Как найти внешний угол параллелограмма

Сумма углов четырехугольника

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.

Такие четырехугольники называют вписанными.

Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.

Как найти внешние углы четырехугольника

Четырехугольник — фигура, состоящая из четырех точек и четырех отрезков,последовательно их соединяющих; причем ни одна из трех данных точек не лежит на одной прямой, а отрезки, соединяющие их, не пересекаются.

Соседние вершины — вершины четырехугольника, являющиеся концами одной из его сторон.
Противолежащие вершины — несоседние вершины.
Соседние стороны — стороны выходящие из одной вершины. Противолежащие стороны — несоседние стороны.
Диагональ четырехугольника — отрезок, соединяющий противолежащие вершины четырехугольника.
Периметр четырехугольника — сумма длин всех сторон.
Выпуклый четырехугoльник — четырехугольник, лежащий в одной полуплоскости относительно прямой,содержащей его сторону.
Внешний угол четырехугольника — угол,смежный с углом четырехугольника.

Свойства углов и сторон четырехугольника

Свойства углов
1. Сумма углов четырехугольника равна 360°.
2. Сумма внешних углов четырехугольника, взятых по одному при каждой вершине, равна 360°.

Свойства сторон
1. Каждая сторона четырехугольника меньше суммы всех его других сторон.
2. Сумма диагоналей меньше его периметра.

Виды четырехугольников

Конспекты по четырехугольникам:

Это конспект по теме «Четырехугольники и его свойства». Выберите дальнейшие действия:

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов углы являются внешними.

Каждый внутренний угол выпуклого четырёхугольника меньше Градусная мера внутреннего угла невыпуклого четырёхугольника может быть больше

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Доказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Теорема 1. Противоположные стороны параллелограмма конгруэнтны.

Теорема 2. Противоположные углы параллелограмма конгруэнтны.

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника.

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны.

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом.

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если то параллелограмм является ромбом.

Доказательство теоремы 1.

Дано: ромб.

Докажите, что

Доказательство (словестное): По определению ромба При этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что равнобедренный. Медиана (так как ), является также и биссектрисой и высотой. Т.е. Так как является прямым углом, то . Аналогичным образом можно доказать, что

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны.

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны.

План доказательства теоремы 2

Дано: равнобедренная трапеция.

Докажите:

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если тогда Запишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку проведем параллельную прямую к прямой

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике через точку — середину стороны проведите прямую параллельную Какая фигура получилась? Является ли трапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Можно ли утверждать, что

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине

Доказательство. Пусть дан треугольник и его средняя линия Проведём через точку прямую параллельную стороне По теореме Фалеса, она проходит через середину стороны т.е. совпадает со средней линией Т.е. средняя линия параллельна стороне Теперь проведём среднюю линию Т.к. то четырёхугольник является параллелограммом. По свойству параллелограмма По теореме Фалеса Тогда Теорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство: Через точку и точку середину проведём прямую и обозначим точку пересечения со стороной через

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке радиусом 3 единицы. Вычислите значение выражения Есть ли связь между значением данного выражения и координатой точки

Координаты середины отрезка

1) Пусть на числовой оси заданы точки и и точка которая является серединой отрезка

то а отсюда следует, что

2) По теореме Фалеса, если точка является серединой отрезка то на оси абсцисс точка является соответственно координатой середины отрезка концы которого находятся в точках и

3) Координаты середины отрезка с концами и точки находятся так:

Убедитесь, что данная формула верна в случае, если отрезок параллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки как показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Шаг 4. На сторонах другого квадрата отметьте отрезки как показано на рисунке и отрежьте четыре прямоугольных треугольника.

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах:

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если то, — прямоугольный.

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа являются Пифагоровыми тройками, то и числа также являются Пифагоровыми тройками.

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой —

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой.

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, , стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: =40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В + CD (по неравенству треугольника). Тогда . Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) . Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Решение:

(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично (АВ CD, ВС-секущая), (ВС || AD, CD — секущая), (АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Доказательство. по стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). по трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Углы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм.

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). по двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, как внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Но углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. по двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, как вертикальные. Из равенства треугольников следует: ВС= AD и Но углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике.

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Можно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что . по трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что . Поскольку в параллелограмме противоположные углы равны, то: . По свойству углов четырёхугольника,

Следовательно, : 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать:

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому .

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором (рис. 96). Докажем, что ABCD— ромб. по двум сторонами и углу между ними.

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, по условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки и Проведите с помощью чертёжного угольника и линейки через точки параллельные прямые, которые пересекут сторону ВС этого угла в точках При помощи циркуля сравните длины отрезков Сделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано:

Доказать:

Доказательство. Проведём через точки прямые параллельные ВС. по стороне и прилежащим к ней углам. У них по условию, как соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что и как противоположные стороны параллелограммов

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Отложим на луче АС пять равных отрезков: АА,Проведём прямую . Через точки проведём прямые, параллельные прямой . По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия , так как точки М и N — середины сторон АВ и ВС.

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: (рис. 122), AD = BD, СЕ= BE.

Доказать:

Доказательство. 1) Пусть DE- средняя линия . Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: . По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно,

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Поэтому . КР— средняя линия треугольника ADC. Поэтому КР || АС и

Получаем: MN || АС и КР || АС, отсюда MN || КР, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку = 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать:

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. no стороне и прилежащим к ней углам. У них CF = FD по условию, как вертикальные, внутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и равнобедренный. Поэтому соответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом.

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: — вписанный в окружность с центром О (рис. 188 — 190).

Доказать:

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом . По свойству внешнего угла треугольника, — равнобедренный (ОВ= OA = R). Поэтому измеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:

Из доказанного в первом случае следует, что измеряется половиной дуги AD, a — половиной дуги DC. Поэтому измеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда:

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°.

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). как вписанные, опирающиеся на дугу АС (следствие 1). Поэтому , так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно,

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, (рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около (рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо:

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность.

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Доказать:

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует:

Тогда

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225).

Докажем, что . В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, . По свойству равнобокой трапеции,

Тогда и, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения центры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника вписанного в окружность. Действительно,

Следовательно, четырёхугольник — вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

Четырехугольник и его свойства

http://www.evkova.org/chetyirehugolnik

У параллелограмма 4 угла, это частный случай четырехугольника, у которого противоположные стороны
попарно параллельны. Из этого свойства вытекает равенство противоположных сторон, равенство
противоположных углов и равенство суммы смежных углов двум прямым. Свойства параллелограмма широко
используются в быту и технике.

  • Острый угол параллелограмма через боковую сторону и
    высоту
  • Острый угол параллелограмма через высоту, сторону и
    периметр
  • Острый угол параллелограмма через площадь и две стороны
  • Острый угол параллелограмма через две стороны и короткую
    диагональ
  • Тупой угол параллелограмма через две стороны и длинную
    диагональ

Острый угол параллелограмма через боковую сторону и высоту

Рис 1

Если известна боковая сторона и высота, то можно найти острый угол параллелограмма по формуле:

sin α = h / b

где α – острый угол, h – высота, b – боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Пусть h = 4 см, b = 8 см. sin α = h / b = 8 / 4 = 2. α = 90°.

Острый угол параллелограмма через площадь и две стороны

Рис 3

Если известна площадь и две стороны, то можно найти острый угол параллелограмма по формуле:

sin α= S / ab

где α – острый угол, S — площадь параллелограмма, a и b – его стороны.

Цифр после
запятой:

Результат в:

Пример.  Пусть S=50 м², a=10 м, b=5 м. sin α= S / ab = 50 / (10 * 5) = 1. α = 90°.
Угол прямой, смежные стороны не равны, имеем дело с прямоугольником.

Острый угол параллелограмма через высоту, сторону и периметр

Рис 2

Если известна высота, сторона и периметр, то можно найти острый угол параллелограмма по формуле:

sin α = (2h + a) / P

где α – острый угол, h — высота, a — сторона, P — периметр.

Цифр после
запятой:

Результат в:

Высота опускается на известную и подставляемую в формулу сторону a. Параллелограмм с заданным
периметром приходится строить, если, например, периметр определен длиной веревки, которую требуется
растянуть на местности в форме параллелограмма.

Пример. Пусть h=10 м, a=15 м, P=70 м. sin α=(2h + a) / P= (2 * 10 + 15) / 70 = 0,5. α = 30°.

Острый угол параллелограмма через две стороны и короткую диагональ

Рис 4

Если известны две стороны и короткая диагональ, то можно найти острый угол параллелограмма по
формуле:

cos α = (a² + b² — d²) / 2ab

где α – острый угол, a и b – стороны параллелограмма, d – его короткая диагональ.

Цифр после
запятой:

Результат в:

Пример расчета: в данном частном случае 2 прилежащие стороны и короткая диагональ
равны, а именно: a = b = d = 26 мм. cos α=(a² + b² — d²) / 2ab = (26² + 26² — 26²) / (2 * 26 * 26) = 0,5. α=60°.

Из равенства прилежащих сторон следует, что это ромб, а результат расчета показывает, что острый угол
в ромбе равен 60°. Знаете, что это за ромб с подобными размерами? Это нагрудный академический знак
для лиц, окончивших советские высшие учебные заведения, установленный с 1961 года.

Тупой угол параллелограмма через две стороны и длинную диагональ

Рис 5

Если известны две стороны и длинная диагональ, то можно найти тупой угол параллелограмма по
формуле:

cos β = (a² + b² — D²) / 2ab

где α – тупой угол, a и b – стороны параллелограмма, D – его длинная диагональ.

Цифр после
запятой:

Результат в:

Пример расчета: вновь ромб со сторонами a = b = 26 мм и длинной диагональю D=43 мм.
cos β = (a² + b² — D²) / 2ab = (26² + 26² — 43²) / (2 * 26 * 26) = -0,368. α = 112°.
Это опять-таки нагрудный академический знак из предыдущего примера, небольшое отличие полученного
результата от 120° (при остром угле 60° по предыдущему примеру) объясняется округлением исходных
данных до целого числа миллиметров.

Свойства параллелограмма

У любого выпуклого четырехугольника сумма всех внутренних углов равна 360°, исходя из общей формулы
суммы внутренних углов выпуклого многоугольника в градусах s = 180 (n — 2), где n – количество
сторон. Следовательно, если хотя-бы 1 угол параллелограмма равен прямому (90°), остальные 3 угла
также являются прямыми, и параллелограмм вырождается в свой частный вид – прямоугольник.

Если 2 смежные стороны параллелограмма равны, то равны все его 4 стороны, и параллелограмм
вырождается в ромб. И, наконец, если у параллелограмма равны 2 смежные стороны, а угол между ними
прямой, параллелограмм является одновременно и прямоугольником, и ромбом, и вырождается в квадрат.
Зачастую возникает необходимость определения неизвестных характеристик параллелограмма через
известные. Выше ряд примеров подобного рода.

Самый наглядный пример параллелограмма – пантограф электропоезда. При подключении опущенного
пантографа к контактной сети железной дороги изменяется конфигурация пантографа при сохранении длин
сторон, в результате изменяется вертикальная диагональ и происходит касание с подачей электрического
тока.
Форму параллелограмма имеет автомобильный реечный домкрат, велосипедная рама (с
диагональю для увеличения жесткости). Ведь параллелограмм — фигура нежесткая, в отличие от
треугольника. Из нежесткости параллелограмма следует, что знания одних длин сторон недостаточно для
вычисления площади фигуры. Так, пантограф электропоезда можно «сложить» до нулевой площади.
Стеклоочиститель лобового стекла автобуса также представляет собой параллелограмм, и именно
нежесткость фигуры позволяет стеклоочистителю «ометать» при движении стекло.

Как найти углы параллелограмма

Параллелограммом называют четырехугольник противолежащие стороны которого попарно параллельны. Также параллелограмм обладает такими свойствами, как противоположные стороны равны, противоположные углы равны, сумма всех углов равна 360 градусов.

Как найти углы параллелограмма

Вам понадобится

  • Знания по геометрии.

Инструкция

Предположим дан один из углов параллелограмма и равен A. Найдем значения остальных трех. По свойству параллелограмма противоположные углы равны. Значит угол, лежащий напротив данного равен данному и его значение равно А.

Найдем оставшиеся два угла. Так как сумма всех углов в параллелограмме равна 360 градусов, а противоположные углы между собой равны, то получается, что угол, принадлежащий одной стороне с данным, равен (360 — 2А)/2. Ну или после преобразования получим 180 — А. Таким образом в параллелограмме два угла равны А, а два других угла равны 180 — А.

Обратите внимание

Значение одного угла не может превышать 180 градусов. Полученные значения углов можно легко проверить. Для этого сложите их и, если сумма равна 360, все посчитано верно.

Полезный совет

Прямоугольник и ромб являются частным случаем параллелограмма, поэтому все свойства и методы вычисления углов применимы и к ним.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Содержание:

С четырехугольником вы уже знакомились на уроках математики. Дадим строгое определение этой фигуры.

Определение четырехугольника:

Четырехугольником называется фигура, состоящая из четырех точек (вершин четырехугольника) и четырех отрезков, которые их последовательно соединяют (сторон четырехугольника). При этом никакие три его вершины не лежат на одной прямой и никакие две стороны не пересекаются.

Параллелограмм - его свойства, признаки и определение с примерами решения

На рисунке 1 изображен четырехугольник с вершинами Параллелограмм - его свойства, признаки и определение с примерами решения

Говорят, что две вершины четырехугольника являются соседними вершинами, если они соединены одной стороной; вершины, которые не являются соседними, называют противолежащими вершинами. Аналогично стороны четырехугольника, имеющие общую вершину, являются соседними сторонами, а стороны, не имеющие общих точек,— противолежащими сторонами. На рисунке 1 стороны Параллелограмм - его свойства, признаки и определение с примерами решения — соседние для стороны Параллелограмм - его свойства, признаки и определение с примерами решения а сторона Параллелограмм - его свойства, признаки и определение с примерами решения — противолежащая стороне Параллелограмм - его свойства, признаки и определение с примерами решения вершины Параллелограмм - его свойства, признаки и определение с примерами решения — соседние с вершиной Параллелограмм - его свойства, признаки и определение с примерами решения а вершина Параллелограмм - его свойства, признаки и определение с примерами решения — противолежащая вершине Параллелограмм - его свойства, признаки и определение с примерами решения

Четырехугольник обозначают, последовательно указывая все его вершины, причем буквы, которые стоят рядом, должны обозначать соседние вершины. Например, четырехугольник на рисунке 1 можно обозначить Параллелограмм - его свойства, признаки и определение с примерами решения или Параллелограмм - его свойства, признаки и определение с примерами решения но нельзя обозначать Параллелограмм - его свойства, признаки и определение с примерами решения

Определение

Диагональю четырехугольника называется отрезок, соединяющий две противолежащие вершины.

В четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 2) диагоналями являются отрезки Параллелограмм - его свойства, признаки и определение с примерами решенияСледует отметить, что любой четырехугольник имеет диагональ, которая делит его на два треугольника.

Определение

Периметром четырехугольника называется сумма длин всех его сторон. Периметр четырехугольника (как и треугольника) обозначают буквой Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Любой четырехугольник ограничивает конечную часть плоскости, которую называют внутренней областью этого четырехугольника (на рис. 3, а, б она закрашена).

На рисунке 3 изображены два четырехугольника и проведены прямые, на которых лежат стороны этих четырехугольников. В четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения эти прямые не проходят через внутреннюю область — такой четырехугольник является выпуклым (рис. 3, а). В четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения прямые Параллелограмм - его свойства, признаки и определение с примерами решения проходят через внутреннюю область — этот четырехугольник является невыпуклым (рис. 3, б).

Определение

Четырехугольник называется выпуклым, если он лежит по одну сторону от любой прямой, содержащей его сторону.

Действительно, четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения на рисунке 3, а лежит по одну сторону от любой из прямых Параллелограмм - его свойства, признаки и определение с примерами решения В школьном курсе геометрии мы будем рассматривать только

Параллелограмм - его свойства, признаки и определение с примерами решения

выпуклые четырехугольники (другие случаи будут оговорены отдельно).

Определение

Углом (внутренним углом) выпуклого четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения при вершине Параллелограмм - его свойства, признаки и определение с примерами решения называется угол Параллелограмм - его свойства, признаки и определение с примерами решения

Угол, смежный с внутренним углом четырехугольника при данной вершине, называют внешним углом четырехугольника при данной вершине.

Углы, вершины которых являются соседними, называют соседними углами, а углы, вершины которых являются противолежащими,— противолежащими углами четырехугольника.

Теорема (о сумме углов четырехугольника)

Сумма углов четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения

Доказательство:

 В данном четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения проведем диагональ, которая делит его на два треугольника (рис. 4). Поскольку Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения сумма углов четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения равна сумме всех углов треугольников Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения то есть равна Параллелограмм - его свойства, признаки и определение с примерами решения Теорема доказана. 

Пример:

Углы четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения соседние с углом Параллелограмм - его свойства, признаки и определение с примерами решения равны, а противолежащий угол  в два раза больше угла Параллелограмм - его свойства, признаки и определение с примерами решения (см. рис. 1). Найдите угол Параллелограмм - его свойства, признаки и определение с примерами решения если Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

Углами, соседними с углом Параллелограмм - его свойства, признаки и определение с примерами решения являются углы Параллелограмм - его свойства, признаки и определение с примерами решения а углом, противолежащим к Параллелограмм - его свойства, признаки и определение с примерами решения — угол Параллелограмм - его свойства, признаки и определение с примерами решения По условию задачи Параллелограмм - его свойства, признаки и определение с примерами решения Поскольку сумма углов четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения то Параллелограмм - его свойства, признаки и определение с примерами решения Если градусная мера угла Параллелограмм - его свойства, признаки и определение с примерами решения равна Параллелограмм - его свойства, признаки и определение с примерами решения то градусная мера угла Параллелограмм - его свойства, признаки и определение с примерами решения по условию равна Параллелограмм - его свойства, признаки и определение с примерами решения Отсюда имеем: Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Определение параллелограмма

Определение параллелограмма

Рассмотрим на плоскости две параллельные прямые, пересеченные двумя другими параллельными прямыми (рис. 7).

Параллелограмм - его свойства, признаки и определение с примерами решения

В результате такого пересечения образуется четырехугольник, который имеет специальное название — параллелограмм.

Определение

Параллелограммом называется четырехугольник, противолежащие стороны которого попарно параллельны.

На рисунке 7 изображен параллелограмм Параллелограмм - его свойства, признаки и определение с примерами решения в котором Параллелограмм - его свойства, признаки и определение с примерами решения

Пример:

На рисунке 8 Параллелограмм - его свойства, признаки и определение с примерами решения Докажите, что четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм.

Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

Из равенства треугольников Параллелограмм - его свойства, признаки и определение с примерами решения следует равенство углов: Параллелограмм - его свойства, признаки и определение с примерами решения Углы 1 и 2 являются внутренними накрест лежащими при прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Аналогично углы 3 и 4 являются внутренними накрест лежащими при прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения По признаку параллельности прямых имеем: Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения противолежащие стороны попарно параллельны, т.е. Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм по определению.

Как и в треугольнике, в параллелограмме можно провести высоты (рис. 9).

Параллелограмм - его свойства, признаки и определение с примерами решения

Определение

Высотой параллелограмма называется перпендикуляр, проведенный из точки одной стороны к прямой, которая содержит противолежащую сторону.

Очевидно, что к одной стороне параллелограмма можно провести бесконечно много высот (рис. 9, а),— все они будут равны как расстояния между параллельными прямыми, а из одной вершины параллелограмма можно провести две высоты к разным сторонам (рис. 9, б). Часто, говоря «высота параллелограмма», имеют в виду ее длину.

Свойства параллелограмма

Непосредственно из определения параллелограмма следует, что любые два его соседних угла являются внутренними односторонними при параллельных прямых, которые содержат противолежащие стороны. Это означает, что сумма двух соседних углов параллелограмма равна Параллелограмм - его свойства, признаки и определение с примерами решения

Докажем еще несколько важных свойств сторон, углов и диагоналей параллелограмма.

Теорема (свойства параллелограмма)

В параллелограмме:

  1. противолежащие стороны равны;
  2. противолежащие углы равны;
  3. диагонали точкой пересечения делятся пополам.

Свойства 1 и 2 иллюстрирует рисунок 10, а, а свойство 3 — рисунок 10, б.

Параллелограмм - его свойства, признаки и определение с примерами решения

Доказательство:

Проведем в параллелограмме Параллелограмм - его свойства, признаки и определение с примерами решения диагональ Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 11) и рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения 

Параллелограмм - его свойства, признаки и определение с примерами решения

У них сторона Параллелограмм - его свойства, признаки и определение с примерами решения — общая, Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения по второму признаку равенства треугольников. Отсюда, в частности, следует, что Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения А поскольку Параллелограмм - его свойства, признаки и определение с примерами решения то Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, свойства 1 и 2 доказаны.

Для доказательства свойства 3 проведем в параллелограмме Параллелограмм - его свойства, признаки и определение с примерами решения диагонали Параллелограмм - его свойства, признаки и определение с примерами решения которые пересекаются в точке Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 12).

Параллелограмм - его свойства, признаки и определение с примерами решения

Рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения У них Параллелограмм - его свойства, признаки и определение с примерами решения по доказанному, Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения по второму признаку. Отсюда следует, что Параллелограмм - его свойства, признаки и определение с примерами решения т. е. точка Параллелограмм - его свойства, признаки и определение с примерами решения является серединой каждой из диагоналей Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения Теорема доказана полностью. 

Пример №1

Сумма двух углов параллелограмма равна Параллелограмм - его свойства, признаки и определение с примерами решения Найдите углы параллелограмма.

Решение:

Пусть дан параллелограмм Параллелограмм - его свойства, признаки и определение с примерами решения Поскольку сумма двух соседних углов параллелограмма равна Параллелограмм - его свойства, признаки и определение с примерами решения то данные углы могут быть только противолежащими. Пусть Параллелограмм - его свойства, признаки и определение с примерами решения Тогда по свойству углов параллелограмма Параллелограмм - его свойства, признаки и определение с примерами решения Сумма всех углов параллелограмма равна Параллелограмм - его свойства, признаки и определение с примерами решения поэтому Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: Параллелограмм - его свойства, признаки и определение с примерами решения

Пример №2

В параллелограмме Параллелограмм - его свойства, признаки и определение с примерами решения биссектриса угла Параллелограмм - его свойства, признаки и определение с примерами решения делит сторону Параллелограмм - его свойства, признаки и определение с примерами решения пополам. Найдите периметр параллелограмма, если Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

Пусть в параллелограмме Параллелограмм - его свойства, признаки и определение с примерами решения биссектриса угла Параллелограмм - его свойства, признаки и определение с примерами решения пересекает сторону Параллелограмм - его свойства, признаки и определение с примерами решения в точке Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения(рис. 13). Заметим, что Параллелограмм - его свойства, признаки и определение с примерами решения поскольку Параллелограмм - его свойства, признаки и определение с примерами решения— биссектриса угла Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Отсюда Параллелограмм - его свойства, признаки и определение с примерами решения т.е. по признаку равнобедренного треугольника треугольник Параллелограмм - его свойства, признаки и определение с примерами решения — равнобедренный с основанием Параллелограмм - его свойства, признаки и определение с примерами решения значит, Параллелограмм - его свойства, признаки и определение с примерами решения По условию Параллелограмм - его свойства, признаки и определение с примерами решенияСледовательно, поскольку противолежащие стороны параллелограмма равны, то Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: 36 см.

Признаки параллелограмма

Теоремы о признаках параллелограмма

Для того чтобы использовать свойства параллелограмма, во многих случаях необходимо сначала убедиться, что данный четырехугольник действительно является параллелограммом. Это можно доказать либо по определению (см. задачу в п. 2.1), либо по признакам — условиям, гарантирующим, что данный четырехугольник — параллелограмм. Докажем признаки параллелограмма, которые чаще всего применяются на практике.

Теорема (признаки параллелограмма)

  1. Если две противолежащие стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм.
  2. Если противолежащие стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.
  3. Если диагонали четырехугольника точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Доказательство:

1) Пусть в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения (рис. 15).

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведем диагональ Параллелограмм - его свойства, признаки и определение с примерами решения и рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения Они имеют общую сторону Параллелограмм - его свойства, признаки и определение с примерами решения по условию, Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решенияпо первому признаку равенства треугольников. Из равенства этих треугольников следует равенство углов 3 и 4. Но эти углы являются внутренними накрест лежащими при прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Тогда по признаку параллельности прямых Параллелограмм - его свойства, признаки и определение с примерами решения Таким образом, в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения противолежащие стороны попарно параллельны, откуда следует, что Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм по определению.

2) Пусть в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения Параллелограмм - его свойства, признаки и определение с примерами решения(рис. 16).

Параллелограмм - его свойства, признаки и определение с примерами решения

Снова проведем диагональ Параллелограмм - его свойства, признаки и определение с примерами решения и рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения В этом случае они равны по третьему признаку: сторона Параллелограмм - его свойства, признаки и определение с примерами решения — общая, Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения по условию. Из равенства треугольников следует равенство углов 1 и 2, которые являются внутренними накрест лежащими при прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения По признаку параллельности прямых Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения стороны Параллелограмм - его свойства, признаки и определение с примерами решения параллельны и равны, и по только что доказанному признаку 1 Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм.

3) Пусть в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения диагонали пересекаются в точке Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 17). Рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения Эти треугольники равны по первому признаку: Параллелограмм - его свойства, признаки и определение с примерами решения как вертикальные, а Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения по условию. Следовательно, равны и соответствующие стороны и углы этих треугольников: Параллелограмм - его свойства, признаки и определение с примерами решения Тогда Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм по признаку 1.

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема доказана полностью. 

Пример №3

В параллелограмме Параллелограмм - его свойства, признаки и определение с примерами решения точки Параллелограмм - его свойства, признаки и определение с примерами решения — середины сторон Параллелограмм - его свойства, признаки и определение с примерами решения соответственно (рис. 18). Докажите, что четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения —параллелограмм.

Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

Рассмотрим четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения Стороны Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения параллельны, т.к. лежат на прямых, содержащих противолежащие стороны параллелограмма Параллелограмм - его свойства, признаки и определение с примерами решения Кроме того, Параллелограмм - его свойства, признаки и определение с примерами решения как половины равных сторон Параллелограмм - его свойства, признаки и определение с примерами решенияпараллелограмма Параллелограмм - его свойства, признаки и определение с примерами решения Таким образом, в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения две стороны параллельны и равны. Следовательно, четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм.

Попробуйте самостоятельно найти другие способы решения этой задачи, основанные на применении других признаков и определения параллелограмма.

Необходимые и достаточные условия

Каждый из признаков параллелограмма указывает на определенную особенность, наличия которой в четырехугольнике достаточно для того, чтобы утверждать, что он является параллелограммом. Вообще в математике признаки иначе называют достаточными условиями. Например, перпендикулярность двух прямых третьей — достаточное условие параллельности данных двух прямых.

В отличие от признаков, свойства параллелограмма указывают на ту особенность, которую обязательно имеет любой параллелограмм. Свойства иначе называют необходимыми условиями. Поясним такое название примером: равенство двух углов необходимо для того, чтобы углы были вертикальными, ведь если этого равенства нет, вертикальными такие углы быть не могут.

В случае верности теоремы «Если Параллелограмм - его свойства, признаки и определение с примерами решения то Параллелограмм - его свойства, признаки и определение с примерами решения утверждение Параллелограмм - его свойства, признаки и определение с примерами решения является достаточным условием для утверждения Параллелограмм - его свойства, признаки и определение с примерами решения а утверждение Параллелограмм - его свойства, признаки и определение с примерами решения — необходимым условием для утверждения Параллелограмм - его свойства, признаки и определение с примерами решения Схематически это можно представить так:

Параллелограмм - его свойства, признаки и определение с примерами решения

Таким образом, необходимые условия (свойства) параллелограмма следуют из того, что данный четырехугольник — параллелограмм; из достаточных условий (признаков) следует то, что данный четырехугольник — параллелограмм.

Сравнивая свойства и признаки параллелограмма, нетрудно заметить, что одно и то же условие (например, попарное равенство противолежащих сторон) является и свойством, и признаком параллелограмма. В таком случае говорят, что условие является необходимым и достаточным. Необходимое и достаточное условие иначе называют критерием. Например, равенство двух углов треугольника — критерий равнобедренного треугольника.

Немало примеров необходимых и достаточных условий можно найти в других науках и в повседневной жизни. Все мы знаем, что воздух — необходимое условие для жизни человека, но не достаточное (человеку для жизни нужно еще много чего, среди прочего — пища). Выигрыш в лотерею — достаточное условие для материального обогащения человека, но оно не является необходимым — ведь улучшить свое финансовое положение можно и другим способом. Попробуйте самостоятельно найти несколько примеров необходимых и достаточных условий.

Виды параллелограммов

Прямоугольник

Определение

Прямоугольником называется параллелограмм, у которого все углы прямые.

На рисунке 28 изображен прямоугольник Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Поскольку прямоугольник является частным случаем параллелограмма, он имеет все свойства параллелограмма: противолежащие стороны прямоугольника параллельны и равны, противолежащие углы равны, диагонали точкой пересечения делятся пополам и т.д. Однако прямоугольник имеет некоторые особые свойства. Докажем одно из них.

Теорема (свойство прямоугольника)

Диагонали прямоугольника равны.

Доказательство:

 Пусть дан прямоугольник Параллелограмм - его свойства, признаки и определение с примерами решения с диагоналями Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 29). Треугольники Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения прямоугольные и равны по двум катетам Параллелограмм - его свойства, признаки и определение с примерами решения — общий, Параллелограмм - его свойства, признаки и определение с примерами решения как противолежащие стороны прямоугольника). Отсюда следует равенство гипотенуз этих треугольников, т. е. Параллелограмм - его свойства, признаки и определение с примерами решения что и требовалось доказать. 

Параллелограмм - его свойства, признаки и определение с примерами решения

Имеет место и обратное утверждение (признак прямоугольника): если диагонали параллелограмма равны, то этот параллелограмм является прямоугольником. Докажите это утверждение самостоятельно. Таким образом, можно утверждать, что равенство диагоналей параллелограмма — необходимое и достаточное условие (критерий) прямоугольника.

Опорная задача

Если все углы четырехугольника прямые, то этот четырехугольник — прямоугольник. Докажите.

Решение:

Пусть в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения (см. рис. 28). Углы Параллелограмм - его свойства, признаки и определение с примерами решения являются внутренними односторонними при прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Поскольку сумма этих углов составляет Параллелограмм - его свойства, признаки и определение с примерами решения то по признаку параллельности прямых Параллелограмм - его свойства, признаки и определение с примерами решения Аналогично доказываем параллельность сторон Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, по определению параллелограмма Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм. А поскольку все углы этого параллелограмма прямые, то Параллелограмм - его свойства, признаки и определение с примерами решения — прямоугольник по определению.

Ромб

Определение

Ромбом называется параллелограмм, у которого все стороны равны.

На рисунке 30 изображен ромб Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Он обладает всеми свойствами параллелограмма, а также некоторыми дополнительными свойствами, которые мы сейчас докажем.

Теорема (свойства ромба)

Диагонали ромба перпендикулярны и делят его углы пополам.

Эти свойства ромба иллюстрируются рисунком 31.

Доказательство:

 Пусть диагонали ромба Параллелограмм - его свойства, признаки и определение с примерами решения пересекаются в точке Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 32). Поскольку стороны ромба равны, то треугольникПараллелограмм - его свойства, признаки и определение с примерами решения  равнобедренный с основанием Параллелограмм - его свойства, признаки и определение с примерами решения а по свойству диагоналей параллелограмма точка Параллелограмм - его свойства, признаки и определение с примерами решения — середина Параллелограмм - его свойства, признаки и определение с примерами решенияСледовательно, отрезок Параллелограмм - его свойства, признаки и определение с примерами решения — медиана равнобедренного треугольника, которая одновременно является его высотой и биссектрисой. Это означает, что Параллелограмм - его свойства, признаки и определение с примерами решения т.е. диагонали ромба перпендикулярны, иПараллелограмм - его свойства, признаки и определение с примерами решения— биссектриса угла Параллелограмм - его свойства, признаки и определение с примерами решения

Аналогично доказываем, что диагонали ромба являются биссектрисами и других его углов. Теорема доказана. 

Параллелограмм - его свойства, признаки и определение с примерами решения

Опорная задача

Если все стороны четырехугольника равны, то этот четырехугольник — ромб. Докажите.

Решение:

Очевидно, что в четырехугольнике, все стороны которого равны, попарно равными являются и противолежащие стороны. Следовательно, по признаку параллелограмма такой четырехугольник — параллелограмм, а по определению ромба параллелограмм, у которого все стороны равны, является ромбом.

Решая задачи, помещенные в конце этого параграфа, вы докажете другие признаки прямоугольника и ромба.

Квадрат

На рисунке 33 изображен еще один вид параллелограмма — квадрат.

Параллелограмм - его свойства, признаки и определение с примерами решения

Определение

Квадратом называется прямоугольник, у которого все стороны равны.

Иначе можно сказать, что квадрат — это прямоугольник, который является ромбом. Действительно, поскольку квадрат является прямоугольником и ромбом и, конечно же, произвольным параллелограммом, то:

  1. все стороны квадрата равны, а противолежащие стороны параллельны;
  2. все углы квадрата прямые;
  3. диагонали квадрата равны, перпендикулярны, делят углы квадрата пополам и делятся точкой пересечения пополам.

Связь между отдельными видами параллелограммов. Равносильные утверждения

Исходя из определений произвольного параллелограмма и его отдельных видов, мы можем схематически отобразить связь между ними (рис. 34).

Параллелограмм - его свойства, признаки и определение с примерами решения

На схеме представлены множества параллелограммов, прямоугольников и ромбов. Такой способ наглядного представления множеств называют диаграммами Эйлера — Венна. Диаграмма Эйлера — Венна для параллелограммов демонстрирует, что множества прямоугольников и ромбов являются частями (подмножествами) множества параллелограммов, а множество квадратов — общей частью (пересечением) множеств прямоугольников и ромбов. Диаграммы Эйлера — Венна часто используют для подтверждения или проверки правильности логических рассуждений.

Подытоживая материал этого параграфа, обратим также внимание на то, что возможно и другое определение квадрата: квадратом называется ромб с прямыми углами. В самом деле, оба приведенных определения описывают одну и ту же фигуру. Такие определения называют равносильными. Вообще два утверждения называются равносильными, если они или оба выполняются, или оба не выполняются. Например, равносильными являются утверждения «В треугольнике две стороны равны» и «В треугольнике два угла равны», ведь оба они верны, если рассматривается равнобедренный треугольник, и оба ложны, если речь идет о разностороннем треугольнике.

Равносильность двух утверждений также означает, что любое из них является необходимым и достаточным условием для другого. В самом деле, рассмотрим равносильные утверждения «Диагонали параллелограмма равны» и «Параллелограмм имеет прямые углы». Из того, что диагонали параллелограмма равны, следует, что он является прямоугольником, т.е. имеет прямые углы, и наоборот: параллелограмм с прямыми углами является прямоугольником, т.е. имеет равные диагонали. На этом примере легко проследить логические шаги перехода от признаков фигуры к ее определению и далее — к свойствам. Такой переход довольно часто приходится выполнять в процессе решения задач.

Трапеция

Как известно, любой параллелограмм имеет две пары параллельных сторон. Рассмотрим теперь четырехугольник, который имеет только одну пару параллельных сторон.

Определение

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Параллельные стороны трапеции называют ее основаниями, а непараллельные стороны — боковыми сторонами. На рисунке 37 в трапеции Параллелограмм - его свойства, признаки и определение с примерами решения стороны Параллелограмм - его свойства, признаки и определение с примерами решения являются основаниями, а Параллелограмм - его свойства, признаки и определение с примерами решения — боковыми сторонами.

Параллелограмм - его свойства, признаки и определение с примерами решения

Углы, прилежащие к одной боковой стороне, являются внутренними односторонними при параллельных прямых, на которых лежат основания трапеции. По теореме о свойстве параллельных прямых из этого следует, что сумма углов трапеции, прилежащих к боковой стороне, равна Параллелограмм - его свойства, признаки и определение с примерами решения На рисунке 37 Параллелограмм - его свойства, признаки и определение с примерами решения

Определение

Высотой трапеции называется перпендикуляр, проведенный из точки одного основания к прямой, содержащей другое основание.

Очевидно, что в трапеции можно провести бесконечно много высот (рис. 38),— все они равны как расстояния между параллельными прямыми.

Параллелограмм - его свойства, признаки и определение с примерами решения

Чаще всего в процессе решения задач высоты проводят из вершин углов при меньшем основании трапеции.

Частные случаи трапеций

Как среди треугольников и параллелограммов, так и среди трапеций выделяются отдельные виды, обладающие дополнительными свойствами.

Определение

Прямоугольной трапецией называется трапеция, в которой одна из боковых сторон перпендикулярна основаниям.

Параллелограмм - его свойства, признаки и определение с примерами решения

На рисунке 39 изображена прямоугольная трапеция. У нее два прямых угла при меньшей боковой стороне. Эта сторона одновременно является и высотой трапеции.

Определение

Равнобедренной трапецией называется трапеция, в которой боковые стороны равны.

Параллелограмм - его свойства, признаки и определение с примерами решения

На рисунке 40 изображена равнобедренная трапеция Параллелограмм - его свойства, признаки и определение с примерами решения с боковыми сторонами Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения Иногда равнобедренную трапецию также называют равнобокой или равнобочной.

У равнобедренной трапеции так же, как и у равнобедренного треугольника, углы при основании равны. Докажем это в следующей теореме.

Теорема (свойство равнобедренной трапеции)

В равнобедренной трапеции углы при основании равны.

Доказательство:

 Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — данная трапеция, Параллелограмм - его свойства, признаки и определение с примерами решения

Перед началом доказательства заметим, что этой теоремой утверждается равенство углов при каждом из двух оснований трапеции, т. е. необходимо доказать, что Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведем высоты Параллелограмм - его свойства, признаки и определение с примерами решения из вершин тупых углов и рассмотрим прямоугольные треугольники Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 41). У них Параллелограмм - его свойства, признаки и определение с примерами решения как боковые стороны равнобедренной трапеции, Параллелограмм - его свойства, признаки и определение с примерами решения как расстояния между параллельными прямыми Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения по гипотенузе и катету. Отсюда следует, что Параллелограмм - его свойства, признаки и определение с примерами решения Углы трапеции Параллелограмм - его свойства, признаки и определение с примерами решения также равны, поскольку они дополняют равные углы Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема доказана. 

Имеет место также обратное утверждение (признак равнобедренной трапеции):

  • если в трапеции углы при основании равны, то такая трапеция является равнобедренной.

Докажите этот факт самостоятельно.

Пример №4

Меньшее основание равнобедренной трапеции равно боковой стороне, а диагональ перпендикулярна боковой стороне. Найдите углы трапеции.

Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

Пусть дана равнобедренная трапеция Параллелограмм - его свойства, признаки и определение с примерами решения в которой Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 42). По условию задачи треугольник Параллелограмм - его свойства, признаки и определение с примерами решения равнобедренный с основанием Параллелограмм - его свойства, признаки и определение с примерами решения с другой стороны, Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Пусть градусная мера угла 1 равна Параллелограмм - его свойства, признаки и определение с примерами решения тогда в данной трапеции Параллелограмм - его свойства, признаки и определение с примерами решения Поскольку сумма углов, прилежащих к боковой стороне, составляет Параллелограмм - его свойства, признаки и определение с примерами решения имеем: Параллелограмм - его свойства, признаки и определение с примерами решенияСледовательно, Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: Параллелограмм - его свойства, признаки и определение с примерами решения

Построение параллелограммов и трапеций

Задачи на построение параллелограммов и трапеций часто решают методом вспомогательного треугольника. Напомним, что для этого необходимо выделить в искомой фигуре треугольник, который можно построить по имеющимся данным. Построив его, получаем две или три вершины искомого четырехугольника, а остальные вершины находим по данным задачи.

Пример №5

Постройте параллелограмм по двум диагоналям и углу между ними.

Решение:

Пусть  Параллелограмм - его свойства, признаки и определение с примерами решения— данные диагонали параллелограмма, Параллелограмм - его свойства, признаки и определение с примерами решения — угол между ними. Анализ

Пусть параллелограмм Параллелограмм - его свойства, признаки и определение с примерами решения построен (рис. 43).

Параллелограмм - его свойства, признаки и определение с примерами решения

Треугольник Параллелограмм - его свойства, признаки и определение с примерами решения можно построить по двум сторонам и углу между ними Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения

Таким образом, мы получим вершины Параллелограмм - его свойства, признаки и определение с примерами решения искомого параллелограмма.

Вершины Параллелограмм - его свойства, признаки и определение с примерами решения можно получить, «удвоив» отрезки Параллелограмм - его свойства, признаки и определение с примерами решения

Построение

1.    Разделим отрезки Параллелограмм - его свойства, признаки и определение с примерами решения пополам.

2.    Построим треугольник Параллелограмм - его свойства, признаки и определение с примерами решения по двум сторонам и углу между ними.

3.    На лучах Параллелограмм - его свойства, признаки и определение с примерами решения отложим отрезки Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения

4.    Последовательно соединим точки Параллелограмм - его свойства, признаки и определение с примерами решения

Доказательство:

Четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм, поскольку по построению его диагонали Параллелограмм - его свойства, признаки и определение с примерами решения точкой пересечения делятся пополам. В этом параллелограмме Параллелограмм - его свойства, признаки и определение с примерами решения (по построению),

Параллелограмм - его свойства, признаки и определение с примерами решения

Исследование

Задача имеет единственное решение при любых значениях Параллелограмм - его свойства, признаки и определение с примерами решения

В некоторых случаях для построения вспомогательного треугольника на рисунке-эскизе необходимо провести дополнительные линии.

Пример №6

Постройте трапецию по четырем сторонам.

Решение:

Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — основания искомой трапеции, Параллелограмм - его свойства, признаки и определение с примерами решения — ее боковые стороны.

Анализ

Пусть искомая трапеция Параллелограмм - его свойства, признаки и определение с примерами решения построена (рис. 44).

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведем через вершину Параллелограмм - его свойства, признаки и определение с примерами решения прямую Параллелограмм - его свойства, признаки и определение с примерами решения параллельную Параллелограмм - его свойства, признаки и определение с примерами решения Тогда Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм по определению, следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения Кроме того, Параллелограмм - его свойства, признаки и определение с примерами решения следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения Вспомогательный треугольник Параллелограмм - его свойства, признаки и определение с примерами решения можно построить по трем сторонам. После этого для получения вершин Параллелограмм - его свойства, признаки и определение с примерами решения надо отложить на луче Параллелограмм - его свойства, признаки и определение с примерами решения и на луче с началом в точке Параллелограмм - его свойства, признаки и определение с примерами решения параллельном Параллелограмм - его свойства, признаки и определение с примерами решения отрезки длиной Параллелограмм - его свойства, признаки и определение с примерами решения

Построение

1. Построим отрезок Параллелограмм - его свойства, признаки и определение с примерами решения

2. Построим треугольник Параллелограмм - его свойства, признаки и определение с примерами решения по трем сторонам Параллелограмм - его свойства, признаки и определение с примерами решения

3. Построим луч, проходящий через точку Параллелограмм - его свойства, признаки и определение с примерами решения и параллельный Параллелограмм - его свойства, признаки и определение с примерами решения При этом построенный луч и луч Параллелограмм - его свойства, признаки и определение с примерами решения должны лежать по одну сторону от прямой Параллелограмм - его свойства, признаки и определение с примерами решения

4. На луче Параллелограмм - его свойства, признаки и определение с примерами решения от точки Параллелограмм - его свойства, признаки и определение с примерами решения отложим отрезок Параллелограмм - его свойства, признаки и определение с примерами решения на луче с началом Параллелограмм - его свойства, признаки и определение с примерами решения — отрезок Параллелограмм - его свойства, признаки и определение с примерами решения

5. Соединим точки Параллелограмм - его свойства, признаки и определение с примерами решения

Доказательство:

По построению Параллелограмм - его свойства, признаки и определение с примерами решения следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм по признаку. Отсюда Параллелограмм - его свойства, признаки и определение с примерами решения Кроме того, Параллелограмм - его свойства, признаки и определение с примерами решенияСледовательно, Параллелограмм - его свойства, признаки и определение с примерами решения — искомая трапеция.

Исследование

Задача имеет единственное решение, если числа Параллелограмм - его свойства, признаки и определение с примерами решения удовлетворяют неравенству треугольника.

Теорема Фалеса

Для дальнейшего изучения свойств трапеции докажем важную теорему.

Теорема (Фалеса)

Параллельные прямые, которые пересекают стороны угла и отсекают на одной из них равные отрезки, отсекают равные отрезки и на другой стороне.

Доказательство:

 Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — точки пересечения параллельных прямых с одной из сторон данного угла, а Параллелограмм - его свойства, признаки и определение с примерами решения — соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если Параллелограмм - его свойства, признаки и определение с примерами решения то Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 46).

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведем через точку Параллелограмм - его свойства, признаки и определение с примерами решения прямую Параллелограмм - его свойства, признаки и определение с примерами решения параллельную Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 47).

Параллелограмм - его свойства, признаки и определение с примерами решения

Четырехугольники Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограммы по определению. Тогда Параллелограмм - его свойства, признаки и определение с примерами решения а поскольку Параллелограмм - его свойства, признаки и определение с примерами решения

Рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения У них Параллелограмм - его свойства, признаки и определение с примерами решения по доказанному, Параллелограмм - его свойства, признаки и определение с примерами решения как вертикальные, a Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решенияСледовательно, Параллелограмм - его свойства, признаки и определение с примерами решения по второму признаку, откуда Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема доказана. 

Заметим, что в условии данной теоремы вместо сторон угла можно рассматривать две произвольные прямые, поэтому теорема Фалеса может формулироваться и следующим образом: параллельные прямые, которые пересекают две данные прямые и отсекают на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.

Пример №7

Разделите данный отрезок на Параллелограмм - его свойства, признаки и определение с примерами решения равных частей.

Решение:

Решим задачу для Параллелограмм - его свойства, признаки и определение с примерами решения т.е. разделим данный отрезок Параллелограмм - его свойства, признаки и определение с примерами решения на три равные части (рис. 48).

Параллелограмм - его свойства, признаки и определение с примерами решения

Для этого проведем из точки Параллелограмм - его свойства, признаки и определение с примерами решения произвольный луч, не дополнительный к лучу Параллелограмм - его свойства, признаки и определение с примерами решения и отложим на нем равные отрезки Параллелограмм - его свойства, признаки и определение с примерами решения Проведем прямую Параллелограмм - его свойства, признаки и определение с примерами решения и параллельные ей прямые через точки Параллелограмм - его свойства, признаки и определение с примерами решения По теореме Фалеса эти прямые делят отрезок Параллелограмм - его свойства, признаки и определение с примерами решения на три равные части. Аналогично можно разделить произвольный отрезок на любое количество равных частей.

Средняя линия треугольника

Теорема Фалеса помогает исследовать еще одну важную линию в треугольнике.

Определение

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 49, а отрезок Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия треугольника Параллелограмм - его свойства, признаки и определение с примерами решения В любом треугольнике можно провести три средние линии (рис. 49, б).

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема (свойство средней линии треугольника)

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Доказательство:

 Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия треугольника Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 50). Докажем сначала, что Параллелограмм - его свойства, признаки и определение с примерами решения Проведем через точку Параллелограмм - его свойства, признаки и определение с примерами решения прямую, параллельную Параллелограмм - его свойства, признаки и определение с примерами решения По теореме Фалеса она пересечет отрезок Параллелограмм - его свойства, признаки и определение с примерами решения в его середине, т.е. будет содержать отрезок Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведем теперь среднюю линию Параллелограмм - его свойства, признаки и определение с примерами решения По только что доказанному она будет параллельна стороне Параллелограмм - его свойства, признаки и определение с примерами решения Четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения с попарно параллельными сторонами по определению является параллелограммом, откуда Параллелограмм - его свойства, признаки и определение с примерами решения А поскольку точка Параллелограмм - его свойства, признаки и определение с примерами решения — середина Параллелограмм - его свойства, признаки и определение с примерами решения то Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема доказана. 

Опорная задача (теорема Вариньона) Середины сторон четырехугольника являются вершинами параллелограмма. Докажите.

Решение:

Пусть точки Параллелограмм - его свойства, признаки и определение с примерами решения — середины сторон четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 51). Проведем диагональ Параллелограмм - его свойства, признаки и определение с примерами решения Отрезки Параллелограмм - его свойства, признаки и определение с примерами решения — средние линии треугольников Параллелограмм - его свойства, признаки и определение с примерами решения соответственно. По свойству средней линии треугольника они параллельны стороне Параллелограмм - его свойства, признаки и определение с примерами решения и равны ее половине, т.е. параллельны и равны между собой. Тогда по признаку параллелограмма четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм.

Параллелограмм - его свойства, признаки и определение с примерами решения

Средняя линия трапеции

Определение

Средней линией трапеции называется отрезок, соединяющий середины боковых сторон трапеции.

На рисунке 52 отрезок Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия трапеции Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема (свойство средней линии трапеции) Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство:

 Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия трапеции Параллелограмм - его свойства, признаки и определение с примерами решения с основаниями Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 53).

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведем прямую Параллелограмм - его свойства, признаки и определение с примерами решения и отметим точку Параллелограмм - его свойства, признаки и определение с примерами решения — точку пересечения прямых Параллелограмм - его свойства, признаки и определение с примерами решения Рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения У них Параллелограмм - его свойства, признаки и определение с примерами решенияпоскольку Параллелограмм - его свойства, признаки и определение с примерами решения — середина Параллелограмм - его свойства, признаки и определение с примерами решения как вертикальные, a Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения по второму признаку, откуда Параллелограмм - его свойства, признаки и определение с примерами решения Тогда по определению Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия треугольника Параллелограмм - его свойства, признаки и определение с примерами решения По свойству средней линии треугольника Параллелограмм - его свойства, признаки и определение с примерами решения поэтому Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решенияКроме того, из доказанного равенства треугольников следует, что Параллелограмм - его свойства, признаки и определение с примерами решенияоткуда Параллелограмм - его свойства, признаки и определение с примерами решения По свойству средней линии треугольника Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема доказана.

Пример №8

Через точки, делящие боковую сторону трапеции на три равные части, проведены прямые, параллельные основаниям трапеции. Найдите длины отрезков этих прямых, заключенных внутри трапеции, если ее основания равны 2 м и 5 м.

Решение:

Пусть в трапеции Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 54).

Параллелограмм - его свойства, признаки и определение с примерами решения

По теореме Фалеса параллельные прямые, которые проходят через точки Параллелограмм - его свойства, признаки и определение с примерами решения отсекают на боковой стороне Параллелограмм - его свойства, признаки и определение с примерами решения равные отрезки, т.е. Параллелограмм - его свойства, признаки и определение с примерами решения Тогда по определению Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия трапеции Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия трапеции Параллелограмм - его свойства, признаки и определение с примерами решения Пусть Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения По свойству средней линии трапеции имеем систему:

Параллелограмм - его свойства, признаки и определение с примерами решения
Ответ: 3 м и 4 м.

Вписанные углы

Градусная мера дуги

В седьмом классе изучение свойств треугольников завершалось рассмотрением описанной и вписанной окружностей. Но перед тем как рассмотреть описанную и вписанную окружности для четырехугольника, нам необходимо остановиться на дополнительных свойствах углов.

До сих пор мы изучали только те углы, градусная мера которых не превышала Параллелограмм - его свойства, признаки и определение с примерами решения Расширим понятие угла и введем в рассмотрение вместе с самим углом части, на которые он делит плоскость.

Параллелограмм - его свойства, признаки и определение с примерами решения

На рисунке 58 угол Параллелограмм - его свойства, признаки и определение с примерами решения делит плоскость на две части, каждая из которых называется плоским углом. Их градусные меры равны Параллелограмм - его свойства, признаки и определение с примерами решения

Используем понятие плоского угла для определения центрального угла в окружности.

Определение

Центральным углом в окружности называется плоский угол с вершиной в центре окружности.

На рисунке 59, а, б стороны угла с вершиной в центре окружности Параллелограмм - его свойства, признаки и определение с примерами решения пересекают данную окружность в точках Параллелограмм - его свойства, признаки и определение с примерами решения При этом образуются две дуги, одна из которых меньше полуокружности (на ней обозначена промежуточная точка Параллелограмм - его свойства, признаки и определение с примерами решения рис. 59, а), а другая — больше полуокружности (на ней обозначена промежуточная точка Параллелограмм - его свойства, признаки и определение с примерами решения рис. 59, б).

Для того чтобы уточнить, какой из двух плоских углов со сторонами Параллелограмм - его свойства, признаки и определение с примерами решения мы рассматриваем как центральный, мы будем указывать дугу окружности, которая соответствует данному центральному углу (т.е. содержится внутри него).

На рисунке 59, а центральному углу Параллелограмм - его свойства, признаки и определение с примерами решения обозначенному дужкой, соответствует дуга Параллелограмм - его свойства, признаки и определение с примерами решения а на рисунке 59, б — дуга Параллелограмм - его свойства, признаки и определение с примерами решения В случае, когда лучи Параллелограмм - его свойства, признаки и определение с примерами решения дополнительные, соответствующая дуга Параллелограмм - его свойства, признаки и определение с примерами решения является полуокружностью (рис. 59, в).

Определение

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Градусную меру дуги, как и саму дугу, обозначают так: Параллелограмм - его свойства, признаки и определение с примерами решенияНапример, на рисунке 59, в Параллелограмм - его свойства, признаки и определение с примерами решения т. е. градусная мера полуокружности составляет Параллелограмм - его свойства, признаки и определение с примерами решения Очевидно, что градусная мера дуги всей окружности составляет Параллелограмм - его свойства, признаки и определение с примерами решения

Концы хорды Параллелограмм - его свойства, признаки и определение с примерами решения делят окружность на две дуги — Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 59, г). Говорят, что эти дуги стягиваются хордой Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Вписанный угол

Определение

Вписанным углом называется угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.

Параллелограмм - его свойства, признаки и определение с примерами решения

На рисунке 60 изображен вписанный угол Параллелограмм - его свойства, признаки и определение с примерами решения Его вершина Параллелограмм - его свойства, признаки и определение с примерами решения лежит на окружности, а стороны пересекают окружность в точках Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения Дуга Параллелограмм - его свойства, признаки и определение с примерами решения (на рисунке она выделена) лежит внутри этого угла. В таком случае говорят, что вписанный угол Параллелограмм - его свойства, признаки и определение с примерами решения опирается на дугу Параллелограмм - его свойства, признаки и определение с примерами решения 

Теорема (о вписанном угле)

Вписанный угол измеряется половиной дуги, на которую он опирается.

Доказательство:

 Пусть в окружности с центром Параллелограмм - его свойства, признаки и определение с примерами решения вписанный угол Параллелограмм - его свойства, признаки и определение с примерами решения опирается на дугу Параллелограмм - его свойства, признаки и определение с примерами решения Докажем, что Параллелограмм - его свойства, признаки и определение с примерами решения Рассмотрим три случая расположения центра окружности относительно данного вписанного угла (рис. 61).

Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения

1) Пусть центр окружности лежит на одной из сторон данного угла  (рис. 61, а). В этом случае центральный угол Параллелограмм - его свойства, признаки и определение с примерами решения является внешним углом при вершине Параллелограмм - его свойства, признаки и определение с примерами решения равнобедренного треугольника Параллелограмм - его свойства, признаки и определение с примерами решения По теореме о внешнем угле треугольника Параллелограмм - его свойства, признаки и определение с примерами решения А поскольку углы 1 и 2 равны как углы при основании равнобедренного треугольника, то Параллелограмм - его свойства, признаки и определение с примерами решения

т.е. Параллелограмм - его свойства, признаки и определение с примерами решения

2) Пусть центр окружности лежит внутри угла Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 61, б). Луч Параллелограмм - его свойства, признаки и определение с примерами решения делит угол Параллелограмм - его свойства, признаки и определение с примерами решения на два угла. По только что доказанному Параллелограмм - его свойства, признаки и определение с примерами решения следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения

3) Аналогично в случае, когда центр окружности лежит вне вписанного угла (рис. 60, б),

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема доказана. 

Только что доказанную теорему можно сформулировать иначе.

Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

Пример №9

Найдите угол Параллелограмм - его свойства, признаки и определение с примерами решения если Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 62).

Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

Для того чтобы найти угол Параллелограмм - его свойства, признаки и определение с примерами решения необходимо найти градусную меру дуги Параллелограмм - его свойства, признаки и определение с примерами решения на которую он опирается. Но непосредственно по данным задачи мы можем найти только градусную меру дуги Параллелограмм - его свойства, признаки и определение с примерами решения на которую опирается угол Параллелограмм - его свойства, признаки и определение с примерами решения из теоремы о вписанном угле Параллелограмм - его свойства, признаки и определение с примерами решения Заметим, что дуги Параллелограмм - его свойства, признаки и определение с примерами решениявместе составляют полуокружность, т.е. Параллелограмм - его свойства, признаки и определение с примерами решения следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения Тогда по теореме о вписанном угле Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: Параллелограмм - его свойства, признаки и определение с примерами решения

Следствия теоремы о вписанном угле

По количеству и значимости следствий теорема о вписанном угле является одной из «богатейших» геометрических теорем. Сформулируем наиболее важные из этих следствий.

Следствие 1

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Действительно, по теореме о вписанном угле градусная мера каждого из вписанных углов на рисунке 63 равна половине дуги Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Следствие 2

Вписанный угол, опирающийся на полуокружность,— прямой, и наоборот: любой прямой вписанный угол опирается на полуокружность.

Действительно, поскольку градусная мера полуокружности равна Параллелограмм - его свойства, признаки и определение с примерами решения то угол Параллелограмм - его свойства, признаки и определение с примерами решения который опирается на полуокружность, равен Параллелограмм - его свойства, признаки и определение с примерами решения(рис. 64). Обоснование обратного утверждения проведите самостоятельно.

Параллелограмм - его свойства, признаки и определение с примерами решения

Следствие 3

Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Первое из приведенных утверждений вытекает из следствия 2. Если в треугольнике Параллелограмм - его свойства, признаки и определение с примерами решения угол Параллелограмм - его свойства, признаки и определение с примерами решения прямой (рис. 65, а), то дуга Параллелограмм - его свойства, признаки и определение с примерами решения на которую опирается этот угол, является полуокружностью.

Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения

Тогда гипотенуза Параллелограмм - его свойства, признаки и определение с примерами решения — диаметр описанной окружности, т.е. середина гипотенузы — центр окружности. Утверждение о длине медианы следует из равенства радиусов:

Параллелограмм - его свойства, признаки и определение с примерами решения

Отметим еще один интересный факт: медиана прямоугольного треугольника, проведенная к гипотенузе, делит данный треугольник на два равнобедренных треугольника с общей боковой стороной. Из этого, в частности, следует, что углы, на которые медиана делит прямой угол, равны острым углам треугольника (рис. 65, б).

В качестве примера применения следствий теоремы о вписанном угле приведем другое решение задачи, которую мы рассмотрели в п. 7.2.

Пример №10

Найдите угол Параллелограмм - его свойства, признаки и определение с примерами решения если Параллелограмм - его свойства, признаки и определение с примерами решения (см. рис. 62).

Решение:

Проведем хорду Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 66).

Параллелограмм - его свойства, признаки и определение с примерами решения

Поскольку вписанный угол Параллелограмм - его свойства, признаки и определение с примерами решения опирается на полуокружность, то по следствию 2 Параллелограмм - его свойства, признаки и определение с примерами решения Значит, треугольник Параллелограмм - его свойства, признаки и определение с примерами решения прямоугольный, Параллелограмм - его свойства, признаки и определение с примерами решения тогда Параллелограмм - его свойства, признаки и определение с примерами решения По следствию 1 углы Параллелограмм - его свойства, признаки и определение с примерами решения равны, поскольку оба они опираются на дугу Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: Параллелограмм - его свойства, признаки и определение с примерами решения

Вписанные четырехугольники

Определение

Четырехугольник называется вписанным в окружность, если все его вершины лежат на этой окружности.

Четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения на рисунке 72 является вписанным в окружность. Иначе говорят, что окружность описана около четырехугольника.

Параллелограмм - его свойства, признаки и определение с примерами решения

Как известно, около любого треугольника можно описать окружность. Для четырехугольника это можно сделать не всегда. Докажем свойство и признак вписанного четырехугольника.

Теорема (овписанном четырехугольнике)

  1. Сумма противолежащих углов вписанного четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения (свойство вписанного четырехугольника).
  2. Если сумма противолежащих углов четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения то около него можно описать окружность (признак вписанного четырехугольника).

Доказательство:

 1) Свойство. Пусть четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения вписан в окружность (рис. 72). По теореме о вписанном угле Параллелограмм - его свойства, признаки и определение с примерами решения

Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения

Аналогично доказываем, что Параллелограмм - его свойства, признаки и определение с примерами решения

2) Признак. Пусть в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения Опишем окружность около треугольника Параллелограмм - его свойства, признаки и определение с примерами решения и докажем от противного, что вершина Параллелограмм - его свойства, признаки и определение с примерами решения не может лежать ни внутри этой окружности, ни вне ее. Пусть точка Параллелограмм - его свойства, признаки и определение с примерами решения лежит внутри окружности, а точка Параллелограмм - его свойства, признаки и определение с примерами решения — точка пересечения луча Параллелограмм - его свойства, признаки и определение с примерами решения с дугой Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 73).

Параллелограмм - его свойства, признаки и определение с примерами решения

Тогда четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения — вписанный. По условию Параллелограмм - его свойства, признаки и определение с примерами решения а по только что доказанному свойству вписанного четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения т.е. Параллелограмм - его свойства, признаки и определение с примерами решения Но угол Параллелограмм - его свойства, признаки и определение с примерами решения четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения — внешний угол треугольника Параллелограмм - его свойства, признаки и определение с примерами решения и по теореме о внешнем угле треугольника он должен быть больше угла Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, мы пришли к противоречию, т.е. точка Параллелограмм - его свойства, признаки и определение с примерами решения не может лежать внутри окружности. Аналогично можно доказать, что точка Параллелограмм - его свойства, признаки и определение с примерами решения не может лежать вне окружности. Тогда точка Параллелограмм - его свойства, признаки и определение с примерами решения лежит на окружности, т.е. около четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения можно описать окружность.

Теорема доказана.

 Следствие 1

Около любого прямоугольника можно описать окружность.

Если параллелограмм вписан в окружность, то он является прямоугольником

Прямоугольник, вписанный в окружность, изображен на рисунке 74.

Параллелограмм - его свойства, признаки и определение с примерами решения

Центр описанной окружности является точкой пересечения диагоналей прямоугольника (см. задачу 255).

Следствие 2

Около равнобедренной трапеции можно описать окружность.

Если трапеция вписана в окружность, то она равнобедренная.

Равнобедренная трапеция, вписанная в окружность, изображена на рисунке 75.

Параллелограмм - его свойства, признаки и определение с примерами решения

Описанные четырехугольники

Определение

Четырехугольник называется описанным около окружности, если все его стороны касаются этой окружности.

Четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения на рисунке 76 является описанным около окружности. Иначе говорят, что окружность вписана в четырехугольник.

Оказывается, что не в любой четырехугольник можно вписать окружность. Докажем соответствующие свойство и признак.

Теорема (об описанном четырехугольнике)

  1. В описанном четырехугольнике суммы противолежащих сторон равны (свойство описанного четырехугольника).
  2. Если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность (признак описанного четырехугольника).

Доказательство:

1) Свойство. Пусть стороны четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения касаются вписанной окружности в точках Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 76).

Параллелограмм - его свойства, признаки и определение с примерами решения

По свойству отрезков касательных Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения С учетом обозначений на рисунке Параллелограмм - его свойства, признаки и определение с примерами решения

2) Признак. Пусть в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения с наименьшей стороной Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решенияПоскольку по теореме о биссектрисе угла точка Параллелограмм - его свойства, признаки и определение с примерами решения (точка пересечения биссектрис углов Параллелограмм - его свойства, признаки и определение с примерами решения равноудалена от сторон Параллелограмм - его свойства, признаки и определение с примерами решения то можно построить окружность с центром Параллелограмм - его свойства, признаки и определение с примерами решения которая касается этих трех сторон (рис. 77, а). Докажем от противного, что эта окружность касается также стороны Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Предположим, что это не так. Тогда прямая Параллелограмм - его свойства, признаки и определение с примерами решения либо не имеет общих точек с окружностью, либо является секущей окружности. Рассмотрим первый случай (рис. 77, б). Проведем через точку Параллелограмм - его свойства, признаки и определение с примерами решения касательную к окружности, которая пересекает сторону Параллелограмм - его свойства, признаки и определение с примерами решения в точке Параллелограмм - его свойства, признаки и определение с примерами решения Тогда по свойству описанного четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решения Но по условию Параллелограмм - его свойства, признаки и определение с примерами решенияВычитая из второго равенства первое, имеем: Параллелограмм - его свойства, признаки и определение с примерами решения т.е. Параллелограмм - его свойства, признаки и определение с примерами решения что противоречит неравенству треугольника для треугольника Параллелограмм - его свойства, признаки и определение с примерами решения

Таким образом, наше предположение неверно. Аналогично можно доказать, что прямая Параллелограмм - его свойства, признаки и определение с примерами решения не может быть секущей окружности. Следовательно, окружность касается стороны Параллелограмм - его свойства, признаки и определение с примерами решеният. е. четырехугольник Параллелограмм - его свойства, признаки и определение с примерами решения описанный. Теорема доказана.

Замечание. Напомним, что в данной теореме рассматриваются только выпуклые четырехугольники.

Следствие

В любой ромб можно вписать окружность. Если в параллелограмм вписана окружность, то он является ромбом

Ромб, описанный около окружности, изображен на рисунке 78. Центр вписанной окружности является точкой пересечения диагоналей ромба (см. задачу 265, а).

Параллелограмм - его свойства, признаки и определение с примерами решения

Пример №11

В равнобедренную трапецию с боковой стороной 6 см вписана окружность. Найдите среднюю линию трапеции.

Решение:

Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — данная равнобедренная трапеция с основаниями Параллелограмм - его свойства, признаки и определение с примерами решения По свойству описанного четырехугольника Параллелограмм - его свойства, признаки и определение с примерами решенияСредняя линия трапеции равна Параллелограмм - его свойства, признаки и определение с примерами решения т.е. равна 6 см.

Ответ: 6 см

Геометрические софизмы

Многим из вас, наверное, известна древнегреческая история об Ахиллесе, который никак не может догнать черепаху. История математики знает немало примеров того, как ложные утверждения и ошибочные результаты выдавались за истинные, а их опровержение давало толчок настоящим математическим открытиям. Но даже ошибки и неудачи могут принести пользу математикам. Эти ошибки остались в учебниках и пособиях в виде софизмов — заведомо ложных утверждений, доказательства которых на первый взгляд кажутся правильными, но на самом деле таковыми не являются. Поиск и анализ ошибок, содержащихся в этих доказательствах, часто позволяют определить причины ошибок в решении других задач. Поэтому в процессе изучения геометрии софизмы иногда даже более поучительны и полезны, чем «безошибочные» задачи и доказательства.

Рассмотрим пример геометрического софизма, связанного с четырехугольниками, вписанными в окружность.

Окружность имеет два центра.

Доказательство:

Обозначим на сторонах произвольного угла Параллелограмм - его свойства, признаки и определение с примерами решения точки Параллелограмм - его свойства, признаки и определение с примерами решения и проведем через эти точки перпендикуляры к сторонам Параллелограмм - его свойства, признаки и определение с примерами решения соответственно (рис. 79).

Параллелограмм - его свойства, признаки и определение с примерами решения

Эти перпендикуляры должны пересекаться (ведь если бы они были параллельны, то параллельными были бы и стороны данного угла — обоснуйте это самостоятельно). Обозначим точку Параллелограмм - его свойства, признаки и определение с примерами решения — точку пересечения перпендикуляров.

Через точки Параллелограмм - его свойства, признаки и определение с примерами решения не лежащие на одной прямой, проведем окружность (это можно сделать, поскольку окружность, описанная около треугольника Параллелограмм - его свойства, признаки и определение с примерами решениясуществует и является единственной). Обозначим точки Параллелограмм - его свойства, признаки и определение с примерами решения — точки пересечения этой окружности со сторонами угла Параллелограмм - его свойства, признаки и определение с примерами решения Прямые углы Параллелограмм - его свойства, признаки и определение с примерами решения являются вписанными в окружность. Значит, по следствию теоремы о вписанных углах, отрезки Параллелограмм - его свойства, признаки и определение с примерами решения являются диаметрами окружности, которые имеют общий конец Параллелограмм - его свойства, признаки и определение с примерами решения но не совпадают. Тогда их середины Параллелограмм - его свойства, признаки и определение с примерами решения являются двумя разными центрами одной окружности, т.е. окружность имеет два центра.

Ошибка этого «доказательства» заключается в неправильности построений на рисунке 79. В четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения т.е. он вписан в окружность. Это означает, что в ходе построений окружность, проведенная через точки Параллелограмм - его свойства, признаки и определение с примерами решения обязательно пройдет через точку Параллелограмм - его свойства, признаки и определение с примерами решения В таком случае отрезки Параллелограмм - его свойства, признаки и определение с примерами решения совпадут с отрезком Параллелограмм - его свойства, признаки и определение с примерами решения середина которого и является единственным центром построенной окружности.

Среди задач к этому и следующим параграфам вы найдете и другие примеры геометрических софизмов и сможете самостоятельно потренироваться в их опровержении. Надеемся, что опыт, который вы при этом приобретете, поможет в дальнейшем избежать подобных ошибок при решении задач.

Четырехугольник и окружность в задачах. Метод вспомогательной окружности

При решении задач об окружностях и четырехугольниках иногда следует использовать специальные подходы. Один из них заключается в рассмотрении вписанного треугольника, вершины которого являются вершинами данного вписанного четырехугольника.

Пример №12

Найдите периметр равнобедренной трапеции, диагональ которой перпендикулярна боковой стороне и образует с основанием угол Параллелограмм - его свойства, признаки и определение с примерами решения если радиус окружности, описанной около трапеции, равен 8 см.

Решение:

Пусть дана вписанная трапеция Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения (рис. 80).

Параллелограмм - его свойства, признаки и определение с примерами решения

Заметим, что окружность, описанная около трапеции, описана также и около прямоугольного треугольника Параллелограмм - его свойства, признаки и определение с примерами решения значит, ее центром является середина гипотенузы Параллелограмм - его свойства, признаки и определение с примерами решения Тогда Параллелограмм - его свойства, признаки и определение с примерами решения В треугольнике Параллелограмм - его свойства, признаки и определение с примерами решения как катет, противолежащий углу Параллелограмм - его свойства, признаки и определение с примерами решения Поскольку в прямоугольном треугольнике Параллелограмм - его свойства, признаки и определение с примерами решения то углы при большем основании трапеции равны Параллелограмм - его свойства, признаки и определение с примерами решения Параллелограмм - его свойства, признаки и определение с примерами решения как внутренние накрест лежащие при параллельных прямых Параллелограмм - его свойства, признаки и определение с примерами решения и секущей Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, в треугольнике Параллелограмм - его свойства, признаки и определение с примерами решения два угла равны, т.е. он является равнобедренным с основанием Параллелограмм - его свойства, признаки и определение с примерами решения откуда Параллелограмм - его свойства, признаки и определение с примерами решения Тогда Параллелограмм - его свойства, признаки и определение с примерами решения

Ответ: 40 см.

Особенно интересным и нестандартным является применение окружности (как описанной, так и вписанной) при решении задач, в условиях которых окружность вообще не упоминается.

Пример №13

Из точки Параллелограмм - его свойства, признаки и определение с примерами решения лежащей на катете Параллелограмм - его свойства, признаки и определение с примерами решения прямоугольного треугольника Параллелограмм - его свойства, признаки и определение с примерами решения проведен перпендикуляр Параллелограмм - его свойства, признаки и определение с примерами решения к гипотенузе Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 81). Докажите, что Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Решение:

В четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения значит, около него можно описать окружность. В этой окружности вписанные углы Параллелограмм - его свойства, признаки и определение с примерами решения будут опираться на одну и ту же дугу, и по следствию теоремы о вписанном угле Параллелограмм - его свойства, признаки и определение с примерами решения

Метод решения задач с помощью дополнительного построения описанной или вписанной окружности называют методом вспомогательной окружности.

Замечательные точки треугольника

Точка пересечения медиан

В седьмом классе в ходе изучения вписанной и описанной окружностей треугольника рассматривались две его замечательные точки — точка пересечения биссектрис (иначе ее называют инцентром треугольника) и точка пересечения серединных перпендикуляров к сторонам.

Рассмотрим еще две замечательные точки треугольника.

Теорема (о точке пересечения медиан треугольника)

Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, начиная от вершины треугольника.

Доказательство:

 Пусть в треугольнике Параллелограмм - его свойства, признаки и определение с примерами решения проведены медианы Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 85).

Параллелограмм - его свойства, признаки и определение с примерами решения

Докажем, что они пересекаются в некоторой точке Параллелограмм - его свойства, признаки и определение с примерами решения причем Параллелограмм - его свойства, признаки и определение с примерами решения

Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — точка пересечения медиан Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения точки Параллелограмм - его свойства, признаки и определение с примерами решения — середины отрезков Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения соответственно. Отрезок Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия треугольника Параллелограмм - его свойства, признаки и определение с примерами решения и по свойству средней линии треугольника Параллелограмм - его свойства, признаки и определение с примерами решения Кроме того, Параллелограмм - его свойства, признаки и определение с примерами решения — средняя линия треугольника Параллелограмм - его свойства, признаки и определение с примерами решенияи по тому же свойству Параллелограмм - его свойства, признаки и определение с примерами решения Значит, в четырехугольнике Параллелограмм - его свойства, признаки и определение с примерами решения две стороны параллельны и равны. Таким образом, Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограмм, и его диагонали Параллелограмм - его свойства, признаки и определение с примерами решения точкой пересечения делятся пополам. Следовательно, Параллелограмм - его свойства, признаки и определение с примерами решения т.е. точка Параллелограмм - его свойства, признаки и определение с примерами решения делит медианы Параллелограмм - его свойства, признаки и определение с примерами решения в отношении 2:1.

Аналогично доказываем, что и третья медиана Параллелограмм - его свойства, признаки и определение с примерами решения точкой пересечения с каждой из медиан Параллелограмм - его свойства, признаки и определение с примерами решения делится в отношении 2 :1. А поскольку такая точка деления для каждой из медиан единственная, то, следовательно, все три медианы пересекаются в одной точке. 

Точку пересечения медиан треугольника иначе называют центроидом или центром масс треугольника. В уместности такого названия вы можете убедиться, проведя эксперимент: вырежьте из картона треугольник произвольной формы, проведите в нем медианы и попробуйте удержать его в равновесии, положив на иглу или острый карандаш в точке пересечения медиан (рис. 86).

Параллелограмм - его свойства, признаки и определение с примерами решения

Пример №14

Если в треугольнике две медианы равны, то он равнобедренный. Докажите.

Решение:

Пусть в треугольнике Параллелограмм - его свойства, признаки и определение с примерами решения медианы Параллелограмм - его свойства, признаки и определение с примерами решения равны и пересекаются в точке Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 87).

Параллелограмм - его свойства, признаки и определение с примерами решения

Рассмотрим треугольники Параллелограмм - его свойства, признаки и определение с примерами решения Поскольку точка Параллелограмм - его свойства, признаки и определение с примерами решения делит каждую из равных медиан Параллелограмм - его свойства, признаки и определение с примерами решения и Параллелограмм - его свойства, признаки и определение с примерами решения в отношении Параллелограмм - его свойства, признаки и определение с примерами решения Кроме того, Параллелограмм - его свойства, признаки и определение с примерами решения как вертикальные. Значит, Параллелограмм - его свойства, признаки и определение с примерами решения по первому признаку. Отсюда следует, что Параллелограмм - его свойства, признаки и определение с примерами решения

Но по определению медианы эти отрезки — половины сторон Параллелограмм - его свойства, признаки и определение с примерами решенияСледовательно, Параллелограмм - его свойства, признаки и определение с примерами решения т.е. треугольник Параллелограмм - его свойства, признаки и определение с примерами решения равнобедренный.

Точка пересечения высот

Теорема (о точке пересечения высот треугольника)

Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство:

 Пусть Параллелограмм - его свойства, признаки и определение с примерами решения — высоты треугольника Параллелограмм - его свойства, признаки и определение с примерами решения (рис. 88).

Параллелограмм - его свойства, признаки и определение с примерами решения

Проведя через вершины треугольника прямые, параллельные противолежащим сторонам, получим треугольник Параллелограмм - его свойства, признаки и определение с примерами решения стороны которого перпендикулярны высотам треугольника Параллелограмм - его свойства, признаки и определение с примерами решения По построению четырехугольники Параллелограмм - его свойства, признаки и определение с примерами решения — параллелограммы, откуда Параллелограмм - его свойства, признаки и определение с примерами решения Следовательно, точка Параллелограмм - его свойства, признаки и определение с примерами решения — середина отрезка Параллелограмм - его свойства, признаки и определение с примерами решения Аналогично доказываем, что Параллелограмм - его свойства, признаки и определение с примерами решения — середина Параллелограмм - его свойства, признаки и определение с примерами решения — середина Параллелограмм - его свойства, признаки и определение с примерами решения

Таким образом, высоты Параллелограмм - его свойства, признаки и определение с примерами решения лежат на серединных перпендикулярах к сторонам треугольника Параллелограмм - его свойства, признаки и определение с примерами решения которые пересекаются в одной точке по следствию теоремы об окружности, описанной около треугольника. 

Точку пересечения высот (или их продолжений) иначе называют ортоцентром треугольника.

Таким образом, замечательными точками треугольника являются:

  • точка пересечения биссектрис — центр окружности, вписанной в треугольник;
  • точка пересечения серединных перпендикуляров к сторонам — центр окружности, описанной около треугольника;
  • точка пересечения медиан — делит каждую из медиан в отношении 2:1, начиная от вершины треугольника;
  • точка пересечения высот (или их продолжений).

ИТОГОВЫЙ ОБЗОР ГЛАВЫ I

ЧЕТЫРЕХУГОЛЬНИК

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема о сумме углов четырехугольника.

Параллелограмм - его свойства, признаки и определение с примерами решения

Сумма углов четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения

Справочный материал по параллелограмму

Параллелограммом называется четырехугольник, противолежащие стороны которого попарно параллельны

Параллелограмм - его свойства, признаки и определение с примерами решения

Признаки параллелограмма

Если две противолежащие стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм

Если противолежащие стороны четырехугольника попарно равны, то этот четырехугольник- параллелограм.

Параллелограмм - его свойства, признаки и определение с примерами решенияПараллелограмм - его свойства, признаки и определение с примерами решения

Параллелограмм - его свойства, признаки и определение с примерами решения 

Противолежащие углы параллелограмма равны.

Параллелограмм - его свойства, признаки и определение с примерами решения

Диагонали параллелограмма точкой пересечения делятся пополам
Параллелограмм - его свойства, признаки и определение с примерами решения

Если противолежащие углы четырехугольника попарно равны, то этот четырехугольник — параллелограмм

Параллелограмм - его свойства, признаки и определение с примерами решения

Если диагонали четырехугольника точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм

Виды параллелограммов

 Параллелограмм - его свойства, признаки и определение с примерами решения

Прямоугольником называется параллелограм у которого все углы прямые

Параллелограмм - его свойства, признаки и определение с примерами решения

Ромбом называется параллелограмм, у которого все стороны равны

Параллелограмм - его свойства, признаки и определение с примерами решения

Квадратом называется прямоугольник, у которого все стороны равны

Свойство прямоугольника

Параллелограмм - его свойства, признаки и определение с примерами решения

Диагонали прямоугольника равны 

Признак прямоугольника

Если все углы четырехугольника равны, то этот четырехугольник является прямоугольником

Свойства ромба

Параллелограмм - его свойства, признаки и определение с примерами решения

Диагонали ромба перпендикулярны и делят его углы пополам
 

Признак ромба

Параллелограмм - его свойства, признаки и определение с примерами решения
Если все стороны четырехугольника равны, то этот четырехугольник является ромбом

Свойства квадрата

Параллелограмм - его свойства, признаки и определение с примерами решения 

Все стороны квадрата равны, а противолежащие стороны параллельны

Параллелограмм - его свойства, признаки и определение с примерами решения

Все углы квадрата прямые

Параллелограмм - его свойства, признаки и определение с примерами решения

Диагонали квадрата равны, перпендикулярны, делят углы квадрата пополам и точкой пересечения делятся пополам
 

Трапеция

Параллелограмм - его свойства, признаки и определение с примерами решения

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие непараллельны

Параллелограмм - его свойства, признаки и определение с примерами решения

Прямоугольной трапецией называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям

Параллелограмм - его свойства, признаки и определение с примерами решения

Равнобедренной трапецией называется трапеция, у которой боковые стороны равны.

Свойство равнобедренной 

В равнобедренной трапеции углы при основании равны. 

Признак равнобедренной

Если в трапеции углы при основании равны, то такая трапеция равнобедренная

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема Фалеса

Параллелограмм - его свойства, признаки и определение с примерами решения

Параллельные прямые, которые пересекают стороны угла и отсекают на одной из них равные отрезки, отсекают равные отрезки и на другой стороне

Средние линии треугольника и трапеции

Параллелограмм - его свойства, признаки и определение с примерами решения

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Параллелограмм - его свойства, признаки и определение с примерами решения
 

Средней линией трапеции называется отрезок, соединяющий середины боковых сторон трапеции

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны
Свойство средней линии трапеции

Средняя линия трапеции параллельна основаниям и равна их полусумме

Углы в окружности

Параллелограмм - его свойства, признаки и определение с примерами решения

Центральным углом в окружности называется плоский угол с вершиной в центре окружности

Параллелограмм - его свойства, признаки и определение с примерами решения

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла

Параллелограмм - его свойства, признаки и определение с примерами решения

Вписанным углом называется угол, вершина которого лежит на окружности, а стороны пересекают эту окружность

Теорема о вписанном угле Вписанный угол измеряется половиной дуги, на которую он опирается

Следствия теоремы о вписанном угле

Параллелограмм - его свойства, признаки и определение с примерами решения

Вписанные углы, опирающиеся на одну и ту же дугу, равны

Параллелограмм - его свойства, признаки и определение с примерами решения

Вписанный угол, опирающийся на полуокружность, прямой, и наоборот: любой прямой вписанный угол опирается на полуокружность

Параллелограмм - его свойства, признаки и определение с примерами решения

Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы

Вписанные четырехугольники

Параллелограмм - его свойства, признаки и определение с примерами решения

Четырехугольник называется вписанным в окружность, если все его вершины лежат на этой окружности

Признак вписанного четырехугольника

Если сумма противолежащих углов четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения то около него можно описать окружность

Параллелограмм - его свойства, признаки и определение с примерами решения

Около любого прямоугольника можно описать окружность
Параллелограмм - его свойства, признаки и определение с примерами решения

Около равнобедренной трапеции можно описать окружность
Параллелограмм - его свойства, признаки и определение с примерами решения

Свойство вписанного четырехугольника

  • Сумма противолежащих углов вписанного четырехугольника равна Параллелограмм - его свойства, признаки и определение с примерами решения
  • Если параллелограмм вписан в окружность, то он является прямоугольником
  • Если трапеция вписана в окружность, то она равнобедренная

Описанные четырехугольники

Параллелограмм - его свойства, признаки и определение с примерами решения

Четырехугольник называется описанным около окружности, если все его стороны касаются этой окружности

Признак описанного четырехугольника

Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность

Параллелограмм - его свойства, признаки и определение с примерами решения

В любой ромб можно вписать окружность
Параллелограмм - его свойства, признаки и определение с примерами решения

Свойство описанного четырехугольника

  • В описанном четырехугольнике суммы противолежащих сторон равны
  • Если в параллелограмм вписана окружность, то он является ромбом

Замечательные точки треугольника

Параллелограмм - его свойства, признаки и определение с примерами решения
Теорема о точке пересечения медиан треугольника Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, начиная от вершины треугольника

Параллелограмм - его свойства, признаки и определение с примерами решения

Теорема о точке пересечения высот треугольника Высоты треугольника (или их продолжения) пересекаются в одной точке

Историческая справка

Большая часть теоретических положений, связанных с четырехугольником, была известна еще в Древней Греции. Например, параллелограмм упоминается в работах Евклида под названием «параллельно-линейная площадь». Основные свойства четырехугольников были установлены на практике и только со временем доказаны теоретически.

Одним из творцов идеи геометрического доказательства по праву признан древнегреческий ученый Фалес Милетский (ок. 625-547 гг. до н. э.). Его считали первым среди прославленных «семи мудрецов» Эллады. Механик и астроном, философ и общественный деятель, Фалес значительно обогатил науку своего времени. Именно он познакомил греков с достижениями египтян в геометрии и астрономии. По свидетельству историка Геродота, Фалес предсказал затмение Солнца, которое произошло 28 мая 585 г. до н. э. Он дал первые представления об электричестве и магнетизме. Достижения Фалеса в геометрии не ограничиваются теоремой, названной его именем. Считается, что Фалес открыл теорему о вертикальных углах, доказал равенство углов при основании равнобедренного треугольника, первым описал окружность около прямоугольного треугольника и обосновал, что угол, который опирается на полуокружность, прямой. Фалесу приписывают и доказательство второго признака равенства треугольников, на основании которого он создал дальномер для определения расстояния до кораблей на море.
В молодые годы Фалес побывал в Египте. Согласно легенде, он удивил египетских жрецов, измерив высоту пирамиды Хеопса с помощью подобия треугольников (о подобии треугольников — в следующей главе).

Изучая замечательные точки треугольника, нельзя не вспомнить имена еще нескольких ученых.

Теорему о пересечении высот треугольника доказал в XV в. немецкий математик Региомонтан (1436-1476) — в его честь эту теорему иногда называют задачей Региомонтана.

Выдающийся немецкий ученый Леонард Эйлер (1707-1783), который установил связь между замечательными точками треугольника, является уникальной исторической фигурой. Геометрия и механика, оптика и баллистика, астрономия и теория музыки, математическая физика и судостроение — вот далеко не полный перечень тех областей науки, которые он обогатил своими открытиями. Перу Эйлера принадлежит более 800 научных работ, причем, по статистическим подсчетам, он делал в среднем одно изобретение в неделю! Человек чрезвычайной широты интересов, Эйлер был академиком Берлинской, Петербургской и многих других академий наук, он существенным образом повлиял на развитие мировой науки. Недаром французский математик Пьер Лаплас, рассуждая об ученых своего поколения, утверждал, что Эйлер — «учитель всех нас».

Среди украинских математиков весомый вклад в исследование свойств четырехугольников внес Михаил Васильевич Остроградский (1801-1862). Этот выдающийся ученый, профессор Харьковского университета, получил мировое признание благодаря работам по математической физике, математическому анализу, аналитической механике. Талантливый педагог и методист, Остроградский создал «Учебник по элементарной геометрии», который, в частности, содержал ряд интересных и сложных задач на построение вписанных и описанных четырех. М. В. Остроградский угольников и вычисление их площадей.

  • Теорема синусов и  теорема косинусов
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Центральные и вписанные углы
  • Углы и расстояния в пространстве
  • Подобие треугольников
  • Решение прямоугольных треугольников

Понравилась статья? Поделить с друзьями:
  • Как найти скорость осколка снаряда
  • Как найти периметр параллелограмма через высоту
  • Как найти счастье способы
  • Как найти архив по названию
  • Как найти примечания в pdf