Как найти внутреннюю энергию при изотермическом процессе

Что такое изотермический процесс

Изотермический процесс – процесс изменения состояния идеального газа при постоянной температуре. 

Главное условие: T=const

С разницей в 14 лет закон открыли Роберт Бойль (1662 г.) и Эдм Мариотт (1676 г.) Название дано в честь обоих ученых.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Закон Бойля-Мариотта

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

(T-const\P_1V_1=P_2V_2\\\)

Или соотношение:

(frac{p_1}{p_2}=frac{V_2}{V_1}\\\)

Закон выражается графиками:

1. Зависимость давления от объема:

 Зависимость давления от объема

2. Зависимость давления от температуры:

Зависимость объема от температуры

3. Зависимость объема от температуры:

Зависимость объема от температуры

Как изменяется внутренняя энергия при изотермическом процессе

Внутренняя энергия изменяется вместе с температурой. Отличительной чертой изотермического процесса является его протекание с постоянной температурой. Из этого следует, что внутренняя энергия не изменяется. 

Формула количества теплоты в изотермическом процессе

Запишем первый закон термодинамики:

(Q=triangle U+A\\\ )

(Q-количество;теплоты;(Дж)\triangle U-изменение;внутренней;энергии;(Дж)\А-работа;(Дж)\\\)

Поскольку температура постоянна, то изменение внутренней энергии равно нулю. Уравнение принимает вид:

(triangle Q=A\\\)

Все тепло расходуется на работу газа.

Уравнение
Клапейрона-Менделеева описывает
равновесные состояния идеального газа,
а, следовательно, и любые обратимые
процессы, которые в нем могут протекать.
При наложении на систему дополнительных
условий, можно получить уравнения
термодинамических процессов, и
соответствующие им законы, которые
имеют ограниченное применение и являются
частными случаями допускаемых уравнением
термодинамических процессов.

Согласно закону
Бойля-Мариотта для неизменной массы
газа при постоянной температуре давление
газа меняется обратно пропорционально
объёму, занимаемому газом. Процесс,
описываемый этим законом, называется
изотермическим (T=const),
и его уравнение имеет вид:

Жозеф Луи
Гей-Люссак (1778 — 1850) провёл серию опытов
для различных газов и установил, что
при постоянном давлении и одинаковом
количестве вещества расширение газов
происходит одинаково при повышении
температуры на одну и ту же величину.
Этот закон носит название закона
Гей-Люссака. Ранее, в конце ХVIII
века, этот закон был установлен Жаком
Александром Цезарем Шарлем (1746 — 1823), но
не был опубликован им.

Установленный
ими закон описывает изобарический
(P=const)
процесс:
или.
где:Vo
— объем газа при температуре равной нулю
градусов по шкале Цельсия,
— температурный коэффициент расширения
газа, который для идеального газа должен
быть равен 1/273,15. Для реальных газов при
нормальных условиях он близок к этому
значению.

Если оставлять
неизменным объем газа, что, например,
имеет место в газовых термометрах
постоянного объема, то происходящий
при этом процесс будет называться
изохорическим (V=const)
и описываться уравнением:

Этот закон называется
законом Шарля.

Процессы в идеальном
газе, происходящие при постоянстве
одного из параметров состояния:
температуры, давления или объема,
называются изопроцессами.

ВНУТРЕННЯЯ ЭНЕРГИЯ:

Внутреннюю энергию
тела нельзя измерить напрямую. Можно
определить только изменение внутренней
энергии:

В изохорном
процессе
(V
= const) газ работы не совершает, A = 0.
Следовательно,

Q = ΔU = U(T2) – U(T1).

Здесь U(T1) и U(T2) –
внутренние энергии газа в начальном и
конечном состояниях. Внутренняя энергия
идеального газа зависит только от
температуры (закон Джоуля). При изохорном
нагревании тепло поглощается газом (Q
> 0), и его внутренняя энергия увеличивается.
При охлаждении тепло отдается внешним
телам (Q < 0).

В изобарном
процессе
(p
= const) работа, совершаемая газом, выражается
соотношением

A = p(V2 – V1) = pΔV.

Первый закон
термодинамики для изобарного процесса
дает:

Q = U(T2) – U(T1) + p(V2 –
V1) = ΔU + pΔV.

При изобарном
расширении Q > 0 – тепло поглощается
газом, и газ совершает положительную
работу. При изобарном сжатии Q < 0 –
тепло отдается внешним телам. В этом
случае A < 0. Температура газа при
изобарном сжатии уменьшается, T2 <
T1; внутренняя
энергия убывает, ΔU < 0.

В изотермическом
процессе

температура газа не изменяется,
следовательно, не изменяется и внутренняя
энергия газа, ΔU = 0.

Первый закон
термодинамики для изотермического
процесса выражается соотношением Q =
A.

Количество теплоты
Q, полученной газом в процессе
изотермического расширения, превращается
в работу над внешними телами. При
изотермическом сжатии работа внешних
сил, произведенная над газом, превращается
в тепло, которое передается окружающим
телам.

Наряду с изохорным,
изобарным и изотермическим процессами
в термодинамике часто рассматриваются
процессы, протекающие в отсутствие
теплообмена с окружающими телами. Сосуды
с теплонепроницаемыми стенками называются
адиабатическими оболочками, а процессы
расширения или сжатия газа в таких
сосудах называются адиабатическими.

В адиабатическом
процессе
Q
= 0; поэтому первый закон термодинамики
принимает вид

A = –ΔU,

то есть газ совершает
работу за счет убыли его внутренней
энергии.

Соседние файлы в папке Физика. Общая физика

  • #
  • #

Для изотермического процесса характерен определенный процесс, который происходит с газовым веществом, который в свою очередь имеет неизменную массу и постоянную неизменяемую температуру вещества.

Изотермический процесс для температуры газа, основные формулы и величины

Формулы

Изотермический процесс характеризует состояние газа и данное состояние записывается следующими формулами:

[p_{1} V_{1}=v R T]

[p_{2} V_{2}=v R T]

Изотермический процесс для системы координат

Характерные изотермические процессы   зачастую отражают на термодинамических графиках и диаграммах.

Если рассмотреть подробно график можно увидеть линию, именно ее и принято называть изотермой. Она непосредственно является основной характеристикой процесса.

Изотермический процесс для системы координат

Изотермический процесс — закон Бойля-Мариотта

Разделим уравнение для второго состояния газа на выражение первого состояния и получим основное уравнение изотермического процесса.

[frac{p_{2} V_{2}}{p_{1} V_{1}}=1] или [p V=mathrm{const}] (постоянное значение)

Полученное уравнение и будет называться законом Бойля-Мариотта.

Данный процесс осуществляется с использованием тепловой энергии.

В случае, когда объем увеличивается, или отводится, для его уменьшения.

Составим первое значение термодинамики.

Затем постепенно получим уравнение для определения работы.

А также вычисления внутренней энергии и количества теплоты тела при изотермическом процессе.

[delta Q=d cup+d A=frac{i}{2} v R d T+p d V]

Температура является неизменной, поэтому, изменение значения внутренней энергии будет равняться нулевому значению. [(d cup=0)].

Из этого следует, что для изотермического процесса все подводимое тепло направлено  на работу, которую совершает газ:

[
Delta Q=int_{V_{1}}^{V_{2}} d A
]

где:

  • [delta Q] — тепло элементарного характера, которое подводится ко всей системе;
  • dA  — работа элементарного типа, совершаемая газом  в изотермическом процессе; 
  • i —  количество  свободных степеней  газовых молекул; 
  • R —   газовое значение постоянной; 
  • d —   значение молей для газа;
  • V1— первоначальное значение объема газа;
  • V2— окончательное значение объема газа.

[A=int_{V_{1}}^{V_{2}} p d V]

Давление газа, которое зависит от уравнения газа в идеальном состоянии.

[p V=v R T rightarrow p=frac{v R T}{V}]

Подставим вышеуказанное выражение в подынтегральное выражение:

[A=int_{V_{1}}^{V_{2}} frac{v R T}{V}=v R T int_{V_{1}}^{V_{2}} frac{d V}{V}=mathrm{u} R T ln left(frac{V_{2}}{V_{1}}right)]

Составленное уравнение необходимо  определения значения работы, которую совершает газ  в изотермическом процессе.

[
A=v R T ln left(frac{p_{1}}{p_{2}}right)
]

[
Delta Q=A
]

Нет времени решать самому?

Наши эксперты помогут!

Как найти изотермический процесс — примеры решения задач

Пример №1

Основное содержание задания: газ идеального состояния, имеет способность расширяется, имея постоянную температуру, от объема.

[V_{1}=0.2 mathrm{~m}^{3}]

[V_{2}=0.6 mathrm{~m}^{3}]

Известно  сила давления во втором состоянии и  оно равняется [p_{2}=1 cdot 10^{5} mathrm{Pi a}].

Определить:

  • Величину изменения внутренней энергии газа;
  • Значение работы, которую совершает газовое вещество в данном процессе;
  • Какое необходимое количество теплоты получает газ в процессе работы.

Методика решения:

Внутренняя энергия газа неизменна, так как процесс который рассматривается в задаче, является изотермическим:

[Delta mathrm{U}=0]

Из основного закона термодинамики можно определить:

[Delta cup=A]

[A=v R T ln left(frac{V_{2}}{V_{1}}right)]

Составим и запишем уравнение, которое отражает окончательное (конечное) состояние газа:

[p_{2} V_{2}=v R T rightarrow T=frac{p_{2} V_{2}}{v R}]

Подставим в уравнение для температуры вышеизложенные формулы и получим решение:

[A=v R frac{p_{2} V_{2}}{v R} ln left(frac{V_{2}}{V_{1}}right)=p_{2} V_{2} ln left(frac{V_{2}}{V_{1}}right) .]

Следовательно, все величины расположены в международной системе единиц (СИ), можно провести вычисления и определить неизвестные значения:

[A=0.6 cdot 10^{5} ln left(frac{0.6}{0.2}right)=0.6 cdot 10^{5} cdot 1.1=6.6 cdot 10^{4} text { (Дж) }]

Ответ задачи:

  • значение изменения внутренней энергии газа в рассматриваемой процессе равно нулевому значению.
  • работа, которая совершается в процессе газовым веществом равняется  [6,6 cdot 10^{4} text { Дж }].
  • Необходимое количество тепловой энергии равно: [6,6 cdot 10^{4} text { Дж }].

Пример №2

Задание: изображен график, где изменяется идеальное состояние массы газа равное m в координатных осях p (V).

Нужно перенесите данный процесс на координатные оси в p(T).

Пример решения задачи 1

На данном графике изображен круговой процесс.

Где:

  1. Прямая 1-2  является изотермическим процессом с константой [(T=text { cons } t)].  Следовательно  значение объема будет уменьшается [(mathrm{V} downarrow)],  а давления соответственно расти [(p uparrow)].
  2. Прямая 2-3  отражает изобарический процесс [(p=text { const })]

const). Для данного процесса характерно увеличение объема  [mathrm{V} uparrow] и  применяя закон Гей-Люссака,  увеличение [Т uparrow]

  • Прямая (отрезок) 3-1  является изохорным процессом объем будет постоянной величиной  [(mathrm{V}=text { const })], а  [p downarrow],а исходя из  закона Шарля [T downarrow].

Все перечисленные процессы изобразим на координатных осях  p(T).

Пример решения задачи 2

From Wikipedia, the free encyclopedia

«Isothermal» redirects here. For other uses, see Isotherm.

In thermodynamics, an isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium). In contrast, an adiabatic process is where a system exchanges no heat with its surroundings (Q = 0).

Simply, we can say that in an isothermal process

while in adiabatic processes:

  • {displaystyle Q=0.}

Etymology[edit]

The adjective «isothermal» is derived from the Greek words «ἴσος» («isos») meaning «equal» and «θέρμη» («therme») meaning «heat».

Examples[edit]

Isothermal processes can occur in any kind of system that has some means of regulating the temperature, including highly structured machines, and even living cells. Some parts of the cycles of some heat engines are carried out isothermally (for example, in the Carnot cycle).[1] In the thermodynamic analysis of chemical reactions, it is usual to first analyze what happens under isothermal conditions and then consider the effect of temperature.[2] Phase changes, such as melting or evaporation, are also isothermal processes when, as is usually the case, they occur at constant pressure.[3] Isothermal processes are often used as a starting point in analyzing more complex, non-isothermal processes.

Isothermal processes are of special interest for ideal gases. This is a consequence of Joule’s second law which states that the internal energy of a fixed amount of an ideal gas depends only on its temperature.[4] Thus, in an isothermal process the internal energy of an ideal gas is constant. This is a result of the fact that in an ideal gas there are no intermolecular forces.[4] Note that this is true only for ideal gases; the internal energy depends on pressure as well as on temperature for liquids, solids, and real gases.[5]

In the isothermal compression of a gas there is work done on the system to decrease the volume and increase the pressure.[4] Doing work on the gas increases the internal energy and will tend to increase the temperature. To maintain the constant temperature energy must leave the system as heat and enter the environment. If the gas is ideal, the amount of energy entering the environment is equal to the work done on the gas, because internal energy does not change. For isothermal expansion, the energy supplied to the system does work on the surroundings. In either case, with the aid of a suitable linkage the change in gas volume can perform useful mechanical work. For details of the calculations, see calculation of work.

For an adiabatic process, in which no heat flows into or out of the gas because its container is well insulated, Q = 0. If there is also no work done, i.e. a free expansion, there is no change in internal energy. For an ideal gas, this means that the process is also isothermal.[4] Thus, specifying that a process is isothermal is not sufficient to specify a unique process.

Details for an ideal gas[edit]

Figure 1. Several isotherms of an ideal gas on a p-V diagram, where p for pressure and V the volume.

For the special case of a gas to which Boyle’s law[4] applies, the product pV (p for gas pressure and V for gas volume) is a constant if the gas is kept at isothermal conditions. The value of the constant is nRT, where n is the number of moles of the present gas and R is the ideal gas constant. In other words, the ideal gas law pV = nRT applies.[4] Therefore:

p={nRT over V}={{text{constant}} over V}

holds. The family of curves generated by this equation is shown in the graph in Figure 1. Each curve is called an isotherm, meaning a curve at a same temperature T. Such graphs are termed indicator diagrams and were first used by James Watt and others to monitor the efficiency of engines. The temperature corresponding to each curve in the figure increases from the lower left to the upper right.

Calculation of work[edit]

Figure 2. The purple area represents the work for this isothermal change.

In thermodynamics, the reversible work involved when a gas changes from state A to state B is[6]

W_{{Ato B}}=-int _{{V_{A}}}^{{V_{B}}}p,dV

where p for gas pressure and V for gas volume. For an isothermal (constant temperature T), reversible process, this integral equals the area under the relevant PV (pressure-volume) isotherm, and is indicated in purple in Figure 2 for an ideal gas. Again, p = nRT/V applies and with T being constant (as this is an isothermal process), the expression for work becomes:

W_{{Ato B}}=-int _{{V_{A}}}^{{V_{B}}}p,dV=-int _{{V_{A}}}^{{V_{B}}}{frac  {nRT}{V}}dV=-nRTint _{{V_{A}}}^{{V_{B}}}{frac  {1}{V}}dV=-nRTln {{frac  {V_{B}}{V_{A}}}}

In IUPAC convention, work is defined as work on a system by its surroundings. If, for example, the system is compressed, then the work is done on the system by the surrounding so the work is positive and the internal energy of the system increases. Conversely, if the system expands (i.e., system surrounding expansion, so free expansions not the case), then the work is negative as the system does work on the surroundings and the internal energy of the system decreases.

It is also worth noting that for ideal gases, if the temperature is held constant, the internal energy of the system U also is constant, and so ΔU = 0. Since the First Law of Thermodynamics states that ΔU = Q + W in IUPAC convention, it follows that Q = −W for the isothermal compression or expansion of ideal gases.

Example of an isothermal process[edit]

Figure 3. Isothermal expansion of an ideal gas. Black line indicates continuously reversible expansion, while the red line indicates stepwise and nearly reversible expansion at each incremental drop in pressure of 0.1 atm of the working gas.

The reversible expansion of an ideal gas can be used as an example of work produced by an isothermal process. Of particular interest is the extent to which heat is converted to usable work, and the relationship between the confining force and the extent of expansion.

During isothermal expansion of an ideal gas, both p and V change along an isotherm with a constant pV product (i.e., constant T). Consider a working gas in a cylindrical chamber 1 m high and 1 m2 area (so 1m3 volume) at 400 K in static equilibrium. The surroundings consist of air at 300 K and 1 atm pressure (designated as psurr). The working gas is confined by a piston connected to a mechanical device that exerts a force sufficient to create a working gas pressure of 2 atm (state A). For any change in state A that causes a force decrease, the gas will expand and perform work on the surroundings. Isothermal expansion continues as long as the applied force decreases and appropriate heat is added to keep pV = 2 [atm·m3] (= 2 atm × 1 m3). The expansion is said to be internally reversible if the piston motion is sufficiently slow such that at each instant during the expansion the gas temperature and pressure is uniform and conform to the ideal gas law. Figure 3 shows the pV relationship for pV = 2 [atm·m3] for isothermal expansion from 2 atm (state A) to 1 atm (state B).

The work done (designated {displaystyle W_{Ato B}}) has two components. First, expansion work against the surrounding atmosphere pressure (designated as WpΔV), and second, usable mechanical work (designated as Wmech). The output Wmech here could be movement of the piston used to turn a crank-arm, which would then turn a pulley capable of lifting water out of flooded salt mines.

{displaystyle W_{Ato B}=-p,Vleft(ln {frac {V_{B}}{V_{A}}}right)=-W_{pDelta V}-W_{rm {mech}}}

The system attains state B (pV = 2 [atm·m3] with p = 1 atm and V = 2 m3) when the applied force reaches zero. At that point, {displaystyle W_{Ato B}} equals –140.5 kJ, and WpΔV is –101.3 kJ. By difference, Wmech = –39.1 kJ, which is 27.9% of the heat supplied to the process (- 39.1 kJ / — 140.5 kJ). This is the maximum amount of usable mechanical work obtainable from the process at the stated conditions. The percentage of Wmech is a function of pV and psurr, and approaches 100% as psurr approaches zero.

To pursue the nature of isothermal expansion further, note the red line on Figure 3. The fixed value of pV causes an exponential increase in piston rise vs. pressure decrease. For example, a pressure decrease from 2 to 1.9 atm causes a piston rise of 0.0526 m. In comparison, a pressure decrease from 1.1 to 1 atm causes a piston rise of 0.1818 m.

Entropy changes[edit]

Isothermal processes are especially convenient for calculating changes in entropy since, in this case, the formula for the entropy change, ΔS, is simply

{displaystyle Delta S={frac {Q_{text{rev}}}{T}}}

where Qrev is the heat transferred (internally reversible) to the system and T is absolute temperature.[7] This formula is valid only for a hypothetical reversible process; that is, a process in which equilibrium is maintained at all times.

A simple example is an equilibrium phase transition (such as melting or evaporation) taking place at constant temperature and pressure. For a phase transition at constant pressure, the heat transferred to the system is equal to the enthalpy of transformation, ΔHtr, thus Q = ΔHtr.[3] At any given pressure, there will be a transition temperature, Ttr, for which the two phases are in equilibrium (for example, the normal boiling point for vaporization of a liquid at one atmosphere pressure). If the transition takes place under such equilibrium conditions, the formula above may be used to directly calculate the entropy change[7]

{displaystyle Delta S_{text{tr}}={frac {Delta H_{text{tr}}}{T_{text{tr}}}}}.

Another example is the reversible isothermal expansion (or compression) of an ideal gas from an initial volume VA and pressure PA to a final volume VB and pressure PB. As shown in Calculation of work, the heat transferred to the gas is

{displaystyle Q=-W=nRTln {frac {V_{text{B}}}{V_{text{A}}}}}.

This result is for a reversible process, so it may be substituted in the formula for the entropy change to obtain[7]

{displaystyle Delta S=nRln {frac {V_{text{B}}}{V_{text{A}}}}}.

Since an ideal gas obeys Boyle’s Law, this can be rewritten, if desired, as

{displaystyle Delta S=nRln {frac {P_{text{A}}}{P_{text{B}}}}}.

Once obtained, these formulas can be applied to an irreversible process, such as the free expansion of an ideal gas. Such an expansion is also isothermal and may have the same initial and final states as in the reversible expansion. Since entropy is a state function (that depends on an equilibrium state, not depending on a path that the system takes to reach that state), the change in entropy of the system is the same as in the reversible process and is given by the formulas above. Note that the result Q = 0 for the free expansion can not be used in the formula for the entropy change since the process is not reversible.

The difference between the reversible and irreversible is found in the entropy of the surroundings. In both cases, the surroundings are at a constant temperature, T, so that ΔSsur = −Q/T; the minus sign is used since the heat transferred to the surroundings is equal in magnitude and opposite in sign to the heat Q transferred to the system. In the reversible case, the change in entropy of the surroundings is equal and opposite to the change in the system, so the change in entropy of the universe is zero. In the irreversible, Q = 0, so the entropy of the surroundings does not change and the change in entropy of the universe is equal to ΔS for the system.

See also[edit]

  • Joule–Thomson effect
  • Joule expansion (also called free expansion)
  • Adiabatic process
  • Cyclic process
  • Isobaric process
  • Isochoric process
  • Polytropic process
  • Spontaneous process

References[edit]

  1. ^ Keenan, J. H. (1970). «Chapter 12: Heat-engine cycles». Thermodynamics. Cambridge, Massachusetts: MIT Press.
  2. ^ Rock, P. A. (1983). «Chapter 11: Thermodynamics of chemical reactions». Chemical Thermodynamics. Mill Valley, CA: University Science Books. ISBN 0-935702-12-1.
  3. ^ a b Petrucci, R. H.; Harwood, W. S.; Herring, F. G.; Madura, J. D. (2007). «Chapter 12». General Chemistry. Upper Saddle River, NJ: Pearson. ISBN 978-0-13-149330-8.
  4. ^ a b c d e f Klotz, I. M.; Rosenberg, R. M. (1991). «Chapter 6, Application of the first law to gases». Chemical Thermodynamics. Meno Park, CA: Benjamin.[ISBN missing]
  5. ^ Adkins, C. J. (1983). Equilibrium Thermodynamics. Cambridge: Cambridge University Press.[ISBN missing]
  6. ^ Atkins, Peter (1997). «Chapter 2: The first law: the concepts». Physical Chemistry (6th ed.). New York, NY: W. H. Freeman and Co. ISBN 0-7167-2871-0.
  7. ^ a b c Atkins, Peter (1997). «Chapter 4: The second law: the concepts». Physical Chemistry (6th ed.). New York, NY: W. H. Freeman and Co. ISBN 0-7167-2871-0.

Решение задач – занятие, которое любит далеко не каждый. Здесь мы стараемся сделать так, чтобы оно занимало у вас поменьше времени без ущерба для качества самого решения. Тема этой статьи — задачи на внутреннюю энергию.

Подписывайтесь на наш телеграм и читайте полезные материалы для студентов каждый день!

Решение задач: внутренняя энергия

Прежде чем приступать к задачам на внутреннюю энергию тела, посмотрите общую памятку по решению физических задач. И пусть под рукой на всякий случай всегда будут основные физические формулы.

Задача №1. Изменение внутренней энергии

Условие

Воздушный шар объёмом 500 м3 наполнен гелием под давлением 105 Па. В результате нагрева температура газа в аэростате поднялась от 10 °С до 25 °С. Как увеличилась внутренняя энергия газа?

Решение

Для решения будем использовать формулу внутренней энергии идеального газа:

Задача №1. Изменение внутренней энергии

Массу гелия выразим из уравнения Клапейрона-Менделеева:

Задача №1. Изменение внутренней энергии

Тогда можно записать:

Задача №1. Изменение внутренней энергии

Ответ: 4 МДж.

Задача №2. Внутренняя энергия и работа

Условие

Азот массой 200 г расширяется изотермически при температуре 280 К, причем объём газа увеличивается в 2 раза. Найти:

  1. Изменение ∆U внутренней энергии газа.
  2. Совершенную при расширении газа работу А.
  3. Количество теплоты Q, полученное газом.

Решение

Так как процесс изотермический, то изменение внутренней энергии равно нулю, а работа равна количеству теплоты, полученному газом:

Задача №2. Внутренняя энергия и работа

Ответ: 0; 11,6 кДж; 11,6 кДж.

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

Условие 

Кислород занимает объём V1= 3 л при давлении p1= 820 кПа. В результате изохорного нагревания и изобарного расширения газ переведён в состояние с объёмом V2= 4,5 л и давлением p2= 600 кПа. Найти количество теплоты, полученное газом; изменение внутренней энергии газа. 

Решение

Теплота, подведенная к газу, идет на совершение работы и изменение внутренней энергии:

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

В изохорном и изобарном процессе соответственно:

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

Изохорное нагревание:

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

Изменение внутренней энергии при изохорном процессе:

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

Изменение внутренней энергии при изобарном процессе:

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

Общее изменение внутренней энергии:

Задача №3. Изменение внутренней энергии при изобарном и изохорном процессе

Ответ: 4,75 кДж.

Задача №4. Изменение внутренней энергии двухатомного газа

Условие

Кислород массой 2 кг занимает объём 6 м3 и находится под давлением 1 атм. Газ был нагрет сначала при постоянном давлении до объёма 13 м3, а затем при постоянном объёме – до давления 23 атм. Найти изменение внутренней энергии газа.

Решение

Изменение внутренней энергии находим по формуле:

Задача №4. Изменение внутренней энергии двухатомного газа

Эту форму можно преобразовать, используя уравнение Клапейрона-Менделеева:

Задача №4. Изменение внутренней энергии двухатомного газа

Ответ: 75,7 МДж.

Задача №5. Внутренняя энергия смеси газов

Условие

В закрытом сосуде находится масса m1 = 20 г азота и масса m2 = 32 г кислорода. Определить изменение ΔU внутренней энергии смеси газов при охлаждении ее на ΔТ = 28 К. 

Решение

Определим количество молей азота и кислорода, а затем общее количество вещества в смеси соответственно: 

Задача №5. Внутренняя энергия смеси газов

Изменение внутренней энергии:

Задача №5. Внутренняя энергия смеси газов

Знак «минус» означает, что внутренняя энергия уменьшается.

Ответ: -539 Дж.

Вопросы на тему «Внутренняя энергия тела»

Вопрос 1. Что такое внутренняя энергия?

Ответ. Для начала, внутренняя энергия чего? Бутылки с пивом, воздуха в шарике, тазика с водой? Все макроскопические тела обладают энергией, заключенной внутри них: атомы твердого тела колеблются в кристаллической решетке около положений равновесия, молекулы газа находятся в постоянном хаотическом движении и т.д.

По определению:

Внутренняя энергия вещества – это энергия, которая складывается из кинетической энергии всех атомов и молекул, и потенциальной энергии их взаимодействия друг с другом.

Для идеального газа с числом степеней свободы i внутренняя энергия вычисляется по формуле:

Вопросы на тему «Внутренняя энергия тела»

Вопрос 2. От чего зависит внутренняя энергия идеального газа?

Ответ. Эта величина не зависит от объёма и определяется только температурой.

Вопрос 3. Как изменяется внутренняя энергия тела?

Ответ. Если тело совершает работу, его внутренняя энергия уменьшается. Например, газ передвигает поршень. Если же работа совершается над телом, то внутренняя энергия увеличивается.

Вопрос 4. Что такое функция состояния?

Ответ. Функция состояния – это один из параметров, которым можно описать термодинамическую систему. Функция состояния не зависит от того, как система пришла в то или иное состояние, а определяется несколькими переменными состояния.
Внутренняя энергия – это функция состояния термодинамической системы. В общем случае она зависит от температуры и объёма. 

Вопрос 5. Можно ли изменить внутреннюю энергию тела, не совершая над ним работы?

Ответ. Да, еще один способ изменения внутренней энергии – теплопередача. В процессе теплопередачи внутренняя энергия тел изменяется.

Нужна помощь в решении задач по любой теме и других студенческих заданий? Профессиональный студенческий сервис поспособствует в выполнении работы вне зависимости от ее сложности.

Понравилась статья? Поделить с друзьями:
  • Как найти урл ссылку стим
  • Как найти выход раствора
  • Как найти пропавшую вещь с помощью заговора
  • Прекращена работа программы консоль управления mmc windows 7 как исправить
  • Как найти свернутый документ