Как найти время по формуле силы тока

Формула по закону Джоуля–Ленца: Q = I²Rt. Чтобы найти время t, нужно количество теплоты разделить на произведение квадрата тока и сопротивление. Преобразуем:

t = Q/I²R

Все данные известны, подставляем:

t = 2187/9²*3 =

2187/81*3 = как как я решаю в уме не умножаю на 3, а сокращаю на 3 левую часть

729/81 = сокращаю на 9

81/9 = Это уже легко получится 9 секунд.

На самом деле не нужно было 9 возводить в квадрат, а сократить на 9. Тогда первоначальные вычисления выглядели бы так:

t = 2187/9²*3 =

253/9*3 = сокращаю на 3 левую часть =

81/9 и = 9 секунд.

Проверяем:

Q = I²Rt подставляем известные числа.

Q = 9²*3*9 = 9³*3 = 729*3 = 730*3-3= 2190 — 3 = 2187 всё верно. (облегчение подсчёта в уме.)

Небольшое отступление. Определение мощности и напряжения нагревателя (ТЭНа).

U=IR = 3*9=27 вольт.

Мощность P=U*I = 27*9 = 243 ватт

Мой ответ на задачу: 9 секунд.

Вот такая лабораторная электроплитка менее 10 см диаметр.

4545456

+35

Решено

9 лет назад

Физика

5 — 9 классы

как найти время зная работу,силу тока,напряжение?

Смотреть ответ

2

Комментарии

danafizik

А=UIt отсюда t=A/UI

Ответ

4
(5 оценок)

8

Очаровашка99

Очаровашка99
9 лет назад

Светило науки — 136 ответов — 0 раз оказано помощи

I=A/Ut
t=A/IU
))))))))))))))))))))))))

(5 оценок)


Ответ проверен экспертом

3
(7 оценок)

6

MashaPutnaj

MashaPutnaj
9 лет назад

Светило науки — 15179 ответов — 183972 помощи

ак найти время зная работу,силу тока,напряжение?

А= U*I*t   t=A/U*I

А= U^2*t/R      t= A*R/U^2

A=I^2*R*t    t= A/I^2*R

(7 оценок)

https://vashotvet.com/task/8578837

На этой странице вы узнаете

  • Что общего у электрического тока с водой?
  • В чем отличие сопротивления от удельного сопротивления?
  • Почему нежелательно использовать телефон, подключенный к зарядке?
  • Фамилия какого ученого стоит миллион?

«Все, кина не будет. Электричество кончилось». Наверное, никого не оставит равнодушным популярная фраза из широко известного фильма «Джентльмены удачи». Ведь действительно: бесит, когда сидишь за просмотром любимого сериальчика, вдруг — бамс! Вырубили свет, и зарядки ноута, как назло, не хватило. И не выработаешь электричество в домашних условиях, а жаль… Но вот понять, как оно работает — это мы сможем сделать в статье.

Электрический ток

В наше время трудно себе представить жизнь без электричества. Телевизор не посмотреть, телефон не зарядить, чай не попить… Ни один электроприбор в доме не будет работать без электричества. А объявление об отключении электроэнергии, вызывает тихий ужас.

Электричество — это форма энергии, которая существует в виде статических или подвижных электрических зарядов.

Что общего у электрического тока с водой?

Поток. И то и другое представляет собой направленное движение частиц. Из чего состоит вода? Из молекул. Когда эти молекулы движутся в одном направлении, то они образуют поток воды, который течет, например, по трубам.

Так же и электрический ток. Он образуется потоком заряженных частиц, которые движутся по проводам. 

Сформулируем определение:

Электрический ток — это упорядоченное движение заряженных частиц.

Чтобы электрический ток существовал, необходимо выполнение следующих условий:

  • наличие свободных заряженных частиц;
  • наличие электрического поля;
  • наличие замкнутой электрической цепи.

Основными количественными характеристиками электрического тока являются сила тока и напряжение.

Напряжение

Чтобы внутри цепи существовал электрический ток, цепь должна быть замкнута и между концами участка цепи должно существовать напряжение.

Напряжение  — скалярная (не имеющая направления) физическая величина, значение которой равно работе тока на участке цепи, совершаемой при переносе единичного электрического заряда из одной точки в другую.

(U = frac{A}{q}), где 

U — напряжение (В),
A — работа тока на участке цепи (Дж), 
q — электрический заряд (Кл).

Единица измерения UВ (Вольт) = (frac{Дж}{Кл})

Электрический ток – результат “труда” множества частиц. Они любят работать – не ленятся перемещаться из одного конца цепи в другой. И чем больше они будут работать, тем большее напряжение получится. Так запоминаем связь напряжения (U) с работой (A).

Услышав слова из известной песни Димы Билана «Это ты, это я, между нами молния, С электрическим разрядом 220 Вольт…» любой физик (и электрик) приобретает новую пару седых волосинок. Такое напряжение очень опасно для человека. Однако, 220 Вольт — это то самое напряжение в наших розетках!

Прибор для измерения напряжения — вольтметр. Он включается в цепь параллельно. Пример подключения представлен на рисунке:

Сила тока

Это еще одна немаловажная характеристика электрического тока.

Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени . 

(I = frac{q}{t}), где

I — сила тока (А),
q — электрический заряд (Кл), 
t — время (с).

Единица измерения IА (ампер) = (frac{Кл}{с}).

Представим, что внутри проводника «бежит» в одном направлении огромное количество заряженных частиц. Так вот, чем больше общий заряд частиц, пробегающих через поперечное сечение проводника за единицу времени, тем больше будет значение силы тока. Это поможет вам запомнить зависимость силы тока (I) от электрического заряда (q).

Прибор для измерения силы тока — амперметр. Он включается в цепь последовательно. Пример подключения представлен на рисунке:

Направление тока совпадает с направлением движения положительно заряженных частиц.

Давайте разберемся, как можно определить направление тока в цепи на примере.

Задача. На рисунке изображена электрическая цепь с источником тока и сопротивлением R. Определите направление тока в данной цепи (по часовой стрелке/против часовой стрелки).

Решение:

Обратите внимание, «большая» пластина реостата расположена справа (именно она и направляет ток), а «маленькая» слева. Положительно заряженные частицы двигаются от катода к аноду (от положительно заряженной пластинки к отрицательно заряженной), а направление тока всегда совпадает с направлением положительно заряженных частиц. Значит, ток в цепи направлен по часовой стрелке.

Ответ: по часовой стрелке

Электрическое сопротивление

Оно является электрической характеристикой проводника.

Сопротивление — физическая величина, характеризующая электрические свойства участка цепи.

(R = frac{pl}{S}), где 

R — сопротивление (Ом),
p — удельное сопротивление проводника, 
l — длина проводника (м),
S — площадь поперечного сечения проводника (мм²).

Единица измерения RОм.

Удельное сопротивление проводника (p) можно посмотреть в специальной таблице в справочнике или в интернете. Для каждого материала будет свое значение. Мы приведем для примера лишь фрагмент такой таблицы.

Таблица удельных сопротивлений проводников

Металл Удельное сопротивление, 
Ом * (мм^2)/ м
Серебро 0,0015
Медь 0,018
Золото 0,023
Алюминий 0,029
Вольфрам 0,055
Железо 0,098
В чем отличие сопротивления от удельного сопротивления?

Сопротивление — это внешнее свойство, зависящее от количества присутствующего материала, от геометрических характеристик проводника и от самого материала, из которого сделан проводник. 

Удельное сопротивление — это внутреннее свойство проводника, которое не зависит от его размера, а зависит от химического состава вещества и температуры.

Условно можно сказать, что сопротивление — это свойство проводника, а удельное сопротивление — свойство материала.

Получается, что прежде всего на то, каким будет сопротивление, влияют размеры проводника, его форма, материал, из которого он сделан. 

Удельное сопротивление проводника зависит также от температуры. Когда температура твердых тел увеличивается, то удельное сопротивление возрастает. А в растворах и расплавах — наоборот, уменьшается. В экзаменационных задачах случаи с изменением удельного сопротивления не рассматриваются, а вот в олимпиадных задачах такое встретить можно.

Давайте поразмышляем: что чему сопротивляется? 

Причина электрического сопротивления кроется во взаимодействии зарядов разного знака при протекании тока по проводнику. Это взаимодействие можно сравнить с силой трения, стремящейся остановить движение заряженных частиц.

Чем сильнее взаимодействие свободных электронов с положительными ионами в узлах кристаллической решетки проводника, тем больше сопротивление проводника.

Проводник с определенным постоянным сопротивлением называется резистор.

Вернемся к сравнению электрического тока с водой: как молекулы воды из крана движутся сверху вниз, так и электрический ток имеет определенное направление — от катода к аноду. Электрический заряд условно в нашем примере аналогичен массе воды, а напряжение — напору воды из крана.

Закон Ома

Сила тока, напряжение и сопротивление связаны между собой соотношением, которое называется закон Ома:

(I = frac{U}{R}) , где 

I — сила тока (А),
U — напряжение (В), 
R — сопротивление (Ом).

Для упрощенного понимания закона Ома можно использовать данный треугольник. Чтобы вспомнить формулу для нахождения той или иной величины, нужно ее закрыть рукой. Если оставшиеся открытыми величины стоят бок о бок, то они перемножаются друг с другом (U=IR). А если одна величина стоит выше другой, то в таком случае мы делим их друг на друга (I=U/R или R=U/I)

Данный закон справедлив для участка цепи, на который не действуют сторонние силы.

Разберем задачу из контрольно-измерительных материалов ЕГЭ (номер 12).

Ниже на рисунке приведена схема электрической цепи, в которой провода можно считать идеальными. Определите сопротивление резистора, если показания амперметра 0,2 А, а вольтметра — 8 В.

Решение:
Вольтметр подключен параллельно резистору. Следовательно, он показывает напряжение на резисторе U

Амперметр подключен последовательно. Следовательно, он показывает силу тока I на всей цепи. 

Чтобы найти сопротивление на резисторе, воспользуемся законом Ома: 
I=(frac{U}{R}), где R — сопротивление резистора.

Выразим R и подставим значения:
R=(frac{U}{I})
R=(frac{8}{0,2})=40 (Ом)

Ответ: 40

Работа и мощность электрического тока

Вернемся к понятию работы. Мы говорили, при перемещении заряда по проводнику электрическое поле совершает работу (А):

A = qU

Если мы выразим заряд из формулы силы тока q=It, то получим, формулу для расчета работы электрического поля (А) при протекании постоянного тока (или просто работа тока):

А = UIt , где

A — работа электрического тока (Дж),
U — напряжение (В),
I — сила тока (А),
t — время прохождения тока (с).

Единица измерения АДж (Джоуль).

В быту ток совершает работу длительное время, поэтому при определении затраченной электрической энергии используют единицу измерения кВт * ч. Киловатт в час — это энергия, которая потребляется устройством мощностью 1 кВт в течении 1 часа. Учитывая, что 1 ч=3600 с, получим:

1 кВт*ч = 1000 Вт * 3600 с = 3600000 Дж = 3600 кДж

Если же работу тока рассчитать за единицу времени, то мы получим мощность постоянного электрического тока.

Мощность — величина, обозначающая интенсивность передачи электрической энергии.

(P = frac{A}{t}) , где 

P — мощность (Вт),
A — работа электрического тока (Дж), 
t — время прохождения тока (с).

Единица измерения PВт (Ватт).

Средняя мощность тока равна:

(P = frac{A}{t} = frac{qU}{t} = IU = frac{U^2}{R} = I^2R)

Теперь мы знаем все про мощность и работу тока, а значит, нужно отработать это на практике. Тем более что такие задачи встречаются в ЕГЭ (номер 12).

Задача.
Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин., если сила тока в цепи 0,2 А, а напряжение 12 В?

Решение.
Вспомним формулу для работы тока  A=U*I*t , где U=12 В — напряжение в электродвигателе, I=0,2 A — сила тока, t=20 мин=1200 с — время.

Все данные нам уже известны, поэтому можем подставить их в формулу для работы тока и получить ответ.

A=12*0,2*1200=2880 Дж

Ответ: 2880 Дж

Мощность электроприбора всегда указывается в документации, прилагающейся к нему. Кроме того, нередко ее пишут на самом приборе. Давайте посмотрим на утюг, или стиральную машину дома. Мы увидим, что утюг имеет мощность 1000 Вт, а обычная энергосберегающая лампочка, всего 40 Вт (на то она и сберегающая). Чем больше мощность прибора, тем больше энергии он будет потреблять. Примеры мощностей различных приборов представлены на рисунке.

Закон Джоуля — Ленца

Теперь же свяжем работу тока и теплоту, которая выделяется на проводнике за некоторое время t.

Почему нежелательно использовать телефон, подключенный к зарядке?

Когда приборы подключены в сеть, мы можем заметить, что они нагреваются. Очень часто это наблюдается, когда телефон подключен на зарядку, а мы продолжаем по нему звонить, использовать интернет и прочее. Это плохо влияет на телефон: перегрев батареи и корпуса могут быстрее привести девайс в негодность. 

Почему так происходит?

Электрический ток оказывает тепловое действие на проводник. Количество теплоты, которое при этом выделяется, будет рассчитываться по закону Джоуля — Ленца:

Количество теплоты, выделяемое за время в проводнике с током, пропорционально произведению квадрата силы тока на этом участке и сопротивления проводника:

Q = I2Rt , где 

Q — количество теплоты (Дж),
I — работа электрического тока (Дж), 
R — сопротивление (Ом),
t — время прохождения тока (с).

Единица измерения QДж (Джоуль).

В электронагревательных приборах используются проводники с высоким сопротивлением, что обеспечивает выделение тепла на определенном участке. 

Так, проволоку из нихрома (сплав никеля с хромом) применяют в электронагревательных элементах, работающих при температуре до 1000 ℃ (резисторах, например). Нихром относится к классу сплавов с высоким электрическим сопротивлением, что определяет его применение в качестве электрических нагревателей. Этот сплав используется также в печах обжига и сушки и различных аппаратах теплового воздействия, например, в фенах, паяльниках или обогревателях.

Фамилия какого ученого стоит миллион?

Кто первый ввел понятие «электрический ток» в науку? Ответ: Андре-Мари Ампер. 

Такой был финальный вопрос (ценой в 1 000 000) в игре «Кто хочет стать миллионером?» от 20 января 2018 г. Но участники не смогли ответить на него, и мечту получить свой миллион не исполнили.

Еще немного про электричество…

  • Постоянный электрический ток используется в работе двигателей электротранспорта, схемах автомобилей, электронике и др.
  • Электричество есть и в нашем организме. Мышечные клетки сердца при сокращении производят электроэнергию, эти импульсы можно измерить с помощью электрокардиограммы (ЭКГ).
  • Бенджамин Франклин (да-да, президент Америки) провел множество опытов в 18 веке и создал громоотвод. Также он является человеком, который вывел закон сохранения электрического заряда.
  • В древности люди считали, что, если молния ударила в курган, значит, там зарыто сокровище.

Термины

Источник тока — устройство, разделяющее положительные и отрицательные заряды.

Сторонние силы — силы неэлектрического происхождения, вызывающие разделение зарядов в источнике тока.

Фактчек

  • Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени: (I = frac{q}{t})
  • Напряжение — скалярная физическая величина, равная отношению полной работы кулоновских и сторонних сил А при перемещении положительного заряда на участке цепи к значению этого заряда: (U = frac{A}{q})
  • Сопротивление — физическая величина, характеризующая электрические свойства участка цепи: (R = frac{pl}{S})
  • Мощность  — величина, обозначающая интенсивность передачи электрической энергии: (P = frac{A}{t})
  • Закон Ома: сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении и обратно пропорциональна сопротивлению участка при постоянном напряжении: (I = frac{U}{R}).
  • Закон Джоуля— Ленца: количество теплоты Q, выделяемое за время t  в проводнике с током, пропорционально произведению квадрата силы тока I на этом участке и сопротивления R проводника: Q = I2Rt.
  • Работа электрического поля при протекании постоянного тока (или просто работа тока): А = UIt.

Проверь себя

Задание 1.
Упорядоченное движение заряженных частиц — это:

  1. электрическое поле
  2. электрический ток
  3. электрическая мощность
  4. работа тока

Задание 2.
Удельное сопротивление проводника:

  1. зависит от температуры
  2. не зависит от температуры 
  3. зависит от силы протекающего через проводник тока
  4. не зависит от напряжения

Задание 3.
Формула для расчета силы тока:

  1. I = Ut
  2. I = UIt
  3. I = I2Rt
  4. (I = frac{q}{t})

Задание 4. 
Что такое мощность электрического тока:

  1. работа за единицу времени
  2. отношение заряда к единице времени
  3. произведение силы тока на сопротивление
  4. тепло, выделяемое на резисторе

Задание 5. 
Причина электрического сопротивления:

  1. во взаимодействии зарядов одинакового знака
  2. в отсутствии взаимодействия между зарядами
  3. во взаимодействии зарядов разного знака
  4. в передаче тепла

Ответы: 1.— 2; 2. — 1; 3.— 4; 4.— 1; 5. — 3.

Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания.

Определение

Переменный ток — вынужденные электромагнитные колебания.

Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду:

Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний.

Определение

Частота переменного тока — это количество колебаний за 1 с.

Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц.

Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока.

Внимание!

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙108 м/с).

Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже).

Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции.

Численно магнитный поток определяется формулой:

Φ=BScosα

При равномерном вращении рамки угол α увеличивается пропорционально времени:

α=2πnt

где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически:

Φ=BScos2πnt

Здесь множитель 2πn представляет собой число колебаний магнитного потока за 2π секунд. Это не что иное, как циклическая частота колебаний:

ω=2πn

Следовательно:

Φ=BScosωt

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени:

e=Φ=BS(cosωt)=BSωsinωt=εmaxsinωt

εmax — амплитуда ЭДС индукции, равная:

εmax=BSω

Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса:

u=Umaxsinωt

u=Umaxcosωt

где Umax — амплитуда напряжения (максимальное по модулю значение напряжения).

Сила тока меняется с той частотой, что и напряжение — ω. Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле:

i=Imaxsin(ωt+φс)

где Imax — амплитуда силы тока (максимальное по модулю значение силы тока), φс — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса.

u=Umaxcosωt=12cos300,25π=12228,5 (В).

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u=Umaxcosωt

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i=uR=UmaxcosωtR=Imaxcosωt

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

Imax=UmaxR

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Определение

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

P=I2R

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

p=i2R

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p=(Imaxcosωt)2R

Вспомним из курса математики:

cos2α=1+cos2α2

Отсюда:

p=I2max2R(1+cos2ωt)=I2maxR2+I2maxR2cos2ωt

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos2ωt>0, мощность в любой момент времени больше величины I2maxR2. На протяжении второй четверти периода, когда cos2ωt<0, мощность в любой момент времени меньше этой величины. Среднее за период значение cos2ωt=0, следовательно, средняя за период мощность равна I2maxR2.

Средняя мощность p равна:

p=I2maxR2=i2R

Пример №2. Сила переменного тока в цепи меняется по закону i=Imaxcosωt. Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p=(Imaxcosωt)2R=10(1·cos(100π·1)2=10 (Дж)

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

i2=I2max2

Определение

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I=i2=Imax2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U=u2=Umax2

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

P=I2R=UI

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P=I2R

I=Imax2

P=(Imax2)2R=I2max2R=222·5=10 Дж

Задание EF22720

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с1. Определите период колебаний напряжения на конденсаторе.


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу Томсона.

3.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Закон изменения напряжения между обкладками конденсатора: UC=U0cosωt.

 Амплитуда напряжения: U0=5 В.

 Циклическая частота колебаний: ω = 1000π с–1.

Запишем формулу Томсона:

T=2πω=2π1000π=21000=0,002 (с)

Ответ: 0,002

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18735

В электрической цепи, показанной на рисунке, ключ К длительное время замкнут, E=6 В, r = 2 Ом, L = 1 мГн. В момент t = 0 ключ К размыкают. Амплитуда напряжения на конденсаторе в ходе возникших в контуре электромагнитных колебаний равна ЭДС источника. В какой момент времени напряжение на конденсаторе в первый раз достигнет значения E? Сопротивлением проводов и активным сопротивлением катушки индуктивности пренебречь. Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Описать, что происходит в момент замыкания и размыкания цепи.

3.Выполнить решение задачи в общем виде.

4.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 ЭДС источника тока: ε=5 В.

 Амплитуда колебаний напряжения на конденсаторе: UCmax=5 В.

 Сопротивление ЭДС источника тока: r = 2 Ом.

 Индуктивность катушки: L = 1 мГн.

1 мГн = 10–3 Гн

Перед размыканием ключа К ток через конденсатор не идет, по катушке течёт ток:

I0=εr

Напряжение на конденсаторе в начальный момент времени равно нулю, так как оно равно нулю на катушке: U0C=0 В.

После размыкания ключа К в контуре возникают гармонические колебания напряжения между обкладками конденсатора и тока в контуре. Благодаря начальному условию (U0C=0 В) потенциал верхней обкладки конденсатора относительно нижней начинает меняться по закону:

u=UCmaxsinωt

Знак «–» в формуле связан с тем, что сразу после размыкания ключа К ток приносит положительный заряд на нижнюю обкладку конденсатора.

Циклическую частоту выразим из формулы Томсона:

ω=2πT=1LC

Энергия электромагнитных колебаний в контуре сохраняется. Она определяется формулой:

W=Li22+Cu22=CU2Cmax2=LI202

Выразим максимальное напряжение на конденсаторе:

CU2Cmax=LI20

UCmax=I0LC

Учтем, что амплитуда напряжения на конденсаторе равна напряжению источника тока, а I0=εr. Тогда получим:

UCmax=ε=I0r=I0LC

Отсюда:

LC=r

C=Lr2

Период колебаний в контуре определим через формулу Томсона:

T=2πLC=2πLLr2=2πLr

Вспомним зависимость напряжения от времени:

u=UCmaxsinωt

Подставим известные данные для искомого момента времени:

5=5sinωt

Синус должен быть равен «–1» Это возможно, если с начального момента времени пройдет четверть периода:

t=T4=2π4Lr=π210327,85·106(с)=7,85 (мкс)

Ответ: 7,85

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18116

Ученик изучает зависимость периода электромагнитных колебаний в контуре от ёмкости конденсатора. Какие два контура он должен выбрать для этого исследования?


Алгоритм решения

  1. Выделить цель эксперимента.
  2. Установить, какие величины для достижения цели эксперимента должны меняться, а какие — оставаться постоянными.
  3. Выбрать верную пару контуров

Решение

Цель эксперимента — изучить зависимость периода электромагнитных колебаний в контуре от ёмкости конденсатора. Следовательно, емкости конденсатора должна быть единственной меняющейся величиной. При этом все другие величины должны оставаться постоянными. Поэтому катушки индуктивности должны быть одинаковыми, но конденсаторы — разные. Этому условию соответствует рисунок «а».

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18656

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные (определить по графику начальный период колебаний).

2.Перевести единицы измерения величин в СИ.

3.Записать формулу Томсона.

4.Выполнить решение в общем виде.

5.Установить, каким станет период колебаний после уменьшения емкости конденсатора.

Решение

Запишем исходные данные:

 Период колебаний (определяем по графику): T = 4 мкс.

 Емкость конденсатора в первом опыте: C1 = 4C.

 Емкость конденсатора во втором опыте: C2 = C.

4 мкс = 4∙10–6 с

Запишем формулу Томсона:

T=2πLC

Применим формулу для обоих опытов и получим:

T1=2πL4C=4πLC

T2=2πLC

Поделим первый период на второй:

T1T2=4πLC2πLC=2

Отсюда:

T2=T12=4·1062=2·106 (с)=2 (мкс)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 5.6k

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Понравилась статья? Поделить с друзьями:
  • Как найти место положения своего телефона
  • Как найти модуль скорости тела по графику
  • The ue4 conansandbox game has crashed and will close как исправить conan exiles
  • Как мне найти джуну
  • Как исправить find servers