Как найти вертикальную асимптоту калькулятор

Вертикальной асимптотой
функции

называется прямая параллельная оси
y
к которой неограниченно приближается функция
при стремлении к бесконечности. Уравнение вертикальной асимптоты записывается в виде

,
где

— некоторая константа (конечное число)

Вертикальная асимптота функции

существует, если значение хотя бы одного из
пределов


или

равно
.

Стоит отметить, что представленные выше пределы используются также для проверки является ли точка

точкой разрыва
функции
.
Отсюда следует, что вертикальные асимптоты необходимо искать только в точках разрыва функции.

Воспользуйтесь нашим онлайн калькулятором, построенным на основе системы WolramAlpha, для вычисления вертикальных асимптот своей функции.

Асимптоты кривой

Прямая линия называется асимптотой кривой y=f(x), если расстояние точки кривой до этой прямой стремится к нулю при стремлении точки к бесконечности.

Назначение сервиса. Данный сервис предназначен для нахождения асимптот к графику функции в онлайн режиме. Решение оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции

Примеры

x^2/(x+2)

cos2(2x+π)(cos(2*x+pi))^2

x+(x-1)^(2/3)

Классификация асимптот

  1. Вертикальные асимптоты.
  2. Горизонтальные асимптоты.
  3. Наклонные асимптоты.

Вертикальные асимптоты

Уравнение любой вертикальной прямой, то есть прямой, параллельной оси OY, имеет вид x=a.

Вертикальные асимптоты

Если прямая x=a является вертикальной асимптотой графика функции y=f(x), то очевидно, что хотя бы один из односторонних пределов или равен бесконечности (+∞ или -∞).

Все функции с бесконечными разрывами (разрывы второго рода) имеют вертикальные асимптоты.

Пример 1. Найти уравнение вертикальных асимптот графика функции .

Решение. Видим, что y→∞, если x→1, точнее , , то есть прямая x=1 является вертикальной асимптотой, причем двусторонней.

Горизонтальные асимптоты

Горизонтальные асимптоты

Всякая горизонтальная прямая имеет уравнение y=A.

Если прямая y=A является горизонтальной асимптотой кривой y=f(x), то .

Пример 2. Найти горизонтальные асимптоты кривой .

Решение. Найдем , то есть y→0 при x→+∞ и при x→-∞, значит прямая y=0 – горизонтальная асимптота данной кривой.

Наклонные асимптоты

Уравнения наклонных асимптот обычно ищут в виде y=kx+b. По определению асимптоты или (1)

Разделим обе части этого равенства на x:
, откуда

(2)

Теперь из (1):

(3)

Для существования наклонных асимптот необходимо существование пределов (2) и (3). Если хотя бы один из них не существует, то наклонных асимптот нет. Пределы (2) и (3) нужно находить отдельно при x→+∞ и при x→-∞, так как пределы могут быть разными (функция имеет две разные асимптоты).

Пример 4. Найти наклонные асимптоты графика функции .

Решение. По формуле (2) найдем .

Теперь найдем . Получаем уравнение наклонной асимптоты y=x+1.

Пример 5. Найти асимптоты кривой y=(x-1)2(x+3).

Решение. Вертикальных и горизонтальных асимптот нет, так как y→∞ при x→∞. Ищем наклонные:

.

Таким образом, кривая асимптот не имеет.

Пример 6. Найти асимптоты кривой .

Решение. Поскольку y→∞ при x→0 и при x→4, то прямые x=0 и x=4 являются вертикальными асимптотами. Так как , то y=2 – горизонтальная асимптота. Выясним вопрос о существовании наклонных асимптот: , следовательно, кривая наклонных асимптот не имеет (искать “b” не имеет смысла, так как горизонтальные асимптоты уже найдены).

Пример 7. Построить все виды асимптот к функции

Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:



Находим коэффициент k:



Находим коэффициент b:



Получаем уравнение наклонной асимптоты: y = -x

Найдем вертикальные асимптоты. Для этого определим точки разрыва:





Находим переделы в точке





— является вертикальной асимптотой.

Находим переделы в точке





— является вертикальной асимптотой.

Данный калькулятор предназначен для нахождения асимптот графика функции онлайн, вычислит вертикальные, горизонтальные и наклонные асимптоты.

Асимптота – это прямая, к которой бесконечно близко приближается график функции, и график при этом бесконечно удаляется от начала координат. Знание уравнения асимптоты функции может быть полезно при анализе функции и построении ее графика.
В зависимости от поведения аргумента асимптоты разделяются на вертикальные, горизонтальные и наклонные. Вертикальная асимптота – это вертикальная линия вида x=α, если .

Точки разрыва функции и границы области определения являются основанием для нахождения вертикальных асимптот. Горизонтальная асимптота – горизонтальная прямая линия вида x=α, если . Наклонная асимптота – прямая вида y=kx+b; для существования наклонных асимптот, необходимо одновременное существование пределов .
Преимуществом онлайн калькулятора является то, что нет необходимости знать, как находить асимптоты графика функции. Достаточно только ввести функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.

Для получения полного хода решения нажимаем в ответе Step-by-step.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} — twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{»} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • асимптоты:y=frac{x^2+x+1}{x}

  • асимптоты:f(x)=x^3

  • асимптоты:f(x)=ln (x-5)

  • асимптоты:f(x)=frac{1}{x^2}

  • асимптоты:y=frac{x}{x^2-6x+8}

  • асимптоты:f(x)=sqrt{x+3}

  • Показать больше

Описание

Найдите шаг за шагом вертикальные и горизонтальные асимптоты функций

function-asymptotes-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Functions

    A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    The calculator will try to find the vertical, horizontal, and slant asymptotes of the function, with steps shown.

    Solution

    Your input: find the vertical, horizontal and slant asymptotes of the function $$$f(x)=frac{2 x^{3} + 15 x^{2} + 22 x — 11}{x^{2} + 8 x + 15}$$$

    Vertical Asymptotes

    The line $$$x=L$$$ is a vertical asymptote of the function $$$y=frac{2 x^{3} + 15 x^{2} + 22 x — 11}{x^{2} + 8 x + 15}$$$, if the limit of the function (one-sided) at this point is infinite.

    In other words, it means that possible points are points where the denominator equals $$$0$$$ or doesn’t exist.

    So, find the points where the denominator equals $$$0$$$ and check them.

    $$$x=-5$$$, check:

    $$$lim_{x to -5^+}left(frac{2 x^{3} + 15 x^{2} + 22 x — 11}{left(x + 3right) left(x + 5right)}right)=-infty$$$ (for steps, see limit calculator).

    Since the limit is infinite, then $$$x=-5$$$ is a vertical asymptote.

    $$$x=-3$$$, check:

    $$$lim_{x to -3^+}left(frac{2 x^{3} + 15 x^{2} + 22 x — 11}{left(x + 3right) left(x + 5right)}right)=infty$$$ (for steps, see limit calculator).

    Since the limit is infinite, then $$$x=-3$$$ is a vertical asymptote.

    Horizontal Asymptotes

    Line $$$y=L$$$ is a horizontal asymptote of the function $$$y=f{left(x right)}$$$, if either $$$lim_{x to infty} f{left(x right)}=L$$$ or $$$lim_{x to -infty} f{left(x right)}=L$$$, and $$$L$$$ is finite.

    Calculate the limits:

    $$$lim_{x to infty}left(frac{2 x^{3} + 15 x^{2} + 22 x — 11}{x^{2} + 8 x + 15}right)=infty$$$ (for steps, see limit calculator).

    $$$lim_{x to -infty}left(frac{2 x^{3} + 15 x^{2} + 22 x — 11}{x^{2} + 8 x + 15}right)=-infty$$$ (for steps, see limit calculator).

    Thus, there are no horizontal asymptotes.

    Slant Asymptotes

    Do polynomial long division $$$frac{2 x^{3} + 15 x^{2} + 22 x — 11}{x^{2} + 8 x + 15}=2 x — 1 + frac{4}{x^{2} + 8 x + 15}$$$ (for steps, see polynomial long division calculator).

    The rational term approaches 0 as the variable approaches infinity.

    Thus, the slant asymptote is $$$y=2 x — 1$$$.

    Answer

    Vertical asymptotes: $$$x=-5$$$; $$$x=-3$$$

    No horizontal asymptotes.

    Slant asymptote: $$$y=2 x — 1$$$

    Понравилась статья? Поделить с друзьями:
  • Как составить тест по географии 7 класс
  • Как нашли первую нефть в ссср
  • Как составить личное видение
  • Как найти начало круговой кривой
  • Как найти переносное значение в тексте