших учебных заведениях основной аспект изучения дисциплин с физико-математическим уклоном сводится к оптимизации процесса решения задачи.

Примеры решений

В математике существует определенная классификация заданий на простые и сложные типы. Все они считаются однотипными, но отличаются только объемами вычислений и необходимостью построения графиков. Для решения нужно воспользоваться рекомендуемыми алгоритмами, которые существенно оптимизируют вычисления.

«Корень» трудностей при расчете — отсутствие систематизации вычислений. Не все ими пользуются. В результате простая задача становится очень сложной, поскольку в ней присутствует много ненужных вычислений. Кроме того, как отмечалось выше, рекомендуется «набить руку» на ручных вычислениях, ведь не всегда можно будет воспользоваться программами.

Упрощенная задача

Простым примером задания является следующий: необходимо вычислить координаты вершины точки параболы y = x 2 + 3x — 18. Следует продемонстрировать решение тремя способами. Решение первым методом:

  1. Координата по оси абсцисс: х0 = -3 / (2 * 1) = -1,5.
  2. По ординате: (-1,5)^2 + 3 * (-1,5) — 18 — y= 0. Отсюда, y = -20,25.

Следовательно, вершина находится в точке (-1,5;20,25). Второй способ решения данной задачи имеет такой вид:

Как найти х вершину параболы

  1. Составить уравнение и перенести свободный член: x 2 + 3x = 18.
  2. Вычислить свободный член: с = (b/2)^2 = 2,25.
  3. Записать выражение: x 2 + 3x + 2,25 — 2,25 = 18.
  4. Выделить квадрат: (x 2 + 3x + 2,25) = 20,25.
  5. Определить координаты: (x + 1,5)^2 = 20,25.
  6. Искомая точка: (-1,5;20,25).

Для решения третьим методом следует найти производную: y’ = (x 2 + 3x — 18)’ = 2x + 3. Затем нужно приравнять ее к нулю: 2х + 3 = 0. Уравнение является простым, а его переменная легко находится: x = -3 / 2 = -1,5. После этого необходимо подставить абсциссу в функцию, приравняв ее к 0: y = 20,25.

Повышенная сложность

Задания повышенной сложности сводятся к вычислению нескольких значений. Кроме того, в некоторых случаях следует построить график параболы y = x 2 — 7x +10. Необходимо выполнить такие действия:

  1. Пересечение с осями.
  2. Вычислить экстремум (вершину) всеми методами.
  3. Выполнить графический эскиз (график).

Точек пересечения по ОУ нет. Они есть по оси абсцисс. Следует приравнять функцию к 0. Нахождение корней выполняется по теореме Виета: x1 = 2 и x2 = 5.

Для нахождения вершины необходимо воспользоваться тремя методами. При решении первым способом находится координата x0 = 7 / (2 * 1) = 3,5. Ордината определяется таким образом: y0 = (3,5)^2 — (7 * 3,5) + 10 = -2,25. Точка экстремума имеет координаты (3,5;-2,25). Находить вершину параболы необходимо по такому алгоритму:

  1. Записать уравнение, и выполнить перенос свободного члена: x 2 — 7x = -10.
  2. Найти свободный член: с = (7/2)^2 = 12,25.
  3. Составить уравнение: x 2 — 7x + 12,25 — 12,25 = -10.
  4. Выделить квадрат: (x — 3,5)^2 = 2,25.
  5. Экстремум: (3,5;-2,25).

Для следующего метода нужно найти производную: y’ = (x 2 — 7x +10)’ = 2x — 7. Далее нужно приравнять y’ к нулю: 2x — 7 = 0. Значение по оси абсцисс равно х0 = 3,5, а y0 = -2,25. Далее нужно заполнить таблицу зависимостей ординаты от переменной.

y 4 0 -2 -2,25 -2 0 4
x 1 2 3 3,5 4 5 6

Таблица 1. Зависимость y от x.

После заполнения таблицы следует построить график искомой функции (рис. 3). Таблица состоит из следующих элементов: вершины, точек пересечения с осью абсцисс и 4 произвольных значений.

Как вычислить вершину параболы

Рисунок 3. График функции.

Математики рекомендуют использовать для построения графика полученные значения при расчетах, поскольку подстановка и вычисление произвольных х существенно снижает скорость вычислений.

Таким образом, нахождение координат вершины параболы является довольно простой задачей, поскольку существует несколько методов. Из них можно выбрать оптимальный, который подходит в конкретной ситуации.


Загрузить PDF


Загрузить PDF

Вершина параболы квадратного уравнения — это самая высокая или самая низкая ее точка. Чтобы найти вершину параболы, вы можете воспользоваться специальной формулой или методом дополнения до полного квадрата. Ниже описано, как это сделать.

  1. Изображение с названием Find the Vertex of a Quadratic Equation Step 1

    1

    Найдите величины a, b, и c. В квадратном уравнении коэффициент при x2 = a, при x = b, постоянная (коэффициент без переменной) = c. Например, возьмем уравнение: y = x2 + 9x + 18. Здесь a = 1, b = 9, and c = 18.[1]

  2. Изображение с названием Find the Vertex of a Quadratic Equation Step 2

    2

    Воспользуйтесь формулой для вычисления значения координаты x вершины. Вершина также является точкой симметрии параболы. Формула для нахождения координаты x параболы: x = -b/2a. Подставьте в нее соответствующие значения для вычисления x.

    • x=-b/2a
    • x=-(9)/(2)(1)
    • x=-9/2
  3. Изображение с названием Find the Vertex of a Quadratic Equation Step 3

    3

    Подставьте найденное значение x в исходное уравнение для вычисления значения y. Теперь, когда вам известно значение x, просто подставьте его в исходное уравнение для нахождения y. Таким образом, формулу для нахождения вершины параболы можно записать в виде функции: (x, y) = [(-b/2a), f(-b/2a)]. Это значит, что для нахождения y необходимо сначала найти x по формуле, а затем подставить значение x в исходное уравнение. Вот, как это делается:

    • y = x2 + 9x + 18
    • y = (-9/2)2 + 9(-9/2) +18
    • y = 81/4 -81/2 + 18
    • y = 81/4 -162/4 + 72/4
    • y = (81 — 162 + 72)/4
    • y = -9/4
  4. Изображение с названием Find the Vertex of a Quadratic Equation Step 4

    4

    Запишите значения x и y в виде пары координат. Теперь, когда вам известно, что x = -9/2, а y = -9/4, запишите их как координаты в виде: (-9/2, -9/4). Вершина параболы находится по координатам (-9/2, -9/4). Если вам нужно нарисовать эту параболу, то ее вершина лежит в нижней точке, так как коэффициент при x2 положительный.

    Реклама

  1. Изображение с названием Find the Vertex of a Quadratic Equation Step 5

    1

    Запишите уравнение. Дополнение до полного квадрата — еще один способ найти вершину параболы. Применив этот метод, вы найдете координаты x и y сразу, без необходимости подставлять x в исходное уравнение. Например, дано уравнение: x2 + 4x + 1 = 0.[2]

  2. Изображение с названием Find the Vertex of a Quadratic Equation Step 6

    2

    Разделите каждый коэффициент на коэффициент при x2. В нашем случае коэффициент при x2 равен 1, поэтому мы можем пропустить этот шаг. Деление на 1 ничего не изменит.

  3. Изображение с названием Find the Vertex of a Quadratic Equation Step 7

    3

    Перенесите постоянную в правую часть уравнения. Постоянная — коэффициент без переменной. Здесь это 1. Перенесите 1 вправо путем вычитания 1 из обеих частей уравнения. Вот, как это сделать:[3]

    • x2 + 4x + 1 = 0
    • x2 + 4x + 1 -1 = 0 — 1
    • x2 + 4x = — 1
  4. Изображение с названием Find the Vertex of a Quadratic Equation Step 8

    4

    Дополните до полного квадрата левую часть уравнения. Для этого просто найдите (b/2)2 и прибавьте результат к обеим частям уравнения. Подставьте 4 вместо b, так как 4x — это коэффициент b нашего уравнения.

    • (4/2)2 = 22 = 4. Теперь прибавьте 4 к обеим частям уравнения и получите:
      • x2 + 4x + 4 = -1 + 4
      • x2 + 4x + 4 = 3
  5. Изображение с названием Find the Vertex of a Quadratic Equation Step 9

    5

    Упрощаем левую часть уравнения. Мы видим, что x2 + 4x + 4 — полный квадрат. Он может быть записан в виде: (x + 2)2 = 3

  6. Изображение с названием Find the Vertex of a Quadratic Equation Step 10

    6

    Используйте его для нахождения координат x и y. Вы можете найти x, просто приравняв (x + 2)2 к 0. Теперь, когда (x + 2)2 = 0, вычисляем x: x =-2. Координата y — это постоянная в правой части полного квадрата. Итак, y = 3. Вершина параболы уравнения x2 + 4x + 1 = (-2, 3)

    Реклама

Советы

  • Правильно определяйте a, b, и c.
  • Записывайте предварительные вычисления. Это не только поможет в процессе работы, но и позволит увидеть, где сделаны ошибки.
  • Не нарушайте порядок вычислений.

Реклама

Предупреждения

  • Проверьте ваш ответ!
  • Удостоверьтесь, что вы знаете, как определить коэффициента a, b, и c. Если вы не знаете, ответ будет неправильным.
  • Не паникуйте — решение таких задач требует практики.

Реклама

Что вам понадобится

  • Бумага или компьютер
  • Калькулятор

Об этой статье

Эту страницу просматривали 508 414 раз.

Была ли эта статья полезной?

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

Как  найти вершину параболы

Содержание:

  • Нахождение вершины параболы: способы, примеры, советы
    • Первый способ
    • Второй способ
    • Третий способ
  • Построение параболы
  • Советы
  • Видео

Нахождение вершины параболы: способы, примеры, советы

График функции y = ax2+ bx + c, где a — первый коэффициент, b — второй коэффициент, c — свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0.

Например, y =x2–8 x +15;

находим первый, второй коэффициенты и свободный член;

  • a =1, b =-8, c =15;

подставляем значения a и b в формулу;

  • x0=8/2=4;

вычисляем значения y;

  • y0 = 16–32+15 = -1;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n — корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x2–6x+5

1) Приравниваем к нулю:

  • x2–6x+5=0.

2) Находим дискриминант, используя формулу: D = b 2–4 ac:

  • D =36–20=16.

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 — первый корень;
  • 5 — второй корень.

4) Вычисляем:

  • x0 =(5+1)/2=3

Как найти вершину

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2+8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2)2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

x2 + 8x +16= 6.

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4)2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f'(x) = (4x²+16x-17)’ = 8x+16 =0

Как построить параболу

Построение параболы

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2+11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

X 5,5
Y

2) Заполняем таблицу

Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

X 4 5 5,5 6 7
Y -4 -6 -6,25 -6 -4

Советы

Правильно находите коэффициенты.

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео

Это видео поможет вам научиться находить вершину параболы

Вершина параболы

Содержание:

  • Что такое вершина параболы
  • Вывод формулы координат вершины параболы
  • Как найти координаты, основные способы
  • Примеры решения задач

Что такое вершина параболы

Определение

Вершина параболы — это точка, в которой наблюдается пересечение параболой оси координат и ее невозможность держать направление выше или ниже в координатной плоскости.

Чтобы найти ВП, необходимо применить формулу:

(lbrackfrac{-b}{2a};-frac{b^2-4ac}{4a}rbrack)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Исходя из координат, можно узнать расположение вершины параболы и построить ее.

Вывод формулы координат вершины параболы

Рассматриваемую формулу используют для решения квадратных уравнений, которые имеют вид:

(y;=;ax^2;+;bx;+;c)

Ее график представляет собой параболу, формулу которой мы определили выше. Но не всегда требуется пользоваться данной формулой, так как сначала можно найти значение х, а затем подставить его в уравнение и найти y. 

Для того, чтобы вывести формулу ВП, нужно преобразовать квадратную функцию к виду:

(y;=;f(x;+;l);+;m)

Делают это с помощью метода выделения полного квадрата, то есть (left(a+bright)^2) преобразуют в (a^2+2ab+b^2.)

Функции вида (y;=;f(x;+;l);+;m) отличаются от (y;=;f(x)) сдвигом из графиков по оси абсцисс на –l и по оси ординат на m. l в переписанной квадратичной функции равняется:

(frac{-b}{2a}, а frac{left(4ac-b^2right)}{4a})

Получается, что l и m — это координаты x0 и y0.

Приведем доказательство:

  1. Соединяем первые два члена многочлена: (y;=;(ax^2;+;bx);+;c.)
  2. Выносим коэффициент a за скобку, b при этом делим на a: (y=aleft(x^2+frac baxright)+c.)
  3. Представляем, что у нас есть квадрат суммы, в котором x является слагаемым, а из выражения в скобках необходимо рассчитать его полный квадрат суммы. Одночлен (frac bax) умножаем на два и делим на два одновременно. Далее прибавляем и вычитаем квадрат второго слагаемого квадрата суммы. Получаем: (y=aleft(x^2+2frac b{2a}x+frac{b^2}{4a^2}-frac{b^2}{4a^2}right)+c.)
  4. Выделяем квадрат суммы: (y=aleft(left(x+frac b{2a}right)^2-frac{b^2}{4a}right)+c.)
  5. Умножаем на a: (y=aleft(x+frac b{2a}right)^2-frac{b^2}{4a}+c.)
  6. Приводим свободные члены к общему знаменателю: (y=aleft(x+frac b{2a}right)^2-frac{b^2+4ac}{4a}.)
  7. Меняем знак: (y=aleft(x+frac b{2a}right)^2+frac{b^2-4ac}{4a}.)

Мы привели функцию (y;=;ax^2;+;bx;+;c) к виду (y;=;a{(x;+;l)}^2;+;m,) что соответствует (y;=;f(x;+;l);+;m,) где (f(x);=;ax^2. )

Как найти координаты, основные способы

Существует несколько способов нахождения координат ВП:

  1. (x_0=frac{-b}{2a}) — подходит в том случае, если дискриминант квадратного уравнения равен нулю.
  2. (y_0=-frac{b^2-4ac}{4a}) — это формула дискриминанта, поделенная на 4а.
  3. (x_0=frac{x_1+x_2}2) — среднее арифметическое между нулями функции. Можно использовать, если в выражении есть нули.
  4. Если функция имеет вид (y=aleft(x-x_0right)^2+y_0), то в ее вершиной совпадают координаты (left(x_0;y_0right).)

Примеры решения задач

Задача №1

Найти вершину параболы для уравнения: (y=x^2-5x+7.)

Решение: В выражение (x=-frac b{2a}) подставляем известные числа и получаем (x=frac52=2,5). Теперь подставляем x в исходное уравнение: (2,5^2-5times2,5+7=0,75.)

Ответ: (2,5; 0,75).

Задача №2

Найти ВП для уравнения: y=5(x-1)(x+7).

Решение: Ищем нули функции: 5(x-1)(x+7)=0. Тогда x-1=0 либо x+7=0. Из этого x=1; x=-7.

Подставляем и получаем: (x_0=frac{x_1+x_2}2=frac{1+left(-7right)}2=-3.)

Второе: (y_0=5timesleft(-3-1right)left(-3+7right)=-80.)

Ответ: (-3; -80). 

Задача №3

Найти вершину параболы для уравнения: (y=x^2-7x+3 ).

Решение: (х_0=-frac b{2a}=-frac{left(-7right)}{2times1}=3,5.)

Второе: (y_0=3,5^2-7times3,5+3=-9,25.)

Ответ: (3,5; -9,25). 

Насколько полезной была для вас статья?

Рейтинг: 2.50 (Голосов: 8)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Понравилась статья? Поделить с друзьями:
  • Как найти длину дуги плоской кривой
  • Как найти маркер с грибами
  • Как составить интервальную шкалу
  • Как найти университет своей мечты
  • Как исправить данные в ифнс