Как найти возбужденное состояние атома

Атомно-молекулярное учение

Мы приступаем к изучению химии — мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными
формулами элементов.

Атом (греч. а — отриц. частица + tomos — отдел, греч. atomos — неделимый) — электронейтральная частица вещества микроскопических
размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Планетарная модель атома

Протон (греч. protos — первый) — положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов
элементов. Нейтрон (лат. neuter — ни тот, ни другой) — нейтральная (0) элементарная частица, присутствующая в ядрах всех
химических элементов, кроме водорода.

Электрон (греч. elektron — янтарь) — стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома —
порядковый номер в таблице Менделеева — равен числу электронов (и, соответственно, протонов).

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20)
в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Электроны и протоны

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило:
порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим
электроны занимают различные энергетические уровни.

Энергетические уровни подразделяются на несколько подуровней:

  • Первый уровень
  • Состоит из s-подуровня: одной «1s» ячейки, в которой помещаются 2 электрона (заполненный электронами — 1s2)

  • Второй уровень
  • Состоит из s-подуровня: одной «s» ячейки (2s2) и p-подуровня: трех «p» ячеек (2p6), на которых
    помещается 6 электронов

  • Третий уровень
  • Состоит из s-подуровня: одной «s» ячейки (3s2), p-подуровня: трех «p» ячеек (3p6) и d-подуровня:
    пяти «d» ячеек (3d10), в которых помещается 10 электронов

  • Четвертый уровень
  • Состоит из s-подуровня: одной «s» ячейки (4s2), p-подуровня: трех «p» ячеек (4p6), d-подуровня:
    пяти «d» ячеек (4d10) и f-подуровня: семи «f» ячеек (4f14), на которых помещается 14
    электронов

Энергетические уровни

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число
электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а
также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или
атомным орбиталям, движутся электроны, создавая определенный «рисунок».

S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь — клеверный лист.

Атомные орбитали

Правила заполнения электронных орбиталей и примеры

Существует ряд правил, которые применяют при составлении электронных конфигураций атомов:

  • Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
  • На орбитали (в одной «ячейке») не может располагаться более двух электронов
  • Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются
    еще одним электроном с противоположным направлением
  • Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s
  • Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было
    бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

    Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и
серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода — 6, у серы — 16.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Электронные конфигурации углерода и серы

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил.
А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся
одним электроном дополнили первую ячейку.

Таким образом, электронные конфигурации наших элементов:

  • Углерод — 1s22s22p2
  • Серы — 1s22s22p63s23p4
Внешний уровень и валентные электроны

Количество электронов на внешнем (валентном) уровне — это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными. Иногда
для наглядного представления конфигурацию внешнего уровня записывают отдельно:

  • Углерод — 2s22p2 (4 валентных электрона)
  • Сера -3s23p4 (6 валентных электронов)

Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью — способностью атомов образовывать определенное число химических связей.

Валентные электроны углерода и серы

  • Углерод — 2s22p2 (2 неспаренных валентных электрона)
  • Сера -3s23p4 (2 неспаренных валентных электрона)
Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных
электронов. Ниже будет дано наглядное объяснение этой задаче.

Электронные конфигурации магния и фтора и их валентные электроны

Запишем получившиеся электронные конфигурации магния и скандия:

  • Магний — 1s22s22p63s2
  • Скандий — 1s22s22p63s23p64s23d1

В целом несложная и интересная тема электронных конфигураций отягощена небольшим исключением — провалом электрона, которое только подтверждает общее
правило: любая система стремится занять наименее энергозатратное состояние.

Провал электрона

Провалом электрона называют переход электрона с внешнего, более высокого энергетического уровня, на предвнешний, энергетически более
низкий. Это связано с большей энергетической устойчивостью получающихся при этом электронных конфигураций.

Подобное явление характерно лишь для некоторых элементов: медь, хром, серебро, золото, молибден. Для примера выберем хром, и рассмотрим
две электронных конфигурации: первую «неправильную» (сделаем вид, будто мы не знаем про провал электрона) и вторую правильную, написанную
с учетом провала электрона.

Провал электрона

Теперь вы понимаете, что кроется под явлением провала электрона. Запишите электронные конфигурации хрома и меди самостоятельно еще раз и
сверьте с представленными ниже.

Провал электрона у хрома и меди

Основное и возбужденное состояние атома

Основное и возбужденное состояние атома отражаются на электронных конфигурациях. Возбужденное состояние связано с движением электронов
относительно атомных ядер. Говоря проще: при возбуждении пары электронов распариваются и занимают новые ячейки.

Возбужденное состояние является для атома нестабильным, поэтому долгое время в нем он пребывать не может. У некоторых атомов: азота,
кислорода , фтора — возбужденное состояние невозможно, так как отсутствуют свободные орбитали («ячейки») — электронам некуда перескакивать, к тому
же d-орбиталь у них отсутствует (они во втором периоде).

У серы возможно возбужденное состояние, так как она имеет свободную d-орбиталь, куда могут перескочить электроны. Четвертый энергетический
уровень отсутствует, поэтому, минуя 4s-подуровень, заполняем распаренными электронами 3d-подуровень.

Основное и возбужденное состояние атома

По мере изучения основ общей химии мы еще не раз вернемся к этой теме, однако хорошо, если вы уже сейчас запомните, что возбужденное состояние
связано с распаривание электронных пар.

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

ЕГЭ по химии

Возбужденное состояние атома. Валентность.

Материал по химии

Данные понятия стоит изучить для выполнения типовых тестовых заданий №1 и №3, так же это поможет понять тему «Ковалентные связи», которая часто встречается в задании №4 ЕГЭ по химии.

Валентность – это количество связей, которые способен образовать химический элемент за счёт объединения своих неспаренных электронов с неспаренными электронами других элементов.

Для наилучшего понимания этой темы необходимо изобразить структуру атомов нескольких элементов, например, фосфора и водорода:

Возбужденное состояние атома. Валентность.


Валентность водорода и фосфора

Обе предложенные схемы описывают образование химической связи между фосфором и водородом. Раз фосфору необходимо приобрести пару для целых трёх своих электронов. А водород может «предложить» только один электрон, то к одному атому фосфора может присоединиться три атома водорода. На рисунке справа знаком «*» обозначены неспаренные электроны фосфора, а точками – неспаренные электроны водорода, между которыми и образуется связь (обозначена красным цветом). Связь, при которой происходит объединение электронов в общие пары называется ковалентной, эта связь достаточно прочная и является одной из самых распространённых связей.

Водород содержит один неспаренный электрон, до завершения внешней электронной оболочки ему не хватает всего одного электрона (так как водород имеет только один энергетический уровень, его первый уровень одновременно является и последним, на первом уровне может поместиться только два электрона). Фосфору для полной внешней электронной оболочки не хватает трех электронов, на схеме выше видно, что у него три неспаренных электрона. В таких случаях элементы могут вступать в своеобразных химический «симбиоз»: объединять электроны в общее пользование. При этом неспаренные электроны будут принадлежать одновременно обоим элементам. Данный процесс можно изобразить следующим образом:

Ковалентная связь в фосфине

В качестве примеров образования таких связей приведём еще несколько молекул:

Ковалентная полярная связь в второводороде

У фтора и у водорода по одному неспаренному электрону, поэтому их валентность равна единице. Валентность записывают римскими цифрами, она не имеет заряда, а отражает лишь количество связей, которые способен образовать элемент. Так валентность фтора I, валентность водорода тоже I. Между такими элементами образуется одна связь. Но есть элементы, способные образовывать гораздо большее количество связей, а значит иметь большую валентность, например:

Ковалентная неполярная связь в кислороде

У кислорода в данном примере валентность равна II, это значит, что каждый атом кислорода способен образовать две связи.

Возбуждённое состояние атома.

Углерод – один из самых важных элементов на планете Земля, без него невозможна жизнь. Каждая молекула органического вещества содержит четырехвалентный углерод. В чем же подвох? Дело в том, что в основном своём состоянии углерод содержит лишь два неспаренных электрона и способен проявлять валентность II, а не IV, как в органических молекулах или углекислом газе. Однако существует процесс «распаривания» электронов – перенос одного из электронов пары на другую орбиталь, при это валентность повышается:

Возбужденное состояние углерода

Не только углерод, но и многие другие элементы способны переходить в возбужденное состояние. У большинства элементов, точнее у тех элементов, что имеют три и более энергетических уровня (то есть находятся ниже второго периода в ПС) на внешнем уровне есть свободная d-орбиталь, на ней в основном состоянии нет электронов, но она может принимать их при возбуждении:

Возбужденное состояние хлора

А – основное состояние атома хлора, есть один неспаренный электрон, такая структура соответствует валентности I. Первую валентность хлор имеет в соединениях HCl и HClO.

Б – первое возбужденное состояние хлора, есть три неспаренных электрона, это соответствует валентности III (HClO2).

В – второе возбужденное состояние, пять неспаренных электронов определяют способность проявлять в таком состоянии валентность V (HClO3).

Г – третье валентное состояние, есть семь неспаренных электронов, в таком состоянии хлор может образовывать семь ковалентных связей (HClO4)

Валентность хлора в кислородсодержащих соединениях

Высшая валентность определяется номером группы, в которой стоит элемент, но есть исключения: азот, кислород и фтор. Для этих элементов не характерна высшая валентность, соответствующая номеру группы. Это объясняется тем, что у этих элементов электроны располагаются на двух энергетических уровнях, а свободная d-орбиталь, которая может принять электроны при их распаривании есть у элементов, имеющих три и более энергетических уровня.

Сравним кислород с серой, у которой есть свободная d-орбиталь:

Сравнение кислорода и серы

Кислород из-за отсутствия свободной орбитали не способен проявлять валентность выше II, тогда как у серы есть три валентных состояния: основное, соответствует валентности II (H2S); первое возбужденное, соответствует валентности IV (H2SO3 и SO2); второе возбужденное состояние, соответствует валентности VI (H2SO4, SO3).

Решение задания №3 ЕГЭ по химии

Пример 1.

Для выполнения заданий 1 – 3 используйте следующий ряд химических элементов:

  1. P

  1. Si

  1. Br

  1. N

  1. As

Ответом в заданиях 1 – 3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

Определите, атомы каких из указанных элементов в возбужденном состоянии имеют конфигурацию внешнего энергетического уровня ns1np3nd1.

Решение: Электроны могут перераспределяться только внутри одного уровня, общая сумма электронов внешнего уровня, в приведенной в задании формуле, равно пяти, следовательно элемент относится к VА-группе. Это фосфор, азот и мышьяк. Азот не имеет свободную d-орбиталь (см. выше), поэтому выпадает из ответа.

Ответ: 15


From Wikipedia, the free encyclopedia

After absorbing energy, an electron may jump from the ground state to a higher energy excited state.

Excitations of copper 3d orbitals on the CuO2 plane of a high-Tc superconductor. The ground state (blue) is x2y2 orbitals; the excited orbitals are in green; the arrows illustrate inelastic x-ray spectroscopy.

In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature).

The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation.

Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this.

Atomic excitation[edit]

Atoms can be excited by heat, electricity, or light. A simple example of this concept comes by considering the hydrogen atom.

The ground state of the hydrogen atom corresponds to having the atom’s single electron in the lowest possible orbital (that is, the spherically symmetric «1s» wave function, which, so far, has demonstrated to have the lowest possible quantum numbers). By giving the atom additional energy (for example, by the absorption of a photon of an appropriate energy), the electron is able to move into an excited state (one with one or more quantum numbers greater than the minimum possible). If the photon has too much energy, the electron will cease to be bound to the atom, and the atom will become ionized.

After excitation the atom may return to the ground state or a lower excited state, by emitting a photon with a characteristic energy. Emission of photons from atoms in various excited states leads to an electromagnetic spectrum showing a series of characteristic emission lines (including, in the case of the hydrogen atom, the Lyman, Balmer, Paschen and Brackett series).

An atom in a high excited state is termed a Rydberg atom. A system of highly excited atoms can form a long-lived condensed excited state e.g. a condensed phase made completely of excited atoms: Rydberg matter.

Perturbed gas excitation[edit]

A collection of molecules forming a gas can be considered in an excited state if one or more molecules are elevated to kinetic energy levels such that the resulting velocity distribution departs from the equilibrium Boltzmann distribution. This phenomenon has been studied in the case of a two-dimensional gas in some detail, analyzing the time taken to relax to equilibrium.

Calculation of excited states[edit]

Excited states are often calculated using coupled cluster, Møller–Plesset perturbation theory, multi-configurational self-consistent field, configuration interaction,[1] and time-dependent density functional theory.[2][3][4][5][6][7]

Excited-state absorption[edit]

The excitation of a system (an atom or molecule) from one excited state to a higher-energy excited state with the absorption of a photon is called excited-state absorption (ESA). Excited-state absorption is possible only when an electron has been already excited from the ground state to a lower excited state. The excited-state absorption is usually an undesired effect, but it can be useful in upconversion pumping.[8] Excited-state absorption measurements are done using pump–probe techniques such as flash photolysis. However, it is not easy to measure them compared to ground-state absorption, and in some cases complete bleaching of the ground state is required to measure excited-state absorption.[9]

Reaction[edit]

A further consequence of excited-state formation may be reaction of the atom or molecule in its excited state, as in photochemistry.

See also[edit]

  • Rydberg formula
  • Stationary state
  • Repulsive state

References[edit]

  1. ^ Hehre, Warren J. (2003). A Guide to Molecular Mechanics and Quantum Chemical Calculations (PDF). Irvine, California: Wavefunction, Inc. ISBN 1-890661-06-6.
  2. ^ Glaesemann, Kurt R.; Govind, Niranjan; Krishnamoorthy, Sriram; Kowalski, Karol (2010). «EOMCC, MRPT, and TDDFT Studies of Charge Transfer Processes in Mixed-Valence Compounds: Application to the Spiro Molecule». The Journal of Physical Chemistry A. 114 (33): 8764–8771. Bibcode:2010JPCA..114.8764G. doi:10.1021/jp101761d. PMID 20540550.
  3. ^ Dreuw, Andreas; Head-Gordon, Martin (2005). «Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules». Chemical Reviews. 105 (11): 4009–37. doi:10.1021/cr0505627. PMID 16277369.
  4. ^ Knowles, Peter J.; Werner, Hans-Joachim (1992). «Internally contracted multiconfiguration-reference configuration interaction calculations for excited states». Theoretica Chimica Acta. 84 (1–2): 95–103. doi:10.1007/BF01117405. S2CID 96830841.
  5. ^ Foresman, James B.; Head-Gordon, Martin; Pople, John A.; Frisch, Michael J. (1992). «Toward a systematic molecular orbital theory for excited states». The Journal of Physical Chemistry. 96: 135–149. doi:10.1021/j100180a030.
  6. ^ Glaesemann, Kurt R.; Gordon, Mark S.; Nakano, Haruyuki (1999). «A study of FeCO+ with correlated wavefunctions». Physical Chemistry Chemical Physics. 1 (6): 967–975. Bibcode:1999PCCP….1..967G. doi:10.1039/a808518h.
  7. ^ Ariyarathna, Isuru (2021-03-01). First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides (Thesis). hdl:10415/7601.
  8. ^ Paschotta, Rüdiger. «Excited-state Absorption». www.rp-photonics.com.
  9. ^ Dolan, Giora; Goldschmidt, Chmouel R. (1976). «A new method for absolute absorption cross-section measurements: rhodamine-6G excited singlet-singlet absorption spectrum». Chemical Physics Letters. 39 (2): 320–322. Bibcode:1976CPL….39..320D. doi:10.1016/0009-2614(76)80085-1.

External links[edit]

  • NASA background information on ground and excited states

Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

Одну из первых моделей строения атома — «пудинговую модель» — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой.

Атомное ядро, как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны. Они связаны ядерными силами (сильное взаимодействие).

Рассмотрим основные характеристики протонов, нейтронов и электронов:

Протон Нейтрон Электрон
Масса 1,00728 а.е.м. 1,00867 а.е.м. 1/1960 а.е.м.
Заряд + 1 элементарный заряд 0 — 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10-27 кг

1 элементарный заряд = 1,60219·10-19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома. Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд  в науке.

Следовательно, заряд ядра Z равен числу протонов Np, т.е. номеру атома в Периодической системе химических элементов. 

Атом — это электронейтральная частица, следовательно, число протонов Np равно числу электронов Ne:

Ne = Np = Z.

Масса атома (массовое число A) примерно равна суммарной массе крупных частиц, которые входят в состав атома — протонов и нейтронов. Поскольку масса протона и нейтрона примерно равна 1 атомной единице массы, можно использовать формулу, связывающую массовое число М число протонов Np и число нейтронов Nn:

M = Np + Nn

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5.

Таким образом, рассчитать число нейтронов в атоме можно, вычтя из массового числа номер атома: Nn = M – Z.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

Еще немного вопросов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.

Строение  электронной оболочки

Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни.

Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.

В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.

В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l+1. На каждой орбитали может находиться не более двух электронов.

Тип орбитали s p d f g
Значение орбитального квантового числа l 0 1 2 3 4
Число атомных орбиталей данного типа 2l+1 1 3 5 7 9
Максимальное количество электронов на орбиталях данного типа 2 6 10 14 18

Получаем сводную таблицу:

Номер уровня, n

Подуровень Число

АО

Максимальное количество электронов
1 1s 1   2
2 2s 1     2
2p 3   6

3

3s 1   2
3p 3   6
3d 5  10

4

4s 1    2
4p 3     6
4d 5 10
4f 7

 14

Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.

Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).

Правило Хунда. На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону. Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.

Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.

Например, заполнение 2р-орбитали тремя электронами будет происходить так: , а не так: 

Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.

АО 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g
n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
l 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
n + l 1 2 3 3 4 5 4 5 6 7 5 6 7 8 9

Таким образом, энергетический ряд орбиталей выглядит так:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6

Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.

Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.

Например, энергетическая диаграмма для атома углерода:

Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.

Например, электронная формула углерода выглядит так: 1s22s22p2.

Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую  электронную конфигурацию.

Например, электронную формулу азота можно записать так: 1s22s22p3 или так: [He]2s22p3.

1s2 = [He]

1s22s22p6 = [Ne]

1s22s22p63s23p= [Ar] и так далее.

Электронные формулы элементов первых четырех периодов

Рассмотрим заполнение электронами оболочки элементов первых четырех периодов. У водорода заполняется самый первый энергетический уровень, s-подуровень, на нем расположен 1 электрон:

+1H 1s1      1s 

У гелия 1s-орбиталь полностью заполнена:

+2He 1s2      1s  

Поскольку первый энергетический уровень вмещает максимально 2 электрона, у лития начинается заполнение второго энергетического уровня, начиная с орбитали с минимальной энергией — 2s. При этом сначала заполняется первый энергетический уровень:

+3Li 1s22s1      1s     2s 

У бериллия 2s-подуровень заполнен:

+4Be 1s22s2      1s    2s 

Далее, у бора заполняется p-подуровень второго уровня:

+5B 1s22s22p1      1s    2s     2p 

У следующего элемента, углерода, очередной электрон, согласно правилу Хунда, заполняет вакантную орбиталь, а не заполняет частично занятую:

+6C 1s22s22p2      1s    2s     2p 

Попробуйте составить электронную и электронно-графическую формулы для следующих элементов, а затем можете проверить себя  по ответам конце статьи:

5. Азот

6. Кислород

7. Фтор

У неона завершено заполнение второго энергетического уровня: 

+10Ne 1s22s22p6      1s    2s     2p 

У натрия начинается заполнение третьего энергетического уровня:

+11Na 1s22s22p63s1      1s    2s     2p      3s 

От натрия до аргона заполнение 3-го уровня происходит в том же порядке, что и заполнение 2-го энергетического уровня. Предлагаю составить электронные формулы элементов от магния до аргона самостоятельно, проверить по ответам.

8. Магний

9. Алюминий

10. Кремний

11. Фосфор

12. Сера

13. Хлор

14. Аргон

А вот начиная с 19-го элемента, калия, иногда начинается путаница — заполняется не 3d-орбиталь, а 4s. Ранее мы упоминали в этой статье, что заполнение энергетических уровней и подуровней электронами происходит по энергетическому ряду орбиталей, а не по порядку. Рекомендую повторить его еще раз. Таким образом, формула калия:

+19K 1s22s22p63s23p64s11s 2s 2p3s 3p4s

Для записи дальнейших электронных формул в статье будем использовать сокращенную форму:

 +19K   [Ar]4s1    [Ar] 4s 

У кальция 4s-подуровень заполнен:

+20Ca   [Ar]4s2    [Ar] 4s

У элемента 21, скандия, согласно энергетическому ряду орбиталей, начинается заполнение 3d-подуровня:

+21Sc   [Ar]3d14s2    [Ar] 4s    3d 

Дальнейшее заполнение 3d-подуровня происходит согласно квантовым правилам, от титана до ванадия:

+22Ti   [Ar]3d24s2    [Ar] 4s    3d

+23V   [Ar]3d34s2      [Ar] 4s    3d 

Однако, у следующего элемента порядок заполнения орбиталей нарушается. Электронная конфигурация хрома такая:

+24Cr   [Ar]3d54s1      [Ar] 4s  3d 

В чём же дело? А дело в том, что при «традиционном» порядке заполнения орбиталей (соответственно, неверном в данном случае — 3d44s2) ровно одна ячейка в d-подуровне оставалась бы незаполненной. Оказалось, что такое заполнение энергетически менее выгодно. А более выгодно, когда d-орбиталь заполнена полностью, хотя бы единичными электронами. Этот лишний электрон переходит с 4s-подуровня. И небольшие затраты энергии на перескок электрона с 4s-подуровня с лихвой покрывает энергетический эффект от заполнения всех 3d-орбиталей. Этот эффект так и называется — «провал» или «проскок» электрона. И наблюдается он, когда d-орбиталь недозаполнена на 1 электрон (по одному электрону в ячейке или по два).

У следующих элементов «традиционный» порядок заполнения орбиталей снова возвращается. Конфигурация марганца:

+25Mn   [Ar]3d54s2

Аналогично у кобальта и никеля. А вот у меди мы снова наблюдаем провал (проскок) электрона — электрон опять проскакивает с 4s-подуровня на 3d-подуровень:

+29Cu   [Ar]3d104s1

На цинке завершается заполнение 3d-подуровня:

+30Zn   [Ar]3d104s2

У следующих элементов, от галлия до криптона, происходит заполнение 4p-подуровня по квантовым правилам. Например, электронная формула галлия:

+31Ga   [Ar]3d104s24p1

Формулы остальных элементов мы приводить не будем, можете составить их самостоятельно.

Некоторые важные понятия:

Внешний энергетический уровень — это энергетический уровень в атоме с максимальным номером, на котором есть электроны.

Например, у меди   ([Ar]3d104s1) внешний энергетический уровень — четвёртый.

Валентные электроны — электроны в атоме, которые могут участвовать в образовании химической связи. Например, у хрома (+24Cr   [Ar]3d54s1) валентными являются не только электроны внешнего энергетического уровня (4s1), но и неспаренные электроны на 3d-подуровне, т.к. они могут образовывать химические связи.

Основное и возбужденное состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома. Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать химические связи, атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов.  А химические связи энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов  — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары  электронов могут распариваться, и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается, и атом может образовать больше химических связей, что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s22s22p1      1s    2s     2p 

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s22s12p2      1s    2s     2p

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Электронные формулы ионов

Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы.

Ионы — это заряженные частицы. Избыточный заряд обозначается индексом в правом верхнем углу.

Если атом отдаёт электроны, то общий заряд образовавшейся частицы будет положительный (вспомним, что число протонов в атоме равно числу электронов, а при отдаче электронов число протонов будет больше числа электронов). Положительно заряженные ионы — это катионы. Например: катион натрия образуется так:

+11Na 1s22s22p63s1      -1е = +11Na+ 1s22s22p63s0

Если атом принимает электроны, то приобретает отрицательный заряд. Отрицательно заряженные частицы — это анионыНапример, анион хлора образуется так:

+17Cl 1s22s22p63s23p5   +1e = +17Cl 1s22s22p63s23p6

Таким образом, электронные формулы ионов можно получить добавив или отняв электроны у атома. Обратите внимание, при образовании катионов электроны уходят с внешнего энергетического уровня. При образовании анионов электроны приходят на внешний энергетический уровень.

Попробуйте составить самостоятельно электронный формулы ионов. Не забывайте проверять себя по ключам!

18. Ион Са2+

19. Ион S2-

20. Ион Ni2+

В некоторых случаях совершенно разные атомы образуют ионы с одинаковой электронной конфигурацией. Частицы с одинаковой электронной конфигурацией и одинаковым числом электронов называют изоэлектронными частицами.

Например, ионы Na+ и F.

Электронная формула катиона натрия: Na+   1s22s22p6, всего 10 электронов.

Электронная формула аниона фтора: F   1s22s22p6, всего 10 электронов.

Таким образом, ионы Na+ и F — изоэлектронные. Также они изоэлектронны атому неона.

Тренажер по теме «Строение атома» — 10 вопросов, при каждом прохождении новые.

546

Создан на
03 января, 2022 От Admin

Тренировочный тест «Строение атома»

Тренировочный тест по теме «Строение атома»

1 / 10

1) O   2) Se   3) F   4) S   5) Na

Определите, атомы каких из указанных в ряду элементов образуют устойчивый отрицательный ион, содержащий 10 электронов.

2 / 10

1) B   2) Al   3) F   4) Fe   5) N

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns1np2.

3 / 10

1) Mn   2) Cr    3) Al    4) F   5) Ba

Определите, атомы каких из указанных в ряду элементов в основном энергетическом состоянии содержат одинаковое количество электронов на внешнем энергетическом уровне.

4 / 10

1) S   2) V   3) Mg   4) Al   5) H

Определите элементы, у атомов которых в основном состоянии все валентные электроны находятся только на s-подуровнях.

5 / 10

1) Mn   2) Fe   3) Al   4) Si   5) P

Определите элементы, атомы которых в основном состоянии не содержат неспаренных электронов на внешнем энергетическом уровне.

6 / 10

1) Na   2) Al   3) Br   4) Cu   5) Se

Определите элементы, катионы которых имеют электронную формулу внешнего энергетического уровня 2s22p6.

7 / 10

1) S   2) P   3) Ar   4) Si   5) Mg

Определите элементы, атомы которых в основном состоянии не содержат неспаренных электронов.

8 / 10

1) Al   2) Si   3) Mg    4) C   5) N

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns1np3.

9 / 10

1) Cr   2) O   3) Mg   4) Se   5) C

Определите элементы, атомы которых в основном состоянии имеют сходную конфигурацию внешнего энергетического уровня

10 / 10

1) Ga   2) Cr   3) O   4) Br   5) Mn

Определите, атомы каких из указанных в ряду элементов в основном состоянии содержат только пять d-электронов.

Ваша оценка

The average score is 37%

Ответы на вопросы:

1. У изотопов одного химического элемента массовое число всегда разное, т.к. массовое число складывается из числа протонов и нейтронов. А у изотопов различается число нейтронов.

2. У изотопов одного элемента число протонов всегда одинаковое, т.к. число протонов характеризует химический элемент.

3. Массовое число изотопа брома-81 равно 81. Атомный номер = заряд ядра брома = число протонов в ядре = 35. Вычитаем из массового числа число протонов, получаем 81-35=46 нейтронов.

4. Массовое число изотопа хлора равно 37. Атомный номер, заряд ядра и число протонов в ядре равно 17. Получаем число нейтронов = 37-17 =20.

5. Электронная формула азота:

+7N 1s22s22p3      1s    2s     2p 

6. Электронная формула кислорода:

+8О 1s22s22p1s  2s  2p 

7. Электронная формула фтора:

8. Электронная формула магния:

+12Mg 1s22s22p63s2      1s    2s     2p      3s

9. Электронная формула алюминия:

+13Al 1s22s22p63s23p1     1s    2s   2p    3s   3p 

10. Электронная формула кремния:

+14Si 1s22s22p63s23p2     1s    2s   2p    3s   3p

11. Электронная формула фосфора:

+15P 1s22s22p63s23p3     1s    2s   2p    3s   3p

12. Электронная формула серы:

+16S 1s22s22p63s23p4     1s    2s   2p    3s   3p

13. Электронная формула хлора:

14. Электронная формула аргона:

+18Ar 1s22s22p63s23p6     1s    2s   2p    3s   3p

15. Электронная формула углерода в возбуждённом состоянии:

+6C* 1s22s12p3   1s    2s     2p

16. Электронная формула бериллия в возбуждённом состоянии:

+4Be 1s22s12p1      1s    2s    2p 

17. Электронная формула кислорода в возбуждённом энергетическом состоянии соответствует формуле кислорода в основном энергетическом состоянии, т.к. нет условий для перехода электрона — отсутствуют вакантные энергетические орбитали.

18. Электронная формула иона кальция Са2++20Ca2+   1s22s22p63s23p6 

19. Электронная формула аниона серы S2-+16S2- 1s22s22p63s23p6

20. Электронная формула катиона никеля Ni2++28Ni2+  1s22s22p63s23p63d84s0. Обратите внимание! Атомы отдают электроны всегда сначала с внешнего энергетического уровня. Поэтому никель отдаёт электроны сначала с внешнего 4s-подуровня.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

Строение атома

Автор статьи — профессиональный репетитор И. Давыдова (Юдина).

Атом — в переводе с древнегреческого – неделимый — это наименьшая частица химического элемента, являющаяся носителем его свойств. Современные представления о строении атома требуют для понимания знаний основ квантовой механики, поэтому мы ограничимся упрощенной моделью.

Атом состоит из ядра (в составе которого протоны и нейтроны) и электронов. Несмотря на то, что ядро составляет большую часть массы атома, оно очень мало.

  Заряд z Масса m
Протон p+ +1 1
Нейтрон n0 0 1
Электрон e -1 0

Количество протонов равно количеству электронов и равно номеру атома в периодической таблице. Число нейтронов равно разности атомной массы и номера элемента.

Бор – пятый элемент периодической таблицы, в его атоме 5 протонов и 5 электронов. Атомная масса ≈ 11, количество нейтронов равно 11 – 5 = 6.

Элементы, имеющие одинаковое количество протонов в ядре, но различающиеся числом нейтронов, называются изотопами.

Например, 35Cl и 37Cl – изотопы, различающиеся атомной массой и количеством нейтронов.

  Число протонов Число нейтронов Число электронов
35Cl 17 18 17
37Cl 17 20 17

Вокруг ядра по различным траекториям — орбиталям движутся электроны. Каждой орбитали соответствует определенный уровень энергии, чем ближе орбиталь к ядру, тем меньшей энергией должен обладать электрон, чтобы находиться на ней.

Порядок заполнения орбиталей:

Электроны располагаются на орбиталях в соответствии со следующими правилами:

  • Принцип наименьшей энергии: в первую очередь электроны заполняют наиболее низкие по энергии уровни (ближайшие к ядру).

Энергия орбиталей на уровнях и подуровнях изменяется следующим образом: 1s < 2s < 2р < Зs < Зр < 4s < 3d < 4р < 5s <4d < 5р < 6s < 4f ≈ 5d < 6p < 7s < 5f ≈6d < 7p . (●)

Тип орбитали Число орбиталей на энергетическом уровне Максимальное количество электронов на этих орбиталях
s 1 2
p 3 6
d 5 10
f 7 14

Перед оставшимися двумя принципами введем понятие спина электрона. Спин – характеристика самого электрона, представить его (это упрощенная модель, а ненастоящий физический смысл понятия спин!) можно как направление движения электрона вокруг своей оси: по или против часовой стрелки. Возможных значений всего два: +1/2 (обозначаем стрелкой вверх) и -1/2 (обозначаем стрелкой вниз).

  • Принцип Паули: на каждой орбитали может быть не более двух электронов, причем их спины должны быть различными.
  • Правило Хунда: суммарный спин системы должен быть максимально возможным.

С правилом Паули всё достаточно ясно: спины двух электронов на одной орбитали различны, а значит у одного электрона +1/2 (стрелочка вверх), у другого – -1/2 (стрелочка вниз). Но каков смысл правила Хунда? В данном случае обратимся всё к тем же значениям спина электрона. При заполнении электронного уровня всегда сначала заполняется один подуровень, только затем электроны помещаются на следующий. Рассмотрим p-подуровень. На нём имеются 3 орбитали (см. таблицу выше). В целом, есть разные варианты развития событий. Допустим, у нас есть 4 электрона, которые надо расположить на подуровне. Мы можем поместить два в первую ячейку, два во вторую. Посчитаем суммарный спин. У двух элетронов спин 1/2, у других -1/2. Тогда при сложении мы получаем ноль. Теперь расположим три первых электрона по одному, оставшийся поместим на первую орбитал (в пару). Теперь суммарный спин 1. Значит, подходит второй случай. Для того чтобы каждый раз не высчитывать суммарный спин, можно запомнить, что вначале следует расположить все имеющиеся электроны по одному, и если на подуровне уже не останется свободных ячеек, начинать составлять пары.

Рассмотрим заполнение орбиталей электронами на нескольких примерах. У каждого следующего элемента таблицы Менделеева на один протон и один электрон больше, чем у предыдущего. У элементов главных подгрупп всегда заполняется внешний электронный уровень, у элементов побочных – один из предыдущих.

frac{24}{12}Mg— магний – двенадцатый элемент, имеет по 12 протонов и электронов, находится в главной подгруппе. Распределим эти электроны в соответствии с рассмотренными выше правилами, не забывая, что на каждом подуровне может быть не более двух электронов.
Магний – элемент третьего периода, следовательно, первый и второй энергетические уровни полностью заполнены — 1s22s22p6.Магний находится во второй группе, значит, на третьем уровне у него два электрона —  3s2. Итого получаем1s22s22p63s2.

В атоме магния в основном состоянии нет неспаренных электронов.

Если атому сообщили дополнительную энергию (например, нагрели), то электронная пара может распарится и один из электронов переходит на свободную орбиталь того же энергетического уровня. В возбужденном состоянии атом магния имеет два неспаренных электрона и может образовать две связи (валентность II).

frac{31}{15}P— фосфор – пятнадцатый элемент, находится в главной подгруппе. Распределяем 15 электронов: Фосфор — элемент третьего периода, следовательно, первый и второй энергетические уровни полностью заполнены — 1s22s22p6.Фосфор находится в пятой группе, значит, на третьем уровне у него пять электронов —  3s23p3. Итого получаем1s22s22p63s23p3.

В атоме фосфора в основном состоянии 3 неспаренных электрона. В возбужденном состоянии атом фосфора имеет пять неспаренных электронов и может образовать пять связей (валентность V).

frac{91}{40}Zr — цирконий – сороковой элемент, распределяем 40 электронов. Цирконий – элемент побочной подгруппы! Поэтому у него заполняется предыдущий электронный уровень (4d-подуровень). Цирконий – второй d – элемент в пятом периоде, значит, он содержит 2 электрона на 4d – подуровне. Итого получаем: 1s22s22p63s23p64s23d104p65s24d2.

В атоме циркония в основном состоянии 2 неспаренных электрона.
В возбужденном состоянии цирконий имеет четыре неспаренных электрона.

Важно отметить, что в обычном состоянии цирконий не может образовывать связей, так как для этого необходимы неспаренные электроны на внешнем электронном уровне. Соответственно, во всех соединениях цирконий находится в возбуждённом состоянии.

Исключениями из общего порядка заполнения электронных подуровней являются хром, марганец, медь, серебро и золото – у них наблюдается «провал» электрона с внешного s – подуровня на предвнешний d. (Атому более комфортно иметь на d-подуровне 5 или 10 электронов, чем 4 или 9). Например, электронные конфигурации хрома и меди вместо 4s23d4 и 4s23d9 имеют вид 4s13d5 и 4s13d10.

Задания для тренировки:

  1. Сколько протонов и электронов содержит ион NO2
    1) 46p, 46e                     
    2) 23p, 24e
    3) 23р, 23e                       
    4) 46p, 47e
  2. Чем отличаются изотопы одного и того же химического элемента?
    1) Числом протонов                          
    2) Числом электронов
    3) Зарядом ядра                       
    4) Массовым числом
  3. Укажите атом, в котором больше всего электронов:
    1) 2Н   
    2) 40Аr      
    3) 41Ar  
    4) 39К
  4. Изобразить электронно-графическую схему атома хлора в основном и всех возможных возбужденных состояниях. Какие валентности способен проявлять хлор?
  5.  Объяснить, почему сера проявляет валентность VI, а кислород – не проявляет, хотя оба эти элемента содержат по 6 электронов на внешнем слое.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Строение атома» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Как составить электронную конфигурацию атома азота
  • Load paper manually samsung scx 3400 как исправить
  • Как найти в своем ноутбуке сохраненные пароли
  • Как найти потерянные беспроводные наушники xiaomi
  • Как найти радиус описанной около прямоуг