Как найти внутренний угол правильного n угольника

 Углы правильного  многоугольника делятся на :

  • центральный угол;
  • внутренний угол;
  • внешний угол.

Углы многоугольника

Сумма внутреннего и внешнего угла равна (180°).

Сумма внутренних углов правильного многоугольника с (n) сторонами равна:

((n — 2)180°)


Для нахождения внутреннего угла используют формулу:

(alpha = frac{{{{180}^o}(n — 2)}}{n})

(n)— число сторон


Для нахождения внешнего угла используют формулу:

(varphi = frac{{{{360}^o}}}{n})

(n)— число сторон


Для нахождения центрального угла используют формулу:

(beta = frac{{{{360}^o}}}{n})

(n)— число сторон

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Внутренний угол правильного многоугольника Калькулятор

Search
Дом математика ↺
математика Геометрия ↺
Геометрия Правильный многоугольник ↺
Правильный многоугольник 2D геометрия ↺
2D геометрия Углы правильного многоугольника ↺

Количество сторон правильного многоугольника обозначает общее количество сторон многоугольника. Количество сторон используется для классификации типов многоугольников.Количество сторон правильного многоугольника [NS]

+10%

-10%

Внутренний угол правильного многоугольника — это угол между соседними сторонами многоугольника.Внутренний угол правильного многоугольника [∠Interior]

⎘ копия

Внутренний угол правильного многоугольника Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Количество сторон правильного многоугольника: 8 —> Конверсия не требуется

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

2.35619449019234 Радиан —>135.000000000025 степень (Проверьте преобразование здесь)




4 Углы правильного многоугольника Калькуляторы

Внутренний угол правильного многоугольника формула

Внутренний угол правильного многоугольника = ((Количество сторон правильного многоугольника-2)*pi)/Количество сторон правильного многоугольника

Interior = ((NS-2)*pi)/NS

Что такое правильный многоугольник?

Правильный многоугольник имеет стороны одинаковой длины и равные углы между сторонами. Правильный n-сторонний многоугольник имеет вращательную симметрию порядка n и также известен как вписанный многоугольник. Все вершины правильного многоугольника лежат на описанной окружности.

Что такое внутренний угол?

Внутренний угол многоугольника — это внутренний угол, образованный при сближении двух сторон. Все внутренние углы правильного многоугольника равны.

План урока:

Понятие правильного многоугольника

Описанная и вписанная окружности правильного многоугольника

Формулы для правильного многоугольника

Построение правильных многоугольников

Понятие правильного многоугольника

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

1 pravilnye mnogougolniki

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

2 pravilnye mnogougolniki

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

3 pravilnye mnogougolniki

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

4 pravilnye mnogougolniki

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

5 pravilnye mnogougolniki

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

6 pravilnye mnogougolniki

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу 

7 pravilnye mnogougolniki

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

8 pravilnye mnogougolniki

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Ответ: не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

9 pravilnye mnogougolniki

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

10 pravilnye mnogougolniki

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

11 pravilnye mnogougolniki

Из этого факта вытекает два равенства:

12 pravilnye mnogougolniki

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

13 pravilnye mnogougolniki

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

14 pravilnye mnogougolniki

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

15 pravilnye mnogougolniki

Так как высоты проведены в равных треуг-ках, то и сами они равны:

16 pravilnye mnogougolniki

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

17 pravilnye mnogougolniki

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

18 pravilnye mnogougolniki

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

19 pravilnye mnogougolniki

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Ответ: не могут.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

20 pravilnye mnogougolniki

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

21 pravilnye mnogougolniki

Теперь можно найти и ∠А1ОН1, рассмотрев ∆А1ОН1:

22 pravilnye mnogougolniki

23 pravilnye mnogougolniki

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

24 pravilnye mnogougolniki

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

25 pravilnye mnogougolniki

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

26 pravilnye mnogougolniki

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Решение.

Найдем периметр шестиугольника:

27 pravilnye mnogougolniki

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

28 pravilnye mnogougolniki

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

29 pravilnye mnogougolniki

Далее вычисляется радиус описанной около треугольника окружности:

30 pravilnye mnogougolniki

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

31 pravilnye mnogougolniki

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

32 pravilnye mnogougolniki

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

33 pravilnye mnogougolniki

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

34 pravilnye mnogougolniki

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

35 pravilnye mnogougolniki

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

AC = 17 мм

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

36 pravilnye mnogougolniki

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Ответ: 20 мм.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

37 pravilnye mnogougolniki

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

a6 = R

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

38 pravilnye mnogougolniki

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

39 pravilnye mnogougolniki

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.

На этом уроке мы узнаем, какой многоугольник называют
правильным. А также выведем формулу для вычисления угла правильного n-угольника.

Прежде, чем мы приступим к изучению новой темы,
давайте вспомним, что мы уже знаем о многоугольниках.

Итак, на рисунке
изображены два произвольных многоугольника. Напомню, что многоугольником
называется часть плоскости, состоящая из простой замкнутой ломаной и
ограниченной ею внутренней области. Или иными словами, многоугольник
это замкнутая ломаная без самопересечений. В зависимости от числа вершин или
сторон многоугольник называют треугольником, четырехугольником, пятиугольником и
т.д.

Давайте рассмотрим первый многоугольник A1A2A3A4A5. Он составлен из отрезков , , , , . Причем смежные отрезки, то есть отрезки  и ,  ,  и ,  и ,  и  не лежат на одной прямой, а несмежные отрезки,
например,  и ,  и , и  не имеют общих точек.

Точки , , , ,  называются вершинами этого многоугольника, а отрезки , , , ,  – его
сторонами.

Две вершины, которые
принадлежат одной стороне, например, и , , , называются соседними.

Отрезок, соединяющий
две не соседние вершины многоугольника, называют его диагональю.
Например, отрезок А один А три – диагональ данного многоугольника.

Сумму длин всех сторон
многоугольника называют периметром.

Обратите внимание, что
рассматриваемый многоугольник имеет 5 вершин и 5 сторон, а поэтому его называют
пятиугольником.

Многоугольник разделяет
плоскость на две части, а именно, на внутреннюю область многоугольника и на
внешнюю.

Угол, образованный
двумя сторонами многоугольника, выходящими из одной вершины, и содержащий
многоугольник, называют внутренним углом многоугольника. А угол,
смежный внутреннему углу многоугольника при данной вершине, называют внешним
углом многоугольника при этой вершине.
В общем случае внешний угол это
разность между 180° и внутренним углом
.

Все многоугольники
делят на выпуклые и невыпуклые. Рассмотрим наши многоугольники.

Если во втором
многоугольнике провести прямую A1A2, то весь многоугольник лежит по одну сторону от этой
прямой. А вот, если провести прямую A3A4, то она разделит многоугольник на две части, лежащие
по разные стороны от этой прямой. Такой многоугольник называют невыпуклым.

Вернемся к первому
многоугольнику. Какую бы прямую, содержащую одну из его сторон, мы не провели,
например, A1A2 или A4A5 и т.д., многоугольник всегда будет лежать по одну
сторону от любой подобной прямой. Такой многоугольник называют выпуклым.

Вспомним определения. Многоугольник называется выпуклым,
если он лежит по одну сторону от прямой, проходящей через любые две соседние вершины.

 А вот если многоугольник лежит по разные стороны хотя бы от одной
прямой, проходящей через две соседние вершины, то его называют невыпуклым.

Многоугольник с n вершинами называют n-угольником.

Точки ,, , …,,  – вершины n-угольника.

Отрезки ,, …, ,  – стороны n-угольника.

Теперь давайте разберемся, какой  многоугольник называют правильным. Определение.
Правильным многоугольником
называется выпуклый многоугольник, у которого все
углы равны и все стороны равны.

Примерами правильных многоугольников являются
правильный треугольник и квадрат.

На рисунке изображены правильные многоугольники.

А теперь давайте выведем формулу для вычисления внутреннего угла
правильного н-угольника. Ранее мы с
вами выяснили, что сумма
углов выпуклого -угольника равна , где n – количество сторон (углов). Следовательно, эта формула подойдет
и для правильного n-угольника. Но так как в определении
прозвучала фраза, что правильный многоугольник – это многоугольник, у которого
все углы равны, т.е. правильный n-угольник
имеет n одинаковых углов. Значит, сумму его углов
можно вычислить как , где градусная мера внутреннего угла многоугольника. Преобразовав
это равенство, получим, что угол правильного n-угольника можно вычислить по формуле .

Обратите
внимание, чтобы вычислить (внутренний угол правильного
н-угольника), нужно сумму всех углов многоугольника разделить на количество Задача. Внутренний угол правильного многоугольника равен . Одна из сторон равна  см. Найдите периметр многоугольника.

Решение.

Пусть
многоугольник имеет  сторон.

Сумма углов
многоугольника равна .

 

Значит,

 

 

 

 

 (см)

Ответ:  (см).

Задача. Докажите, что диагональ правильного
пятиугольника параллельна его стороне.

Доказательство.

Вычислим,
чему равен внутренний угол нашего правильного пятиугольника.

Рассмотрим .

Следовательно,
 – равнобедренный.

Рассмотрим
четырехугольник .

Так как ,

то .

Следовательно,
.

Что и
требовалось доказать.

Подведем итоги урока. На
этом уроке мы узнали, что правильным многоугольником называется выпуклый
многоугольник, у которого все углы равны и все стороны равны. А также вывели
формулу для вычисления угла правильного n-угольника, а
именно , где n – количество сторон (углов) правильного n-угольника.


Главная Учёба Найти внутренние и внешние углы многоугольника


Найти внутренние и внешние углы многоугольника

Укажите количество сторон многоугольника.

Формула расчёта внутренних и внешних углов многоугольника:
Внутренний угол=((n-2)*180)/n, Внешний угол=180-внутренний угол

n — количество сторон многоугольника. Сумма всех углов в равностороннем многоугольнике, имеющем n сторон, равна по этой формуле, которая разделяет на количество сторон. Во всех правильных многоугольниках все величины углов равны между собой.


Периметр многоугольника

Длина стороны многоугольника

Площадь правильного многоугольника

Калькулятор расчёта внутренних и внешних углов многоугольника, онлайн


Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!


Нет комментариев.


Понравилась статья? Поделить с друзьями:
  • Составь мини проект за 7 минут предмет исследования наводнения как стихийные бедствия
  • Как найти повреждении на кабели
  • Как найти панораму города
  • Как можно найти свой телефон на карте
  • Как найти фамильный меч