Как найти ветвь гиперболы

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

Свойства гиперболы

1) Область определения и область значений

По аналитическому заданию функции видно, что х ≠-a, поскольку знаменатель дроби не может ровняться нулю. Таким образом получим:

D(f)=(-∞;-а) U (-a;+∞)

Область значений

Е(f)=(-∞;+∞)

2) Нули функции

Если b=0, то график функции не пересекает ось ОХ;

Если b≠0, то гипербола имеет одну точку пересечения с ОХ:*

x=-(k+ab)/b

3) Промежутки знакопостоянства

Рассмотрим только 2 простых случая, остальные случаи вы можете рассмотреть аналитически самостоятельно по алгоритму из раздела Свойства функций -> Знакопостоянство

Случай 1: a=0, b=0, k>0

f(x)>0, при x ∈ (0; +∞)

f(x)<0, при x ∈ (-∞;0)

Случай 1: a=0, b=0, k<0

f(x)<0, при x ∈ (0; +∞)

f(x)>0, при x ∈ (-∞;0)

4) Промежутки монотонности

Аналогично с промежутками знакопостоянства рассмотрим только 2 случая

Случай 1: a=0, b=0, k>0

Функция убывает при

x ∈ (-∞;0) U (0; +∞)

Функция возрастает при

x ∈ (-∞;0) U (0; +∞)

5) Четность и нечетность

Функция является нечетной при a=0, b=0, то есть если имеет вид y=k/x

Определение

Графиком функции у=kx, где k0 число, а х – переменная, является кривая, которую называют гиперболой.

Гипербола имеет две ветви и может располагаться в 1 и 3 координатных четвертях, либо во 2 и 4. Это зависит от знака числа k. Рассмотрим данную кривую на рисунке, где показано ее расположение в зависимости от знака k.

C:UsersУчительDesktop1.jpg

Свойства гиперболы (у=kx)

График функции симметричен относительно начала координат (0;0). Поэтому функцию еще называют – обратная пропорциональность.

  1. Область определения – любое число, кроме нуля.
  2. Область значения – любое число, кроме нуля.
  3. Функция не имеет наибольших или наименьших значений.

Построение графика функции

Для построения графика функции необходимо подбирать несколько положительных и несколько отрицательных значений переменной х, затем подставлять их в заданную функцию для вычисления значений у. После этого по найденным координатам построить точки и соединить их плавной линией. Рассмотрим построение графиков на примерах.


Построить график функции у=10x.

Для этого построим две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число 10 на них делилось

х 1 2 4 5 10
у
х –1 –2 –4 –5 –10
у

Теперь делим на эти числа 10, получим значения у:

х 1 2 4 5 10
у 10 5 2,5 2 1
х –1 –2 –4 –5 –10
у –10 –5 –2,5 –2 –1

Выполняем построение точек, они будут располагаться в первой и третьей координатных четвертях, так как число k положительное.

Теперь для построения гиперболы соединим точки плавной линией.


Построить график функции у=5x.

Для этого построим также две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число минус 5 на них делилось. Выполняем деление и получаем значения у. При делении обращаем внимание на знаки, чтобы не допускать ошибок.

х 1 2 5 10
у –5 –2,5 –1 –0,5
х –1 –2 –5 –10
у 5 2,5 1 0,5

Теперь отмечаем точки во 2 и 4 координатных четвертях (число k отрицательное) и соединяем их для получения ветвей гиперболы.

Задание OM1104o

Установите соответствие между графиками функций и формулами, которые их задают.

5oge1) y = x²

2) y = x/2

3) y = 2/x


Для решения данной задачи необходимо знать вид графиков функций, а именно:

y = x² – парабола, в общем виде это y = ax²+bx+c, но в нашем случае b = c = 0, а а = 1

x/2 – прямая, в общем виде график прямой имеет вид y = ax + b, в нашем случае b = 0,  а = 1/2

y = 2/x – гипербола, в общем виде график функции y = a/x + b, в данном примере b = 0, a = 2

Парабола изображена на рисунке А, гипербола на рисунке Б, а прямая – В.

Ответ:

А 1

Б 3

В 2

Ответ: 132

pазбирался: Даниил Романович | обсудить разбор

Задание OM1102o

Установите соответствие между функциями и их графиками.

Функции:

A) y = -3/x

Б) y = 3/x

В) y = 1/(3x)

Графики:

Графики функций огэ по математике 5 задание


В данной ситуации можно воспользоваться двумя подходами — можно руководствоваться общими соображениями, а можно просто решить задачу подстановкой. Я рекомендую решать задачу общими соображениями, а проверять подстановкой.

Общие правила:

  • если уравнение гиперболы положительное (то есть не стоит знак -, как во втором и третьем случае), то график функции лежит в первой и третьей координатной четверти
  • если перед уравнением гиперболы стоит знак — (как в первом случае), то график лежит во второй и четвертой четвертях

Таким образом можно сразу определить, что первое уравнение соответствует графику под номером 2.

Второе правило, которым я пользуюсь, звучит так:

  • чем больше число в знаменателе гиперболы (рядом с x), тем сильнее гипербола жмется к осям координатной плоскости

и наоборот:

  • чем больше число в числителе уравнения гиперболы, тем слабее и медленнее график функции прижимается к осям

Следовательно, функция Б слабее прижимается к осям и ей соответствует график 3, а функции В соответствует график 1, так как она сильнее прижимается к осям.

Ответ:

A) 2

Б) 3

В) 1

Ответ: 231

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 11.7k

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

  • Определение и функция гиперболы

  • Алгоритм построения гиперболы

    • Пример 1

    • Пример 2

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

Функция обратной пропорциональности

Здесь:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k < 0 график находится во II и IV четвертях.

На рисунке ниже изображен пример гиперболы.

Пример гиперболы

  • Линии графика (зеленым цветом) называются его ветвями.
  • Оси абсцисс и ординат (Ox и Oy) являются асимптотами гиперболы, т.е. ветви бесконечно к ним приближаются, но никогда их не коснутся и не пересекут.
  • Ось симметрии (синим цветом) – это прямая:
    • y = x (при k > 0)
    • y = -x (при k < 0)

Смещение асимптот

Допустим у нас есть функция, заданная формулой:

Пример функции обратной пропорциональности

В этом случае:

  • x = a – это вертикальная асимптота графика (при a ≠ 0) вместо оси Oy;
  • y = b – горизонтальная асимптота (при b ≠ 0) вместо оси Ox.

Канонический вид уравнения гиперболы (координатные оси совпадают с осями графика):

Каноническое уравнение гиперболы

Алгоритм построения гиперболы

Пример 1

Дана функция y = 4/x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

x y Расчет y
0,5 8 4 / 0,5 = 8
1 4 4 / 1 = 4
2 2 4 / 2 = 2
4 1 4 / 4 = 1
8 0,5 4 / 8 = 0,5

Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.

Ветвь гиперболы

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

x y Расчет y
-0,5 -8 4 / -0,5 = -8
-1 -4 4 / -1 = -4
-2 -2 4 / -2 = -4
-4 -1 4 / -4 = -1
-8 -0,5 4 / -8 = -0,5

Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.

Пример гиперболы в 1 и 3 четвертях координатной плоскости

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Пример функции обратной пропорциональности

Решение

Так как k < 0, график будет располагаться во второй и четвертой четвертях.

Теперь определяемся с асимптотами, в нашем случае это x = 3 и y = 4 (см. информацию выше про их смещение).

Составим таблицу соответствия значений x и y.

x II четв. y II четв. x IV четв. y IV четв.
-1 4,5 3,5 0
1 5 4 2
2 6 5 3
2,5 8 7 3.5

Остается только нанести рассчитанные точки на координатную плоскость и соединить их плавными линиями.

Пример гиперболы во 2 и 4 четвертях координатной плоскости

Способы построения гиперболы самостоятельно

Содержание:

  • Гипербола в математике — что это такое
  • Как построить гиперболу самостоятельно
  • Построение гиперболы по фокусам
  • Как построить гиперболу по точкам
  • Как построить график гиперболы по уравнению

Гипербола в математике — что это такое

определение 1

Гипербола представляет собой линию, определяемую в некой декартовой прямоугольной системе координат каноническим уравнением:

(frac{x^{2}}{a^{2}}-frac{y^{2}}{b^{2}}=1.label{ref9})

Согласно записанному правилу, все точки гиперболы (|x| geq a). Таким образом, данные точки расположены за пределами вертикальной полосы ширины (2a), как показано на рисунке. Ось абсцисс канонической системы координат имеет точки пересечения с гиперболой. Координаты этих точек соответствуют: ((a, 0)) и ((-a, 0)). Такие точки называют вершинами гиперболы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Ось ординат не имеет общих точек с гиперболой.  В состав гиперболы входят две части, которые не связаны между собой. Они носят название ветвей гиперболы. Числа «a» и «b» являются соответственно вещественной и мнимой полуосями гиперболы.

Ось ординат не имеет общих точек с гиперболой

Источник: univerlib.com

Определение 2

Ветви гиперболы — это две отдельные кривые, из которых состоит гипербола.

Определение 3

Ближайшие друг к другу точки двух ветвей гиперболы являются вершинами гиперболы.

Определение 4

Большая ось гиперболы — наименьшее расстояние между двумя ее ветвями.

Определение 5

Центр гиперболы — это середина ее большой оси.

Определение 6

Большая полуось гиперболы — расстояние, на которое удалены центр и одна из вершин, обозначается «а».

Определение 7

Фокальное расстояние гиперболы — расстояние, на которое удалены друг от друга центр и один из фокусов, обозначается «с».

Оба фокуса гиперболы расположены на продолжении большой оси и равноудалены от центра гиперболы.

Определение 8

Прямая, включающая в себя большую ось гиперболы, носит название действительной, или поперечной, оси гиперболы.

Определение 9

Прямая в виде перпендикуляра к действительной оси, которая пересекает центр гиперболы — мнимая, или сопряженная ось гиперболы.

Определение 10

Отрезок между фокусом гиперболы и гиперболой, который перпендикулярен к действительной оси, — это фокальный параметр.

Определение 11

Прицельный параметр — расстояние от фокуса до асимптоты гиперболы, обозначается «b».

Определение 12 

Перицентрическое расстояние — расстояние, на которое фокус удален от ближайшей вершины гиперболы, обозначается ({displaystyle r_{p}}r_{p}).

Перечисленные характеристики гиперболы взаимосвязаны. Справедливы следующие соотношения:

  • ({displaystyle c^{2}=a^{2}+b^{2}}{displaystyle c^{2}=a^{2}+b^{2}})
  • ({displaystyle varepsilon =c/a}{displaystyle varepsilon =c/a})
  • ({displaystyle b^{2}=a^{2}left(varepsilon ^{2}-1right)}{displaystyle b^{2}=a^{2}left(varepsilon ^{2}-1right)})
  • ({displaystyle r_{p}=aleft(varepsilon -1right)}{displaystyle r_{p}=aleft(varepsilon -1right)})
  • ({displaystyle a={frac {p}{varepsilon ^{2}-1}}}{displaystyle a={frac {p}{varepsilon ^{2}-1}}})
  • ({displaystyle b={frac {p}{sqrt {varepsilon ^{2}-1}}}}{displaystyle b={frac {p}{sqrt {varepsilon ^{2}-1}}}})
  • ({displaystyle c={frac {pvarepsilon }{varepsilon ^{2}-1}}}{displaystyle c={frac {pvarepsilon }{varepsilon ^{2}-1}}})
  • ({displaystyle p={frac {b^{2}}{a}}}p={frac {b^{2}}{a}})

Определение 13

Оси симметрии гиперболы представляют собой оси канонической системы координат, а начало канонической системы является центром симметрии.

Когда требуется исследовать форму гиперболы, следует начать с поиска ее пересечения с произвольной прямой, пересекающей начало координат. Уравнение прямой можно задать в виде:

(y=kx)

Такой выбор связан с тем, что прямая (x=0 ) не пересекает гиперболу. Абсциссы точек пересечения можно вычислить с помощью уравнения:

(frac{x^{2}}{a^{2}}-frac{k^{2}x^{2}}{b^{2}}=1)

Таким образом, при (b^{2}-a^{2}k^{2} > 0) получим:

(x=pm frac{ab}{sqrt{b^{2}-a^{2}k^{2}}})

Полученное равенство позволит рассчитать координаты точек пересечения:

((ab/v, abk/v))

((-ab/v, -abk/v))

В данном случае:

(v=(b^{2}-a^{2}k^{2})^{1/2})

Руководствуясь свойством симметрии, можно проанализировать смещение первой из точек при изменении k, как показано на рисунке.

смещение первой из точек при изменении k

Источник: univerlib.com

Числитель дроби (ab/v) является постоянной величиной, а знаменатель характеризуется максимальным значением, если (k=0). Таким образом, самую маленькую абсциссу имеет вершина ((a, 0)). При увеличении (k ) знаменатель убывает, и x растет, стремясь к бесконечности, когда k приближается к числу (b/a).

Прямая (y=bx/a) с угловым коэффициентом (b/a) не имеет точек пересечения с гиперболой, как и прямые с большими угловыми коэффициентами. Какая-либо прямая, обладающая меньшим положительным угловым коэффициентом, пересекает гиперболу.

При сдвиге прямой от горизонтального положения по часовой стрелке, k будет уменьшаться, (k^{2}) — увеличиваться, и прямая будет иметь удаляющиеся точки пересечения с гиперболой до тех пор, пока не займет положения с угловым коэффициентом (-b/a).

К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из вышесказанного следует вывод, что гипербола имеет вид, изображенный на рисунке.

гипербола имеет вид

Источник: univerlib.com

Определение 14

Асимптоты гиперболы являются прямыми, описываемыми уравнениями (y=bx/a) и (y=-bx/a ) в канонической системе координат.

Предположим, что уравнения асимптот имеют вид:

(bx-ay=0)

(bx+ay=0)

Расстояния от точки (M(x, y)) до асимптот составят

(h_{1}=frac{|bx-ay|}{sqrt{a^{2}+b^{2}}},)( h_{2}=frac{|bx+ay|}{sqrt{a^{2}+b^{2}}})

В том случае, когда точка M расположена на гиперболе:

(b^{2}x^{2}-a^{2}y^{2}=a^{2}b^{2})

(h_{1}h_{2}=frac{|b^{2}x^{2}-a^{2}y^{2}|}{a^{2}+b^{2}}=frac{a^{2}b^{2}}{a^{2}+b^{2}})

Определение 15

Произведение расстояний от точки гиперболы до асимптот является постоянным и соответствует (a^{2}b^{2}/(a^{2}+b^{2})).

Из данного определения можно вывести ключевое свойство, которым обладают асимптоты гиперболы.

Определение 16

В том случае, когда точка совершает движение по гиперболе таким образом, что ее абсцисса по абсолютной величине неограниченно возрастает, расстояние от точки до одной из асимптот стремится к нулю.

В действительности получим, что хотя бы одно из расстояний (h_{1}) или (h_{2}) при этих условиях должно неограниченно увеличиваться. Если предположить, что утверждение не справедливо, то произведение не было бы постоянной величиной.

Введем такое число с, что:

(c^{2}=a^{2}+b^{2})

и (c > 0)

Определение 17

Фокусы гиперболы — точки (F_{1}) и (F_{2}) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат.

Фокусы гиперболы

Источник: univerlib.com

Отношение (varepsilon=c/a), как и для эллипса, называется эксцентриситетом. У гиперболы (varepsilon > 1).

Расстояния от произвольной точки (M(x, y)) на гиперболе до каждого из фокусов определяются абсциссой (x):

(r_{1}=|F_{1}M|=|a-varepsilon x|, r_{2}=|F_{2}M|=|a+varepsilon x|)

Расстояния от произвольной точки

Источник: univerlib.com

Следует отметить, что равенства eqref{ref11} можно представить в более подробной форме:

  • для правой ветви гиперболы ((x geq a): r_{1}=varepsilon x-a), ( r_{2}=varepsilon x+a);
  • для левой ветви гиперболы ((x leq -a): r_{1}= a-varepsilon x), ( r_{2}=-varepsilon x-a).

Таким образом, для правой ветви (r_{2}-r_{1}=2a), а для левой ветви (r_{1}-r_{2}=2a). В обоих случаях:

(|r_{2}-r_{1}|=2a)

Определение 18

Директрисы гиперболы — прямые, заданные в канонической системе координат уравнениями: (x=frac{a}{varepsilon}), ( x=-frac{a}{varepsilon}).

Директрисы расположены поблизости от центра в отличие от вершин. Из этого можно сделать вывод, что директрисы не имеют точек пересечения с гиперболой. Директриса и фокус, которые расположены по одну сторону от центра, считаются соответствующими друг другу.

Определение 19

Для того чтобы точка (M) была расположена на гиперболе, необходимо и достаточно, чтобы разность ее расстояний до фокусов по абсолютной величине равнялась вещественной оси гиперболы 2a.

С целью доказательства достаточности данного условия его следует записать в виде:

(sqrt{(x-c)^{2}+y^{2}}=pm 2a+sqrt{(x+c)^{2}+y^{2}})

Следующие действия отличаются от доказательства соответствующего утверждения для эллипса только тем, что нужно воспользоваться равенством:

(c^{2}=a^{2}+b^{2}),  а не (c^{2}=a^{2}-b^{2})

Определение 20

Для того чтобы точка была расположена на гиперболе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету (varepsilon).

равнялось эксцентриситету

Источник: univerlib.com

Можно доказать, к примеру, необходимость условия для фокуса (F_{2}(-c, 0).) Предположим, что (M'(x, y)) является точкой гиперболы. Расстояние от (M’) до директрисы с уравнением (x=-a/varepsilon) равно:

(d’=left|x+frac{a}{varepsilon}right|=frac{1}{varepsilon}|varepsilon x+a|)

Таким образом:

(r’/d’=varepsilon).

Уравнение касательной к гиперболе в точке (M_{0}(x_{0}, y_{0})), которая принадлежит данной гиперболе, можно записать так же, как подобное уравнение в случае эллипса. Уравнение касательной к гиперболе:

(frac{xx_{0}}{a^{2}}-frac{yy_{0}}{b^{2}}=1)

Определение 21

Касательная к гиперболе в точке (M_{0}(x_{0}, y_{0})) представляет собой биссектрису угла между отрезками, которые соединяют рассматриваемую точку с фокусами.

Как построить гиперболу самостоятельно

Построение графика гиперболы следует начать с изображения прямоугольной системы координат Декарта. Алгоритм действий:

  1. На листе бумаги нарисовать горизонтальную прямую. Выполнить действие следует таким образом, чтобы конец прямой с правой стороны был обозначен с помощью стрелки. Данная прямая является осью (X) и носит название абсциссы.
  2. На середине оси ( Х) необходимо опустить перпендикуляр. Конец полученной прямой в верхней части нужно обозначить стрелкой. В результате получена ось (Y), которую называют ординатой.
  3. На следующем шаге необходимо пронумеровать шкалу. С правой стороны на оси (Х) расположены положительные значения (Х) в порядке возрастания — от 1 и выше. С левой стороны — отрицательные. В верхней части на оси (Y) расположены положительные значения (Y) в порядке возрастания. В нижней части — отрицательные.

Примечание

Точка, в которой пересекаются абсцисса и ордината является началом координат, то есть числом 0. От данной точки следует откладывать все значения (Х) и (Y).

С помощью прямоугольной системы координат плоскость поделена на четыре части, которые называют четвертями и нумеруют против часовой стрелки. Для того чтобы построить график, требуется определить точки. Каждая точка координатной плоскости определяется парой чисел ((x;y)). Данные числа представляют собой координаты точки, где:

  • (х) — абсцисса точки;
  • (y) — ордината.

Гипербола представляет собой график функции, которая задана формулой:

(y=k/x)

где (k) — является каким-то коэффициентом, не равным нулю;

(x) — представляет собой независимую переменную.

Гипербола включает в себя две части, расположенные симметрично в разных четвертях. Данные части носят название ветвей гиперболы. При (k>0), ветви расположены в 1 и 3 четвертях. При (k<0), ветви гиперболы размещены во 2 и 4 четвертях.

Принцип построения гиперболы можно рассмотреть на примере, когда функция задана следующей формулой:

(y=3/х)

Так как коэффициент 3 обладает положительным значением, гипербола, соответственно, будет находиться в 1 и 3 четвертях. Можно взять произвольно значения (Х) и найти значения (Y). Таким образом, получатся координаты точек, с помощью которых можно изобразить гиперболу. Важно отметить, что (Х) не должно иметь нулевое значение, так как на 0 делить нельзя.

Поскольку мы знаем, что гипербола располагается в двух четвертях, то берем как положительные значения, так и отрицательные. Предположим, что (Х) равен: -6, -3, -1, 1, 3, 6. Далее можно рассчитать ординаты путем подстановки каждого значение (Х) в начальную формулу:

(y=3/-6)

(у=3/-3)

(у=3/-1)

(у=3/1)

(у=3/3)

(у=3/6)

В результате, значения ( Y) равны: -0.5, -1, -3, 3, 1, 0.5.

Полученные 6 точек с координатами необходимо отложить на системе координат. Далее точки соединяют с помощью кривых линий, как изображено на рисунке. В итоге получилась гипербола.

получилась гипербола

Источник: sovetclub.ru

Построение гиперболы по фокусам

Гиперболу можно построить, зная заданные вершины (А) и (В) и фокусное расстояние (FF1). Алгоритм построения следующий:

  1. В первую очередь фокусное расстояние следует разделить пополам, чтобы получить точку 0.
  2. Далее с левой стороны от фокуса (F) можно отметить ряд произвольных точек 1, 2, 3, 4 и так далее, расстояние между которыми постепенно увеличивается.
  3. Затем нужно начертить вспомогательные окружности с центром в фокусе (F), имеющие радиусы (R1=1B), (R2=2B), (R3=3B)(R4=4B) и так далее.
  4. На следующем этапе можно изобразить вспомогательные окружности с центром в фокусе (F1) и радиусами (r1=1A), (r2=2A), (r3=3A)(r4=4A) и так далее.
  5. При пересечении вспомогательных окружностей определяется положение точек гиперболы. (С), (С1 )представляют собой точки, которые образованы в результате пересечения окружностей радиусов (R1) и (r1). Точки (D,D1) являются точками, в которых пересекаются окружности (R2) и (r2).
  6. Полученные точки остается соединить с помощью плавной кривой линии, чтобы получить правую ветвь гиперболы.
  7. Аналогичным способом следует выполнить построение левой ветви гиперболы.

FA1

 

FA2

 

FA3

 

FA4

 

FA5

 

FA6

 

FA7

 

FA8

 

FA9

 

FA10

Источник: graph.power.nstu.ru

Как построить гиперболу по точкам

Исходя из определения гиперболы, разница между расстояниями (r1) и (r2) для всех ее точек является постоянной величиной. Таким образом, переход от одной точки гиперболы к другой осуществляется путем увеличения или уменьшения данных характеристик. Алгоритм действий:

  1. В первую очередь следует отложить точки (А1) и (А2). Точка ( А2) является точкой касания двух окружностей, центр одной из которых расположен в фокусе ( F1), а радиус составляет F1A2. Другая окружность обладает центром в фокусе (F2) и радиусом (F2A2).
  2. Следующие точки гиперболы можно определить при пересечении пар окружностей с радиусами, которые равны:

пересечении пар окружностей

Источник: natalibrilenova.ru.

Пересечении пар окружностей с

Источник: natalibrilenova.ru.

 Таким образом, новые значения радиусов превышают предыдущие на одинаковую величину. Чем ближе расположены точки, тем точнее будет построен график гиперболы.

Как построить график гиперболы по уравнению

Каноническое уравнение гиперболы записывают таким образом:

Каноническое уравнение гиперболы

Источник: mathter.pro

где («a») и («b») являются положительными действительными числами, причем, («а») может быть больше или меньше, чем («b»).

Важно отметить, что гипербола обладает двумя симметричными ветвями и двумя асимптотами.

Построение гиперболы можно рассмотреть на примере. Предположим, что она задана следующим уравнением:

построение гиперболы

Источник: mathter.pro

Рассматриваемое уравнение необходимо привести к каноническому виду:

Рассматриваемое уравнение

Источник: mathter.pro

Так как в правой части требуется получить единицу, необходимо обе части начального уравнения поделить на 20:

 правой части требуется получить единицу

Источник: mathter.pro

Правая

Источник: mathter.pro

Далее следует сократить обе дроби:

Далее следует сократить обе дроби

Источник: mathter.pro

следует сократить обе дроби

Источник: mathter.pro

Затем нужно выделить квадраты в знаменателях:

Затем нужно выделить квадраты в знаменателях

Источник: mathter.pro

В результате получено каноническое уравнение:

В результате получено каноническое уравнение

Источник: mathter.pro

Существует два подхода к построению гиперболы:

  • геометрический;
  • алгебраический.

С практической точки зрения, эффективнее воспользоваться расчетами. В первую очередь следует определить асимптоты:

l2p2_clip_image026_0000.gif

Источник: mathter.pro

Асимптоты равны:

l2p2_clip_image028_0000.gif

Источник: mathter.pro

На втором этапе можно определить вершины гиперболы, которые соответствуют точкам на оси абсцисс с координатами:

l2p2_clip_image030_0000.gif

Источник: mathter.pro

При у=0, каноническое уравнение гиперболы примет вид:

l2p2_clip_image034_0000.gif

Источник: mathter.pro

Таким образом:

l2p2_clip_image036_0000.gif

Источник: mathter.pro

Вершины гиперболы:

l2p2_clip_image038_0000.gif

Источник: mathter.pro

Затем необходимо определить дополнительные точки. В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для 1-й координатной четверти. Согласно каноническому уравнению, можно выразить:

l2p2_clip_image041.gif

Источник: mathter.pro

В результате получим две функции. Первая функция определяет верхние дуги гиперболы:

l2p2_clip_image043.gif

Источник: mathter.pro

Вторая функция выражает нижние дуги гиперболы:

l2p2_clip_image045.gif

Источник: mathter.pro

Напрашивается нахождение точек с абсциссами:

l2p2_clip_image047.gif

Источник: mathter.pro

l2p2_clip_image049.gif

Источник: mathter.pro

На последнем этапе следует изобразить асимптоты, вершины, дополнительные точки, симметричные точки в других координатных четвертях:

l2p2_clip_image028_0001.gif

Источник: mathter.pro

l2p2_clip_image038_0001.gif

Источник: mathter.pro

l2p2_clip_image051.gif

Источник: mathter.pro

После того, как все точки соединены, будет изображена гипербола.

После того, как все точки соединены, будет изображена гипербола

Источник: mathter.pro

Понравилась статья? Поделить с друзьями:
  • Эссе как найти хорошую работу
  • Как исправить ассиметрию зубов
  • Как составить карту тренировок
  • Как найти человека ехавшего в одном вагоне
  • Как найти инверсию в стихотворении