Если закон Ома для участка цепи знают почти все, то закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!
Идеальный источник ЭДС
Имеем источник ЭДС
Давайте вспомним, что такое ЭДС. ЭДС — это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.
Или проще:
Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.
Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?
Внутреннее сопротивление источника ЭДС
Дело все в том, что в аккумуляторе «спрятано» сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой «r «.
Выглядит все это в аккумуляторе примерно вот так:
Цепляем лампочку
Итак, что у нас получается в чистом виде?
Лампочка — это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:
Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.
На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .
Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.
Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что
Далее
Закон Ома для полной цепи
Итак, последнее выражение носит название «закон Ома для полной цепи»
где
Е — ЭДС источника питания, В
R — сопротивление всех внешних элементов в цепи, Ом
I — сила ток в цепи, А
r — внутреннее сопротивление источника питания, Ом
Просадка напряжения
Итак, знакомьтесь, автомобильный аккумулятор!
Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус
Наш подопечный готов к бою.
Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на «ближний» свет.
Первым делом давайте замеряем напряжение на клеммах аккумулятора
12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.
Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:
Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!
А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:
Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр — силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.
[quads id=1]
Смотрим на показания приборов:
Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.
Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла
Смотрим показания:
Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.
Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.
Как найти внутреннее сопротивление источника ЭДС
Давайте снова вернемся к этой фотографии
Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.
Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:
Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r
Вывод
Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.
Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.
Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.
Что такое внутреннее сопротивление источника питания
Содержание
- 1 Что такое внутреннее сопротивление
- 2 Как измеряется внутреннее сопротивление
- 3 Зачем нужно знать внутреннее сопротивление
- 4 Видео по теме
Любой источник тока, будь то генератор или гальванический элемент, обладает внутренним сопротивлением. Его величина характеризирует количество энергетических потерь, появляющихся при протекании тока через источник питания. Для генератора внутреннее сопротивление определяется сопротивлением обмоток статора, для аккумулятора — электродов и электролита. Для него используется та же единица измерения, что и для общего сопротивления цепи — Ом.
Что такое внутреннее сопротивление
В электрической цепи обязательно присутствует источник питания. Обычно, оценивая его параметры, указывают, какую разность потенциалов между клеммами он обеспечивает. Если говорить об идеальной модели источника питания, то можно предположить, что он способен обеспечить в электрической цепи любую мощность с учётом имеющейся разности потенциалов.
Реальные устройства в этом аспекте сильно отличаются друг от друга. Чтобы определить работоспособность аккумулятора важно знать, что такое внутреннее сопротивление. Обычно с течением времени и вследствие износа оно постепенно возрастает. Анализируя уровень и скорость того, как изменяется внутреннее сопротивление источника тока, можно принять решение о продолжении использования батареи или о необходимости её замены.
Сказанное следует пояснить на примере. Для запуска мотора автомобиля используется аккумулятор на 12 Вольт. Известно, что при этом сила тока может достигать 250 Ампер. Однако, если взять другой элемент питания с такой же разницей потенциалов, то вполне возможна ситуация, когда от него запуск мотора осуществить не получится.
В качестве примера такого источника можно рассмотреть несколько гальванических элементов, соединённых последовательно. Разница в двух рассматриваемых ситуациях определяется наличием различного внутреннего сопротивления.
Этот параметр для аккумулятора представляет собой сумму нескольких слагаемых: сопротивление каждого вывода, корпуса и используемого электролита. В некоторых источниках тока при этом могут учитываться дополнительные элементы, включённые в данную цепь.
Важно учитывать, что понятие омического сопротивления в этой ситуации неприменимо, поскольку требуется наличие в цепи только пассивных элементов. Когда создана замкнутая цепь, ток протекает не только по ней, но и внутри источника тока. Внутреннее сопротивление определяет величину потерь энергии в нём.
Его наличие в цепи можно проиллюстрировать ещё одним примером. Если на клеммах аккумулятора имеется 12 вольт, то на первый взгляд можно легко предсказать, какая сила тока будет при нагрузке 1 Ом. Очевидно, что нужно ожидать, что по цепи пройдёт ток, равный 12 Ампер.
На самом деле это утверждение не соответствует действительности: ток будет немного меньше — примерно 11.2 Ампера. Здесь нет никакого несоответствия физике. Ведь при расчёте дополнительно требуется учитывать сопротивление источника тока, из-за которого происходит расход энергии. Оно называется внутренним. Его можно мысленно представить как резистор, соединённый последовательно с источником тока.
Как измеряется внутреннее сопротивление
Для определения значения рассматриваемой характеристики применяются измерения во время прямого замыкания клемм, которое называют коротким замыканием. Как известно, если закоротить клеммы источника, между ними протечёт значительный ток. Часто это является следствием неосторожности и приводит к обгоранию изоляции и расплавлению провода.
При коротком замыкании сопротивление цепи становится минимальным. Точно измерив силу тока в этой ситуации и зная величину напряжения на клеммах при отсутствии нагрузки, можно определить внутреннее сопротивление источника питания. Для этого понадобится следующая формула:
r = U / I(зам), где
- буквой r обозначено внутреннее сопротивление источника тока;
- U — разность потенциалов на клеммах батареи без подсоединения к электрической цепи;
- I(зам) — ток, который проходит при непосредственном замыкании клемм друг на друга.
Находить значение нагрузки таким образом не всегда возможно или целесообразно, поскольку короткое замыкание может стать причиной серьезной аварии.
Поэтому на практике измерять внутреннее сопротивление источника питания с помощью короткого замыкания можно разве что только у маломощных аккумуляторов на 1,2В (при этом мультиметр должен находиться в режиме измерения тока до 20А). Для определения внутреннего сопротивления у мощных источников, таких как, автомобильный аккумулятор и подобных необходимо использовать активную нагрузку (например, лампу накаливания), а сам способ расчёта приведён в статье ниже.
Поэтому используются другие решения вопроса, как найти внутреннее сопротивление источника. Например, с помощью специальных измерительных приборов. Функцией измерения данного параметра снабжены оригинальные зарядные устройства iMax B6, ToolkinRC M8, M6, M600.
Зачем нужно знать внутреннее сопротивление
На первый взгляд может показаться, что наличие внутреннего сопротивления интересно только с теоретической точки зрения. На самом деле в некоторых ситуациях знать чему оно равно бывает жизненно важным.
Одна из таких ситуаций — определение работоспособности автомобильного аккумулятора. Его внутреннее сопротивление не является постоянным. Оно изменяется под воздействием различных факторов и влияет на напряжение на клеммах. Чтобы быть уверенным в работоспособности оборудования, нужно не только уметь найти его внутреннее сопротивление, но и знать, какая его величина соответствует норме.
На внутреннее сопротивление источника питания могут оказывать влияние такие факторы:
- Температурные условия. Чем холоднее, тем с меньшей скоростью в аккумуляторе протекают химические процессы. Это приводит к увеличению внутреннего сопротивления и постепенному уменьшению напряжения на клеммах.
- Срок службы аккумулятора. У новых устройств внутреннее сопротивление имеет минимальную величину. Постепенно оно начинает расти. Это связано с тем, что в аккумуляторе происходит необратимый химический процесс. В некоторых случаях он относительно медленный, а в других может быть довольно заметным. Последнее, например, относится к свинцово-кислотным аккумуляторам.
- Емкость аккумулятора.
- Иногда на устройство может оказываться механическое воздействие, из-за которого появляются внутренние обрывы.
- Количество используемого электролита.
- Ток, который создаётся батареей, зависит от нагрузки цепи. В зависимости от него меняется сопротивление.
Влияние большого количества факторов приводит к тому, что в качестве нормального можно рассматривать различные значения внутреннего сопротивления. Однако его стандартным увеличением за год принято считать 5%. Если эта норма превышена, значит, на исправность аккумулятора нужно обратить особое внимание.
При анализе стоит принимать во внимание не только те значения, которые указаны в технической документации. Необходимо учитывать и то, насколько интенсивно происходят изменения сопротивления со временем. Это даст более точную информацию об исправности батареи и поможет понять, чего нужно добиваться, чтобы обеспечить работоспособность оборудования.
Один из наиболее простых способов измерения внутреннего сопротивления можно продемонстрировать на следующем примере. Его применение возможно при условии, что ЭДС аккумулятора известна.
ЭДС (ℰ, единица измерения — вольты, В) — это электродвижущая сила источника питания, равная отношению работы сторонних сил по перемещению заряда от отрицательного полюса источника к положительному к величине этого заряда: ℰ=A/q. Если к источнику питания не подключена нагрузка, то ЭДС по своему значению равно напряжению на его клеммах.
Будет рассмотрена ситуация, когда ЭДС равна 1.5 В. Составляется электрическая цепь, в которой выходы аккумулятора присоединяются к электрической лампочке. Измеряется падение напряжения на ней и ток, проходящий через цепь. Они, соответственно, равны 1.2 В и 0.3 А.
Цифры, которые здесь приводятся, являются условными. При измерении мастер может выбрать другой тип электрической нагрузки, если сочтёт это необходимым.
Сопротивление лампы накаливания сильно отличается в нагретом и холодном состоянии. Поэтому определять «R» с помощью мультиметра в режиме измерения сопротивления — неверно. Чтобы точно узнать сопротивление лампы накаливания необходимо померить ток, проходящий через неё и напряжение на лампе во включенном (нагретом) состоянии. Далее, по закону Ома можно вычислить искомую величину:
R = U / I = 1.2 / 0.3 = 4 Ом.
В этой формуле буквой R обозначается полное сопротивление цепи. Его можно выразить, как сумму r + R, где r — внутреннее и R — обычное сопротивление.
Тогда: R + r = ℰ / I
Из этой формулы определяется r = ℰ / I − R = 1.5 / 0.3 − 4 = 1 Ом.
Таким образом можно определять внутреннее сопротивление источника питания в безопасном режиме, не прибегая к короткому замыканию.
Важным условием нахождения значения r является знание величины электродвижущей силы. Эта характеристика имеет максимальное значение у новых и хорошо заряженных батарей. Те, что уже долго были в использовании, могут иметь значительно меньшую ЭДС вследствие разряда, износа, который часто связан с необратимыми химическими процессами в аккумуляторе.
Для определения ℰ необходимо отключить любую нагрузку от клемм источника питания и подключить вольтметр или мультиметр в режиме измерения напряжения. Прибор покажет значение ЭДС. Почему — это легко понять. По закону Ома для полной цепи:
I = ℰ / (R + r),
так как вольтметр имеет сопротивление R→∞, то ток I≈0. Следовательно напряжение на клеммах равно ЭДС:
U = I·R = ℰ – I·r = ℰ.
Также следует упомянуть, что нулевым внутренним сопротивлением «r» обладает только идеальный генератор напряжения. Также существуют элементы с большим внутренним сопротивлением — это разные датчики, источники сигналов, а r=∞ обладает только идеальный источник тока. Помимо этого, существуют двухполюсники с отрицательным значением r, его можно получить в схемах с обратной связью и в элементах с отрицательным дифференциальным сопротивлением. Расчеты применимы не только для аккумулятора, но и для любого другого источника тока, например, гальванической батареи, двухполюсника, петли фаза-нуль. Использовать эти знания можно для согласования источника и нагрузки, понижения высоких напряжений и минимизации шума.
Видео по теме
Лабораторная
работа № 3
ЭДС и внутреннее
сопротивление источников постоянного
тока. Закон Ома для полной цепи.
Цель:
определить внутреннее сопротивление
источника тока и его ЭДС.
1. Краткое
теоретическое описание
Электрический ток
в проводниках вызывают так называемые
источники постоянного тока. Силы,
вызывающие перемещение электрических
зарядов внутри источника постоянного
тока против направления действия сил
электростатического поля, называются
сторонними
силами.
Отношение работы Астор.,
совершаемой сторонними силами по
перемещению заряда
Q
вдоль цепи, к значению этого заряда
называется электродвижущей
силой
источника (ЭДС):
(1)
Электродвижущая
сила выражается в тех же единицах, что
и напряжение или разность потенциалов,
т.е. в Вольтах.
Работа – эта мера
превращения энергии из одного вида в
другой. Следовательно, в источнике
сторонняя энергия преобразуется в
энергию электрического поля
W =
Q (2)
При движении заряда
Q на внешнем участке цепи преобразуется
энергия стационарного поля, созданного
и поддерживаемого источником:
W1
= U
Q , (3)
а на внутреннем
участке:
W2
= Uвн.
Q (4)
По закону сохранения
энергии
W = W1
+ W2 или
Q = U
Q + Uвн.
Q (5)
Сократив на Q,
получим:
= Uвн.
+ U (6)
т.е. электродвижущая
сила источника равна сумме напряжений
на внешнем и внутреннем участке цепи.
При разомкнутой
цепи Uвн.=
0, то
= U (7)
Подставив в
равенство (6) выражения для U и Uвн.
по закону Ома для участка цепи
U = I
R; Uвн. =
I
r,
получим:
= I
R + I
r = I
(R + r) (8)
Отсюда
(9)
Таким образом,
сила тока в цепи равна отношению
электродвижущей силы источника к сумме
сопротивлений внешнего и внутреннего
участков цепи. Это закон Ома для полной
цепи. В формулу (9) входит внутреннее
сопротивление r.
Рис.1
Пусть известны
значения сил токов I1
и I2
и падения
напряжений на реостате U1
и U2
(см. рис.1.). Для ЭДС можно записать:
= I1
(R1
+ r) и
= I2
(R2
+ r) (10)
Приравнивая правые
части этих двух равенств, получим
I1
(R1
+ r) = I2
(R2
+ r)
или
I1
R1
+ I1
r
= I2
R2
+ I2
r
I1
r
– I2
r
= I2
R2
— I1
R1
Т.к. I1
R1
= U1
и I2 R2
= U2,
то можно последнее равенство записать
так
r
(I1
–
I2)
= U2
– U1
,
откуда
(11)
2. Порядок
выполнения работы
2.1. Соберите цепь
по схеме, изображенной на рисунке 1.
Установите сопротивление реостата 7
Ом, ЭДС батарейки 1,5 В, внутреннее
сопротивление батарейки 3 Ом.
2.2. При помощи
мультиметра определите напряжение на
батарейке при разомкнутом ключе. Это и
будет ЭДС батарейки в соответствии с
формулой (7).
2.3. Замкните ключ
и измерьте силу тока и напряжение на
реостате. Запишите показания приборов.
2.4. Измените
сопротивление реостата и запишите
другие значения силы тока и напряжения.
2.5. Повторите
измерения силы тока и напряжения для 6
различных положений ползунка реостата
и запишите полученные значения в таблицу.
2.6. Рассчитайте
внутреннее сопротивление по формуле
(11).
2.7.
Определите абсолютную и относительную
погрешность измерения ЭДС и внутреннего
сопротивления батарейки.
V = 1.49 B
V=0.950 B I=0.33 A
Вывод: Научился
определять
внутреннее сопротивление источника
тока и его ЭДС
3. Контрольные
вопросы
3.1. Сформулируйте
закон Ома для полной цепи.
3.2. Чему равно ЭДС
источника при разомкнутой цепи?
3.3. Чем обусловлено
внутреннее сопротивление источника
тока?
3.4. Чем определяется
сила тока короткого замыкания батарейки?
Ответы:
3.1 Сила
тока пропорциональна ЭДС и обратно
пропорциональна сумме внутреннего и
внешнего сопротивлений.
3.2 В
таком случае ЭДС равна напряжению
3.3 Отношению
изменения силы тока к изменению напряжения
3.4 Отношением
ЭДС в внутреннему сопротивлению
Соседние файлы в предмете Основы электротехники и электроники
- #
- #
17.09.20191.56 Кб111ЛР №1.e
- #
- #
17.09.20191.6 Кб137ЛР №2.e
- #
- #
17.09.20191.41 Кб89ЛР №3.e
- #
- #
17.09.20192.62 Кб125ЛР №4.e
- #
- #
17.09.20191.56 Кб85ЛР №5.e
Что означает внутреннее сопротивление?
Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет. В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r.
Внутреннее сопротивление источника тока .
Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R. Ток в замкнутой цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r.
В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.
Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до сотни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.
Внутреннее сопротивление источника ЭДС
Дело все в том, что в аккумуляторе «спрятано» сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой «r «.
Выглядит все это в аккумуляторе примерно вот так:
Цепляем лампочку
Итак, что у нас получается в чистом виде?
Лампочка — это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:
Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.
На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .
Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.
Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что
Далее
Закон Ома для полной цепи
Итак, последнее выражение носит название «закон Ома для полной цепи»
где
Е — ЭДС источника питания, В
R — сопротивление всех внешних элементов в цепи, Ом
I — сила ток в цепи, А
r — внутреннее сопротивление источника питания, Ом
Как измеряется внутреннее сопротивление
Для определения значения рассматриваемой характеристики применяются измерения во время прямого замыкания клемм, которое называют коротким замыканием. Как известно, если закоротить клеммы источника, между ними протечёт значительный ток. Часто это является следствием неосторожности и приводит к обгоранию изоляции и расплавлению провода.
При коротком замыкании сопротивление цепи становится минимальным. Точно измерив силу тока в этой ситуации и зная величину напряжения на клеммах при отсутствии нагрузки, можно определить внутреннее сопротивление источника питания. Для этого понадобится следующая формула:
r = U / I(зам), где
- буквой r обозначено внутреннее сопротивление источника тока;
- U — разность потенциалов на клеммах батареи без подсоединения к электрической цепи;
- I(зам) — ток, который проходит при непосредственном замыкании клемм друг на друга.
Находить значение нагрузки таким образом не всегда возможно или целесообразно, поскольку короткое замыкание может стать причиной серьезной аварии.
Поэтому используются другие решения вопроса, как найти внутреннее сопротивление источника. Например, с помощью специальных измерительных приборов. Функцией измерения данного параметра снабжены оригинальные зарядные устройства iMax B6, ToolkinRC M8, M6, M600.
Зачем нужно знать внутреннее сопротивление
На первый взгляд может показаться, что наличие внутреннего сопротивления интересно только с теоретической точки зрения. На самом деле в некоторых ситуациях знать чему оно равно бывает жизненно важным.
Одна из таких ситуаций — определение работоспособности автомобильного аккумулятора. Его внутреннее сопротивление не является постоянным. Оно изменяется под воздействием различных факторов и влияет на напряжение на клеммах. Чтобы быть уверенным в работоспособности оборудования, нужно не только уметь найти его внутреннее сопротивление, но и знать, какая его величина соответствует норме.
На внутреннее сопротивление источника питания могут оказывать влияние такие факторы:
- Температурные условия. Чем холоднее, тем с меньшей скоростью в аккумуляторе протекают химические процессы. Это приводит к увеличению внутреннего сопротивления и постепенному уменьшению напряжения на клеммах.
- Срок службы аккумулятора. У новых устройств внутреннее сопротивление имеет минимальную величину. Постепенно оно начинает расти. Это связано с тем, что в аккумуляторе происходит необратимый химический процесс. В некоторых случаях он относительно медленный, а в других может быть довольно заметным. Последнее, например, относится к свинцово-кислотным аккумуляторам.
- Емкость аккумулятора.
- Иногда на устройство может оказываться механическое воздействие, из-за которого появляются внутренние обрывы.
- Количество используемого электролита.
- Ток, который создаётся батареей, зависит от нагрузки цепи. В зависимости от него меняется сопротивление.
Влияние большого количества факторов приводит к тому, что в качестве нормального можно рассматривать различные значения внутреннего сопротивления. Однако его стандартным увеличением за год принято считать 5%. Если эта норма превышена, значит, на исправность аккумулятора нужно обратить особое внимание.
При анализе стоит принимать во внимание не только те значения, которые указаны в технической документации. Необходимо учитывать и то, насколько интенсивно происходят изменения сопротивления со временем. Это даст более точную информацию об исправности батареи и поможет понять, чего нужно добиваться, чтобы обеспечить работоспособность оборудования.
Один из наиболее простых способов измерения внутреннего сопротивления можно продемонстрировать на следующем примере. Его применение возможно при условии, что ЭДС аккумулятора известна.
ЭДС (ℰ, единица измерения — вольты, В) — это электродвижущая сила источника питания, равная отношению работы сторонних сил по перемещению заряда от отрицательного полюса источника к положительному к величине этого заряда: ℰ=A/q. Если к источнику питания не подключена нагрузка, то ЭДС по своему значению равно напряжению на его клеммах.
Будет рассмотрена ситуация, когда ЭДС равна 1.5 В. Составляется электрическая цепь, в которой выходы аккумулятора присоединяются к электрической лампочке. Измеряется падение напряжения на ней и ток, проходящий через цепь. Они, соответственно, равны 1.2 В и 0.3 А.
Цифры, которые здесь приводятся, являются условными. При измерении мастер может выбрать другой тип электрической нагрузки, если сочтёт это необходимым.
По закону Ома можно определить сопротивление лампочки:
R = U / I = 1.2 / 0.3 = 4 Ом.
В этой формуле буквой R обозначается полное сопротивление цепи. Его можно выразить, как сумму r + R, где r — внутреннее и R — обычное сопротивление.
Тогда: R + r = ℰ / I
Из этой формулы определяется r = ℰ / I − R = 1.5 / 0.3 − 4 = 1 Ом.
Важным условием нахождения значения r является знание величины электродвижущей силы. Эта характеристика имеет максимальное значение у новых и хорошо заряженных батарей. Те, что уже долго были в использовании, могут иметь значительно меньшую ЭДС вследствие разряда, износа, который часто связан с необратимыми химическими процессами в аккумуляторе.
Для определения ℰ необходимо отключить любую нагрузку от клемм источника питания и подключить вольтметр или мультиметр в режиме измерения напряжения. Прибор покажет значение ЭДС. Почему — это легко понять. По закону Ома для полной цепи:
I = ℰ / (R + r),
так как вольтметр имеет сопротивление R→∞, то ток I≈0. Следовательно напряжение на клеммах равно ЭДС:
U = I·R = ℰ – I·r = ℰ.
Также следует упомянуть, что нулевым внутренним сопротивлением «r» обладает только идеальный генератор напряжения. Также существуют элементы с большим внутренним сопротивлением — это разные датчики, источники сигналов, а r=∞ обладает только идеальный источник тока. Помимо этого, существуют двухполюсники с отрицательным значением r, его можно получить в схемах с обратной связью и в элементах с отрицательным дифференциальным сопротивлением. Расчеты применимы не только для аккумулятора, но и для любого другого источника тока, например, гальванической батареи, двухполюсника, петли фаза-нуль. Использовать эти знания можно для согласования источника и нагрузки, понижения высоких напряжений и минимизации шума.
Расчет внутреннего сопротивления источника напряжения
Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.
Батарея аккумуляторов генерирует ЭДС:
ε = E/Q, где:
- Е – энергия (Дж);
- Q – заряд (Кл).
Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.
Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.
Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).
Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.
Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.
- Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
- Из этого выражения r = ε/I — R.
Пример.
Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.
- По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
- Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.
В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.
Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.
Важно!
Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.
Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.
Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.
В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.
Нахождение внутреннего сопротивления
Его можно находить двумя путями: рассчитать или измерить. Первым путём идут при работе с электрическими схемами, второй – выбирают, занимаясь с реальными устройствами.
Простой расчёт производится с использованием формулы Закона Ома для участка полной цепи:
Чтобы узнать силу тока, нужно напряжение ЭДС делить на сумму сопротивлений.
Выразив отсюда r, получают формулу для его вычисления:
где:
- r – внутреннее сопротивление источника;
- ε – ЭДС источника;
- I – сила тока в полной цепи;
- R – сопротивление в полной цепи.
Комплекс измерений этого параметра у настоящего устройства не подразумевает непосредственных замеров. Тестируются напряжения на нагрузочном сопротивлении в двух режимах тока: холостом и КЗ.
Так как не любой источник может выдержать даже кратковременный режим замыкания, берётся метод измерения без вычислений.
В схему включается внешнее сопротивление нагрузки в виде подстроечного резистора Rн. Выставляется такое значение, при котором падение напряжения на резисторе равнялось бы 1/2 U холостого хода. Тогда измеренное омметром Rн будет соответствовать внутреннему сопротивлению источника.
Таблица удельных сопротивлений различных материалов
Удельное сопротивление
ρ, Ом*мм2/м |
Удельное сопротивление
ρ, Ом*мм2/м |
Алюминий | 0,028 |
Бронза | 0,095 – 0,1 |
Висмут | 1,2 |
Вольфрам | 0,05 |
Железо | 0,1 |
Золото | 0,023 |
Иридий | 0,0474 |
Константан ( сплав Ni-Cu + Mn) | 0,5 |
Латунь | 0,025 – 0,108 |
Магний | 0,045 |
Манганин (сплав меди марганца и никеля – приборный) | 0,43 – 0,51 |
Медь | 0,0175 |
Молибден | 0,059 |
Нейзильбер (сплав меди цинка и никеля) | 0,2 |
Натрий | 0,047 |
Никелин ( сплав меди и никеля) | 0,42 |
Никель | 0,087 |
Нихром ( сплав никеля хрома железы и марганца) | 1,05 – 1,4 |
Олово | 0,12 |
Платина | 0.107 |
Ртуть | 0,94 |
Свинец | 0,22 |
Серебро | 0,015 |
Сталь | 0,103 – 0,137 |
Титан | 0,6 |
Хромаль | 1,3 – 1,5 |
Цинк | 0,054 |
Чугун | 0,5-1,0 |
Ответ: нить накаливания сделана из константана.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
I = U/R
I — сила тока [A]
U — напряжение [В]
R — сопротивление [Ом]
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
То есть:
I = U/0 = ∞
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Измерение внутреннего сопротивления.
Существует несколько методик измерения внутреннего сопротивления. Две из них прописаны в ГОСТ Р МЭК 61960-2007. Перед замером любым из приведенных ниже методов аккумулятор должен быть полностью заряжен. Испытания проводятся при температуре 20±5ºC.
Измерение внутреннего сопротивления методом переменного тока (а.с.)
С помощью этого метода измеряется импеданс, который на частоте 1000 Гц приблизительно равен сопротивлению.
Электрический импеданс (комплексное электрическое сопротивление) (англ. impedance от лат. impedio «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала.
Описание методики из ГОСТ
В течение одной – пяти секунд измеряем среднеквадратичное значение переменного напряжения Urms, возникающего при прохождении через аккумулятор переменного тока со среднеквадратичным значением Irms , следующего с частотой 1000 Гц. Внутреннее сопротивление Ra.c., Ом рассчитываем по формуле Ra.c.= Urms / Irms .
Irms (rms – Root Mean Square – среднеквадратичное значение).
Переменный ток должен иметь такое значение, чтобы пиковое напряжение не превышало 20 мВ.
Этот метод сложно воплотить в домашних условиях без специального оборудования. Популярный прибор YR1035 отлично справляется с измерениями с точностью 0,01 мОм. Зарядные устройства SKYRC MC3000 ,Opus BT-C3100V2.2, Liitokala Lii-500 также измеряют методом АС, но весьма с посредственной точностью.
Измерение внутреннего сопротивления методом постоянного тока (d.c.)
Этот метод возможно выполнить в домашних условиях с помощью обычных вольтметра и амперметра и пары подходящих нагрузочных сопротивлений. В качестве сопротивлений вполне можно использовать несколько автомобильных ламп накаливания или импровизированный резистор из нихромовой проволоки.
Описание метода из ГОСТ
- Разряжаем аккумулятор постоянным током I1= 0,2 Iн. На десятой секунде измеряем значение напряжения U1 на клеммах аккумулятора.
- Увеличиваем разрядный ток до значения I2=Iн. На следующей секунде измеряем значение напряжения U2 на клеммах аккумулятора.
Внутреннее сопротивление Rd.c., Ом рассчитываем по формуле Rd.c. = (U1-U2)/(I2-I1)
- Iн – номинальный ток разряда аккумулятора.
Схема для измерения внутреннего сопротивления по методике постоянного тока (d.c.)
Сопротивление R1 и R2 подбирается таким образом, чтобы протекали токи I1 и I2 нужной величины. Ориентироваться нужно на номинальный разрядный ток аккумулятора.
Вольтметр необходимо подключать непосредственно на полюса источника, чтобы исключить влияние от падения напряжения на проводах .
Идеальный источник тока
Идеальный источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах. Предполагается, что внутреннее сопротивление идеального источника тока бесконечно велико , и поэтому параметры внешней электрической цепи, от которых зависит напряжение на зажимах источника, не влияют на ток источника. Условные обозначения идеального источника тока приведены на рис. 1
Стрелка в источнике тока или знаки «+» и «—» указывают положительное направление тока i(t)
или полярность источника, т. е. направление перемещения положительных зарядов.
Сейчас принято обозначать источники тока буквой J, и чаще всего применяется нижнее условно графическое изображение.
Идеальный источник тока
По мере неограниченного увеличения сопротивления внешней электрической цепи, присоединенной к идеальном
у источнику тока, напряжение на его зажимах и соответственно мощность, развиваемая им, неограниченно возрастают.Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.
Источник тока конечной мощности изображается в виде идеального источника тока с параллельно подключенным к его зажимам пассивным элементом который характеризует внутренние параметры источника и
Представляя собой теоретическое понятие, источник тока применяется в ряде случаев для расчета электрических цепей.
Некоторым подобием источника тока может служить устройство, состоящее из аккумулятора, соединенного последовательно с дополнительным большим сопротивлением Другим примером источника тока может являться пяти электродная усилительная электронная лампа (пентод). Имея внутреннее сопротивление несоизмеримо большее, чем сопротивление внешней электрической цепи, эти устройства отдают ток, почти не зависящий от изменения внешней нагрузки в широких пределах, и именно в этом отношении они аналогичны источнику тока.
Чему равно внутреннее сопротивление источника тока?
Внутреннее сопротивление источника тока r будет определяться формулой: r = ЭДС / I — R. Подставим данные из условия задачи: r = 10 В / 2 А — 4 Ом = 1 Ом. Ответ: источник тока имеет внутреннее сопротивление r = 1 Ом.
Как правильно пользоваться мультиметром: инструкция для чайников
Рассмотрим, как измерить несколько электрических характеристик.
Потенциал
Алгоритм для определения напряжения:
- Установить режим в позицию ACV или DCV в предполагаемом интервале.
- Черный провод подключить к коннектору СОМ, красный — к разъему VΩmA.
- Наконечники щупов соединить с контактами цепи. Например, ввести в отверстия розетки или на полюса батарейки.
- Провести измерение.
Высветившееся на дисплее число — величина напряжения в вольтах. Знак «минус» говорит о том, что полярность была нарушена. Если мультиметр поддерживает функцию удержания, значение можно зафиксировать кнопкой HOLD. Это удобно для большой цепочки измерений.
Сила тока
Эта характеристика измеряется только при последовательном подключении тестера в цепь и включенном питании. Большинство приборов дают возможность определить силу тока до 10 А, поскольку в быту большие значения используются редко.
Для проведения измерений в цепи устраивается разрыв. Дальнейшие действия по следующей схеме:
- Черный щуп — в гнездо СОМ.
- Красный — в разъем до 200 мА или 10А.
- Наконечниками осторожно прикоснуться к контактам.
- Считать с дисплея значение напряжения.
При работе с оголенными проводами необходимо соблюдать технику безопасности, чтобы не допустить удара током.
Сопротивление
Эту характеристику можно измерить без подачи питания. Исследуемый элемент просто замыкается между двумя щупами. Если проводимости нет, на экране высвечивается единица.
Последовательность действий:
- Установить режим Ω, выбрав максимальный диапазон.
- Щупы вставить в соответствующие коннекторы.
- Проверить состояние — замкнуть щупы друг на друга. Должен появиться 0 или небольшое число, которое нужно учитывать при измерении сопротивления цепи.
- Концы проводников набросить на контакты исследуемого объекта.
- На экране появится сопротивление элемента или участка цепи.
Для точных измерений рекомендуется провести 2-3 попытки.
Измерение транзисторов
Для проверки исправности pn-переходов и определения коэффициента усиления:
- Установить режим
- Вставить ножки транзистора в разъем в соответствии с цоколевкой, соблюдая зоны PNP и NPN.
- Отображением на дисплее будет значение усиления сигнала.
Диоды и простейшие транзисторы также измеряются при установленном режиме «диод». К базе подключается красный щуп (плюс), на эмиттер или коллектор черный (минус). При правильной полярности на экране высветится коэффициент передачи.
Предыдущая
РазноеЧто такое фазное и линейное напряжение?
Следующая
РазноеБлуждающие токи и способы борьбы с ними
Законы постоянного тока
Содержание
- Постоянный электрический ток. Сила тока
- Постоянный электрический ток. Напряжение
- Закон Ома для участка цепи
- Электрическое сопротивление. Удельное сопротивление вещества
- Электродвижущая сила. Внутреннее сопротивление источника тока
- Закон Ома для полной электрической цепи
- Параллельное и последовательное соединение проводников
- Смешанное соединение проводников
- Работа электрического тока. Закон Джоуля–Ленца
- Мощность электрического тока
- Носители свободных электрических зарядов в металлах, жидкостях и газах
- Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковый диод
- Основные формулы раздела «Законы постоянного тока»
Постоянный электрический ток. Сила тока
Электрический ток – это упорядоченное движение заряженных частиц.
Условия существования электрического тока в проводнике:
- наличие свободных заряженных частиц;
- наличие электрического поля.
Напряженность электрического поля должна быть постоянной.
Цепь постоянного тока должна быть замкнутой.
Важно!
Тепловое движение заряженных частиц нельзя назвать электрическим током, так как оно беспорядочное.
Электрический ток можно обнаружить по его действиям:
- тепловому – при протекании тока проводник нагревается;
- химическому – изменяется состав вещества при прохождении электрического тока (электролиз);
- магнитному – электрический ток создает магнитное поле.
За направление тока принимают направление движения положительно заряженной частицы.
Сила тока – это скалярная физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, ко времени, за которое этот заряд переносится.
Обозначение – ( I ), единица измерения в СИ – ампер (А) (является основной).
Вычисляется по формуле:
Если за одинаковые промежутки времени через поперечное сечение проводника проходит одинаковый заряд, то ток постоянный.
Для измерения силы тока используют амперметр.
Условное обозначение на схемах:
Амперметр – измерительный прибор для определения силы тока в электрической цепи.
При измерении силы тока амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют, и с соблюдением полярности. Клемму амперметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока.
Для того чтобы включение амперметра не влияло на величину измеряемого тока, его сопротивление по сравнению с сопротивлением нагрузки должно быть как можно меньшим. Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но возникают ситуации, когда необходимо выполнить измерение силы тока больше предельно допустимого значения силы тока.
Для этого параллельно амперметру присоединяют проводник (шунт), по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения.
Сопротивление шунта рассчитывается по формуле:
где ( I_ц ) – сила тока в цепи, ( I_а ) – максимально допустимая для данного амперметра сила тока, ( R_а ) – сопротивление амперметра, ( n=frac{I_ц}{I_а} ).
При этом цена деления прибора увеличивается в n раз, а точность измерений во столько же раз уменьшается.
Работающим с электрическими цепями надо знать, что для человеческого организма безопасной считается сила тока до 1 мА. Сила тока больше 100 мА приводит к серьезным поражениям организма.
Постоянный электрический ток. Напряжение
В проводнике, по которому протекает ток, заряды движутся под действием сил электростатического поля. Работу электростатических сил характеризуют разностью потенциалов или напряжением.
Электрическое напряжение – скалярная физическая величина, равная отношению работы по перемещению электрического заряда между двумя точками цепи к величине этого заряда.
Обозначение – ( U ), единица измерения в СИ – вольт (В).
Формула для вычисления:
Напряжение равно разности потенциалов только в том случае, если рассматриваемый участок цепи не содержит источник тока (ЭДС = 0).
Измеряют напряжение вольтметром.
Изображение вольтметра на схеме:
При измерении напряжения вольтметр включают в цепь параллельно с тем прибором, напряжение на котором измеряют, и с соблюдением полярности. Клемму вольтметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока. Для того чтобы включение вольтметра не влияло на измерение напряжения, его сопротивление должно быть большим.
Для измерения напряжения больше, чем допустимое для данного вольтметра, используют добавочное сопротивление – резистор, включаемый последовательно с вольтметром.
Величина добавочного сопротивления рассчитывается по формуле:
где ( U ) – напряжение, которое нужно измерить, ( U_В ) – напряжение, на которое рассчитан вольтметр, ( n=frac{U}{U_В} ), ( R_В ) – сопротивление вольтметра.
При этом цена деления прибора увеличивается в ( n ) раз, а точность измерений во столько же раз уменьшается.
Закон Ома для участка цепи
Взаимосвязь между силой тока, протекающей по проводнику, и напряжением на его концах была экспериментально установлена Г. Омом и носит название закона Ома для участка цепи.
Закон Ома для участка цепи
Сила тока прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению:
График зависимости силы тока от напряжения называется вольт-амперной характеристикой. Из закона Ома для участка цепи следует, что при постоянном сопротивлении сила тока прямо пропорциональна напряжению. Следовательно, вольт-амперная характеристика для металлического проводника представляет собой прямую линию, проходящую через начало координат.
Проводник с такими свойствами называется резистором.
Угол наклона графика к оси напряжений зависит от сопротивления проводника. Тангенс угла наклона графика равен проводимости резистора.
Электрическое сопротивление. Удельное сопротивление вещества
Электрическое сопротивление – свойство материала проводника препятствовать прохождению через него электрического тока.
Обозначение – ( R ), единица измерения в СИ – Ом.
Объяснить наличие сопротивления можно на основе строения металлических проводников. Свободные электроны при движении по проводнику встречают на своем пути ионы кристаллической решетки и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток.
Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м2.
Обозначение – ( rho ), единица измерения в СИ – Ом·м.
Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 1,7·10-8 Ом·м, т. е. медный проводник длиной 1 м и сечением 1 м2 обладает сопротивлением 1,7·10-8 Ом. На практике часто используют единицу удельного сопротивления (Ом·мм2)/м.
Электрическое сопротивление проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.
Формула для вычисления:
Сопротивление проводника увеличивается с ростом температуры. Удельное сопротивление зависит от температуры:
где ( rho_0 ) – удельное сопротивление при ( T_0 ) = 293 К (20°С), ( Delta T=T-T_0 ), ( alpha ) – температурный коэффициент сопротивления.
Единица измерения температурного коэффициента сопротивления – К-1.
При нагревании увеличивается интенсивность движения частиц вещества. Это создает трудности для направленного движения электронов. Увеличивается число столкновений свободных электронов с ионами кристаллической решетки.
Свойство изменения сопротивления при изменении температуры используется в термометрах сопротивления. Эти приборы могут измерять температуру, основываясь на зависимости сопротивления от температуры. У термометров сопротивления высокая точность измерений.
Электродвижущая сила. Внутреннее сопротивление источника тока
Для создания электрического поля в проводниках используют источник тока. Внутри источника тока происходит перераспределение зарядов, в результате которого на полюсах источника возникает избыток зарядов разных знаков.
Виды источников тока:
- электрофорная машина;
- термопара;
- фотоэлемент;
- аккумулятор;
- гальванический элемент.
Сторонними называются силы неэлектрической природы, действующие внутри источника тока.
Когда проводник соединяют с полюсами источника, то на внешнем участке цепи заряженные частицы движутся под действием электростатической силы. А внутри источника на заряды действуют сторонние и электростатические силы.
Под действием этих сил внутри источника происходит перемещение положительных зарядов от отрицательного полюса источника к положительному. Это перемещение происходит до тех пор, пока сторонние силы не станут равными электростатическим. При переносе заряда эти силы совершают работу. Работа сторонних сил по перемещению заряда компенсирует потери энергии заряженными частицами при их движении по цепи.
Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению положительного заряда к величине этого заряда.
Обозначение – ( varepsilon ), единица измерения в СИ – вольт (В).
Формула для вычисления:
где ( Delta q ) – модуль перенесенного заряда.
Если электрическая цепь содержит несколько источников тока с ЭДС ( varepsilon_1,varepsilon_2,,…,varepsilon_T ), то суммарная ЭДС ( varepsilon=varepsilon_1+varepsilon_2+…,varepsilon_T ).
ЭДС считается положительной, если направление обхода цепи против часовой стрелки совпадает с переходом внутри источника тока от отрицательного полюса источника к положительному полюсу.
На рисунке: ( varepsilon_1>0,,varepsilon_2<0,,varepsilon_3>0. )
Суммарная ЭДС: ( varepsilon=varepsilon_1-varepsilon_2+varepsilon_3. )
При подключении проводника к полюсам источника тока происходит перераспределение заряда на поверхности проводника, а внутри проводника возникает постоянное электрическое поле. Заряды начинают перемещаться по замкнутой цепи, в которой устанавливается постоянная сила тока.
Сопротивление источника тока называется внутренним сопротивлением.
Обозначение внутреннего сопротивления – ( r ). Единица измерения в СИ – Ом.
Закон Ома для полной электрической цепи
Полная электрическая цепь состоит из источника тока и проводников, представляющих внешнее сопротивление.
Закон Ома для полной электрической цепи
Сила тока в полной цепи прямо пропорциональна ЭДС, действующей в цепи, и обратно пропорциональна полному сопротивлению цепи:
Полное сопротивление – это сумма внутреннего сопротивления источника и сопротивления внешней цепи. Во внешней цепи ток идет по направлению электрического поля, внутри источника тока – против поля.
Напряжение на внешней цепи (падение напряжения):
Если цепь разомкнута, то ток внутри источника не проходит и ( varepsilon=U ).
ЭДС численно равна напряжению на зажимах источника тока (разности потенциалов на полюсах источника).
Сопротивление внешней цепи больше внутреннего сопротивления источника.
Если сопротивление внешней цепи мало ( (R=0) ), то возможно короткое замыкание. Сила тока короткого замыкания: ( I_{кз}=frac{varepsilon}{r} )Возрастание силы тока приводит к резкому увеличению количества теплоты и может стать причиной пожара. Для предотвращения возгорания в электрическую цепь последовательно включают предохранители.
Соединение источников тока
Источники тока можно соединять между собой последовательно и параллельно.
При параллельном соединении положительные полюсы элементов соединяют между собой, отрицательные – между собой. Если ЭДС источников одинаковы, то общая ЭДС ( varepsilon=varepsilon_1 ) (( varepsilon_1 ) – ЭДС одного источника). Величина, обратная общему внутреннему сопротивлению, равна сумме величин, обратных внутренним сопротивлениям элементов: ( frac{1}{r}=frac{1}{r_1}+frac{1}{r_2}+… ) Если внутренние сопротивления источников одинаковы, то ( r_{общ}=frac{r_1}{n} ), ( r_1 ) – сопротивление одного источника, ( n ) – число источников. Сила тока: ( frac{varepsilon}{R+frac{r}{n}} ).
При последовательном соединении положительный полюс источника соединяется с отрицательным полюсом следующего. Общая ЭДС батареи ( varepsilon=varepsilon_1+varepsilon_2+… ), а общее внутреннее сопротивление равно сумме внутренних сопротивлений отдельных источников: ( r=r_1+r_2+… ) Если внутренние сопротивления источников одинаковы, то ( r_{общ}=nr_1 ). Сила тока: ( I=frac{nvarepsilon}{R+nr} ).
Параллельное и последовательное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно.
Последовательное соединение проводников
При последовательном соединении начало одного проводника соединяется с концом другого.
При последовательном соединении сила тока во всех проводниках одинакова:
Общее напряжение ( U ) на проводниках равно сумме напряжений на отдельных проводниках:
Напряжение на проводниках прямо пропорционально их сопротивлениям:
Общее сопротивление равно сумме сопротивлений проводников, образующих цепь:
Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:
где ( n ) – число проводников, ( R_i ) – сопротивление проводника.
Параллельное соединение проводников
При параллельном соединении проводники подключаются между одной и той же парой точек. Если в этой точке соединяются три и более проводников, то она называется узлом электрической цепи.
При параллельном соединении напряжение на всех проводниках одинаково:
Сумма сил токов, протекающих по проводникам, равна силе тока в неразветвленной цепи:
Это следствие того факта, что в точках разветвления цепи заряды не могут накапливаться.
Силы токов в разветвленных частях цепи обратно пропорциональны их сопротивлениям:
Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников:
Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:
где ( n ) – число проводников, ( R_1 ) – сопротивление проводника.
Если параллельно соединены два проводника, от общее сопротивление вычисляется по формуле:
Смешанное соединение проводников
Смешанное соединение проводников – соединение, при котором часть проводников соединена последовательно, а часть – параллельно.
Важно!
Чтобы рассчитать общее сопротивление такого участка или найти силу тока и напряжение при таком соединении, нужно:
- разбить его на простые участки с последовательно или параллельно соединенными проводниками;
- найти общее (эквивалентное) сопротивление каждого из этих участков;
- составить эквивалентную схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений;
- рассчитать сопротивление полученной схемы.
Если в схеме не удается выделить участки с последовательным или параллельным соединением проводников, то можно использовать такое правило: точки с одинаковыми потенциалами можно соединять и разъединять, ток между такими точками не идет.
На рисунке, если ( R_1=R_2,R_4=R_5, ) то потенциалы точек 1 и 2 равны. Резистор ( R_3 ) можно убрать на эквивалентной схеме – ток по нему не идет.
Точки с одинаковыми потенциалами есть в схемах с осью или плоскостью симметрии относительно точек подключения источника тока.
Если схема симметрична относительно оси, проходящей через точки входа и выхода тока, то точки равного потенциала находятся на концах симметричных сопротивлений (по ним идут одинаковые токи).
Если схема симметрична относительно оси, перпендикулярной линии, на которой лежат точки входа и выхода тока, то точки равного потенциала находятся на пересечении этой оси с проводниками.
Если в схеме нет участков с известным видом соединения и нет точек с равным потенциалом, то для расчета таких цепей используют правила Кирхгофа.
Правила Кирхгофа:
- Алгебраическая сумма сил токов, сходящихся в узле, равна нулю:
Положительными считают токи, входящие в узел, отрицательными – выходящие из узла.
- В любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС, имеющихся в контуре:
Порядок расчета цепи:
- выбрать направление токов во всей цепи;
- записать уравнения токов для узлов;
- записать уравнения для выделенных контуров. Произвольные замкнутые контуры выделяются так, чтобы каждый новый контур содержал хотя бы один участок, не входящий в ранее рассмотренные контуры;
- решить полученную систему уравнений.
Алгоритм решения задач на определение силы тока, напряжения или сопротивления на участке цепи:
- начертить схему цепи и указать на ней все элементы;
- установить, какие элементы цепи включены последовательно, какие – параллельно;
- расставить токи и напряжения на каждом участке цепи и записать для каждой точки разветвления (если они есть) уравнения токов и уравнения, связывающие напряжения на участках цепи;
- используя закон Ома, установить связь между токами, напряжениями и ЭДС;
- если в схеме делают какие-либо переключения сопротивлений или источников, уравнения составить для каждого режима работы цепи;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Работа электрического тока. Закон Джоуля–Ленца
Работа тока – работа сил электрического поля, создающего электрический ток.
Работа тока на участке цепи вычисляется по формуле:
Используя формулу закона Ома для участка цепи, можно работу тока вычислить так:
Работа тока в замкнутой цепи находится по формуле:
При протекании постоянного тока по металлическому проводнику электроны сталкиваются с положительными ионами, расположенными в узлах кристаллической решетки. При этом электроны передают им энергию. Это приводит к нагреванию проводника. Количество теплоты, выделяющееся в проводнике за время ( t ), равно:
Эта формула выражает закон Джоуля–Ленца: количество теплоты, выделяющееся при прохождении тока по проводнику, прямо пропорционально квадрату силы тока, времени его прохождения и сопротивлению проводника.
Мощность электрического тока
Мощность электрического тока равна отношению работы тока ко времени, в течение которого она совершается.
Обозначение – ( P ), единица измерения в СИ – ватт (Вт).
Вычисляется по формуле:
Можно записать еще несколько формул для вычисления мощности электрического тока на участке цепи:
Полная мощность источника тока:
Коэффициент полезного действия источника тока:
При решении задач на тепловое действие тока нужно учитывать следующее:
1. Если на участке есть источник тока, то необходимо использовать для решения формулу закона Джоуля–Ленца:
2. Если сила тока в цепи постоянна, то удобно использовать формулу закона Джоуля–Ленца:
3. Если постоянно напряжение, то формулу:
4. Количество теплоты можно находить, используя формулы термодинамики.
Носители свободных электрических зарядов в металлах, жидкостях и газах
Одним из условий существования электрического тока является наличие свободных заряженных частиц.
Носители электрического тока: в металлах – свободные электроны; в электролитах – положительные и отрицательные ионы; в газах – электроны и положительные ионы; в полупроводниках – электроны и дырки; в вакууме – любые заряженные частицы, но чаще всего это электроны.
Электрический ток в металлах
Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. При протекании тока по металлическому проводнику не происходит переноса вещества (опыт Рикке). Это значит, что ионы металла не принимают участия в переносе электрического заряда. Носителями заряда являются частицы одинаковые для всех металлов – электроны.
Сила тока в металлическом проводнике с площадью поперечного сечения ( S ):
где ( q ) – элементарный электрический заряд (заряд электрона), ( n ) – концентрация электронов проводимости, ( v ) – средняя скорость упорядоченного движения электронов.
Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыты Мандельштама и Папалекси, Стюарта и Толмена). Катушка с большим числом витков проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона.
Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема. Электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между положительными ионами, образующими кристаллическую решетку металла.
У некоторых металлов и сплавов обнаружено явление сверхпроводимости. Это явление открыто в 1911 г. Камерлинг-Оннесом. При температурах ниже критической сопротивление проводника становится равным нулю. Значения критической температуры для чистых металлов изменяются в диапазоне от долей кельвина до 30 К. В настоящее время получены вещества с критической температурой 125 К. Сверхпроводящие свойства наблюдаются у ртути, свинца, олова.
Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.
Явление сверхпроводимости используется для получения сильных магнитных полей
Электрический ток в жидкостях
Жидкости, проводящие электрический ток, называют электролитами. К электролитам относятся водные растворы неорганических кислот, солей и оснований, многие соединения металлов в расплавленном состоянии. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.
В результате электролитической диссоциации (распада нейтральных молекул на ионы) образуются положительные и отрицательные ионы. При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение. Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду).
Электролиз – явление прохождения электрического тока через электролит, сопровождающееся выделением веществ на электродах.
Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.
Масса ( m ) вещества, выделившегося на электроде, прямо пропорциональна заряду ( Q ), прошедшему через электролит:
Величину ( k ) называют электрохимическим эквивалентом.
Электрохимический эквивалент ( k ) равен отношению массы ( m_0 ) иона данного вещества к его заряду ( q_0 ):
где ( M ) – молярная масса вещества, ( n ) – валентность вещества, ( F=eN_A ) – постоянная Фарадея. ( F ) = 96,5·103 Кл/моль.
Постоянная Фарадея численно равна заряду, который нужно пропустить через раствор любого электролита для получения одного моля одновалентного вещества.
Явление электролиза широко применяется в современном промышленном производстве: получение чистых металлов (меди, алюминия), нанесение металлических покрытий (гальваностегия), изготовление копий с матриц (гальванопластика).
Электрический ток в газах
В обычных условиях газы являются диэлектриками, но при определенных условиях газ может стать проводником. Процесс протекания электрического тока через газ называется газовым разрядом. Носители заряда в газе – свободные электроны и ионы. Проводимость в газах смешанная – электронно-ионная.
Свободные носители заряда в газах появляются в процессе ионизации. Ионизация – процесс вырывания электрона из атома. Наряду с процессом ионизации в газе происходит и обратный процесс – рекомбинация заряженных частиц.
Ионизацию вызывают нагревание газа, излучение (ультрафиолетовое, рентгеновское или гамма-излучение).
Выделяют два вида разрядов в газе: несамостоятельный и самостоятельный разряды.
Несамостоятельный разряд происходит под действием внешнего ионизатора и прекращается, как только ионизатор перестает действовать. Самостоятельный разряд происходит без действия внешнего ионизатора под действием электрического поля, существующего между электродами. С ростом напряженности электрического поля скорости свободных заряженных частиц растут. Достигая катода, такие частицы выбивают из него электроны (вторичная электронная эмиссия). Эти электроны, разгоняясь полем, вызывают ионизацию других молекул (ионизация электронным ударом). Число заряженных частиц нарастает лавинообразно, и внешний ионизатор не нужен для поддержания тока.
На рисунке участок ОАВ соответствует несамостоятельному разряду, участок ВС – самостоятельному разряду.
Виды самостоятельного разряда:
- тлеющий;
- дуговой;
- коронный;
- искровой.
Тлеющий разряд происходит в разреженном газе при низком давлении. Применяется в газосветных трубках, лампах дневного света, цифровых индикаторах, ртутных лампах низкого давления.
Дуговой разряд – разряд между электродами, нагретыми до высокой температуры при атмосферном или повышенном давлении. Применяется в ртутных лампах высокого давления, при сварке металлов, в электропечах, в источниках света (прожекторах).
Коронный разряд возникает при нормальном и повышенном давлении у заостренных электродов. У острия электрода напряженность электрического поля велика, и в этой области возникает ударная ионизация при атмосферном давлении. Коронный разряд может возникнуть в тонких проводах, находящихся под высоким напряжением. Это приводит к утечке электроэнергии. Применяется в электрофильтрах, громоотводах, счетчике Гейгера–Мюллера.
Искровой разряд – это прерывистый самостоятельный разряд при нормальном или повышенном атмосферном давлении газа в электрическом поле очень большой напряженности. Применяется при обработке металлов. Пример такого разряда в природе – молния.
Плазма – частично или полностью ионизированный газ, в котором плотности отрицательных и положительных зарядов одинаковы. При сильном нагревании любое вещество испаряется, превращается в газ. Если увеличивать температуру и далее, резко усиливается процесс термической ионизации. Молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.
В состоянии плазмы находится подавляющая часть вещества Вселенной: звезды, галактические туманности и межзвездная среда. Около Земли плазма существует в виде солнечного ветра и ионосферы. Плазму можно наблюдать в рекламных газовых трубках, кварцевых лампах. За последние годы применение плазмы существенно расширилось. Высокотемпературная плазма (Т ∼ 106–108 К) из смеси дейтерия с тритием используется для осуществления управляемого термоядерного синтеза; низкотемпературная плазма (Т ≤ 105 К) – в различных газоразрядных приборах: газовых лазерах, ионных приборах.
Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковый диод
В природе существует большая группа веществ, занимающих промежуточное положение между проводниками и диэлектриками по величине электропроводности.
Полупроводниками называют вещества, удельное сопротивление которых находится в интервале от 10-3 до 107 Ом·м. К типичным полупроводникам относятся германий и кремний, селен, теллур, мышьяк.
Удельное сопротивление полупроводника зависит от внешних факторов: температуры, освещенности, электрического поля. С ростом температуры удельное сопротивление полупроводника уменьшается. С ростом освещенности также происходит уменьшение сопротивления полупроводника.
Такой ход зависимости удельного сопротивления от температуры ( rho(T) ) показывает, что у полупроводников концентрация свободных носителей заряда не остается постоянной, а увеличивается с ростом температуры. Объясним такую зависимость на примере германия.
Атомы германия на внешней оболочке имеют четыре валентных электрона. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум разным атомам. Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах, поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках значительно меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.
При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут появляться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.
Если полупроводник поместить в электрическое поле, то в упорядоченном движении участвуют свободные электроны и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток ( I ) в полупроводнике складывается из электронного ( I_Э ) и дырочного ( I_Д ) токов:
Концентрация электронов проводимости в полупроводнике равна концентрации дырок.
Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Собственный полупроводник — полупроводник, не содержащий примесей, влияющих на его электропроводность.
При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков.
Важно!
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
Примесной проводимостью называют проводимость полупроводников при наличии примесей.
Различают два типа примесной проводимости – электронную и дырочную.
Электронная проводимость
Электронная проводимость возникает при введении в кристалл германия с четырехвалентными атомами пятивалентных атомов (например атомов мышьяка, ( As )).
Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказывается лишним, он легко отрывается от атома мышьяка и становится свободным.
Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника.
Основными носителями заряда являются электроны. Концентрация свободных электронов намного больше концентрации дырок. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником ( n )-типа.
Дырочная проводимость
Дырочная проводимость возникает при введении в кристалл германия трехвалентных атомов (например атомов индия, ( In )). Атом индия с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.
Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места – дырки. На эти места могут переходить электроны из соседних ковалентных связей, что приводит к движению дырок по кристаллу.
Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов.
Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями заряда в полупроводниках p-типа являются дырки.
p-n переход (электронно-дырочный переход) – это область контакта двух полупроводников с разными типами проводимости.
При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок. Пограничная область раздела полупроводников с разными типами проводимости называется запирающим слоем. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение ( U_З ), приблизительно равное 0,35 В для германиевых n-p-переходов и 0,6 В для кремниевых.
p-n-переход обладает свойством односторонней проводимости. Если полупроводник с p-n-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от p-n-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через p-n-переход практически не идет. Напряжение, поданное на p-n-переход, в этом случае называют обратным. Незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов.
Если p-n-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать p-n-переход, создавая ток в прямом направлении. Сила тока через p-n-переход в этом случае будет возрастать при увеличении напряжения источника.
Способность p-n-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами.
Обозначение на схемах полупроводникового диода:
Полупроводниковые диоды изготавливают из кристаллов кремния или германия. Они используются в выпрямителях для преобразования переменного тока в постоянный. Вольт-амперная характеристика полупроводникового диода приведена на рисунке.
Полупроводниковые диоды имеют малые размеры, длительный срок службы, механическую прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры.
Основные формулы раздела «Законы постоянного тока»
Законы постоянного тока
3.1 (62.7%) 74 votes