Как найти время света формула

Точные значения скорости света

метров в секунду

299 792 458

Приблизительные значения скорости света

километров в секунду

300 000

километров в час

1,08 млрд

миль в секунду

186 000

миль в час

671 млн

Скорость света: чему она равна и как ее измерять

Скорость света — это величина, характеризующая быстроту перемещения света.

До второй половины XVII века скорость света считалась бесконечной, пока ее не измерил датский астроном Олаф Рёмер. Он наблюдал затмения спутника Юпитера Ио и заметил, что они не совпадают по времени с расчетными, а зависит это несовпадение от расстояния между событием и наблюдателем. Принимая во внимание положение Земли на своей орбите относительно Юпитера, Рёмер подсчитал, что скорость света равна 220 000 км/с.

В начале XIX века французский ученый Физо разработал для измерения скорости света так называемый метод прерываний. Физик направил луч света на зеркало. Отражаясь от него, свет проходил через зубцы колеса. Затем попадал на еще одну отражающую поверхность, которая была расположена на расстоянии в 8,6 км. Колесо вращали, увеличивая скорость, пока луч не будет видно в следующем зазоре. После подсчетов Физо получил результат — 313 000 км/с.

Опыт Физо для измерения скорости света

Изобретение лазера в XX веке позволило дойти до предела точности и зафиксировать скорость света на отметке 299 792 458 м/с с погрешностью 1,2 м/c. Дальнейшее уточнение стало невозможным из-за отсутствия точного определения метра. В то время за эталон брали металлическую палку, хранящуюся в палате мер и весов.

В восьмидесятых годах прошлого века Генеральная конференция по мерам и весам (да, такая действительно существует) приняла за метр расстояние, которое преодолевает свет за 1/299 792 458 секунды. Соответственно, скорость света стала официально равной 299 792 458 метров в секунду. Для удобства ее значение принято округлять до 300 000 км/с.

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Неудавшийся опыт Галилея

Чтобы измерить скорость света, в 1600 году Галилей и его помощник взобрались на соседние холмы, предварительно рассчитав расстояние между ними. Они взяли зажженные фонари и оборудовали их заслонками, которые открывают и закрывают огни. Поочередно открывая и закрывая огонь, они пытались рассчитать скорость света. Галилей и помощник заранее знали, с какой задержкой будут открывать и закрывать огонь. Когда один из них открывал заслонку, то же должен был сделать и другой.

Однако эксперимент был провальным, и неудивительно: чтобы все получилось, ученым пришлось бы стоять на расстоянии в миллионы километров друг от друга.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Полезные подарки для родителей

В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!

Полезные подарки для родителей

Скорость света в различных средах

Свет распространяется в разных средах по-разному. В вакууме и в воздухе скорость света почти не различается, а вот в других средах она меньше. Это зависит от оптической плотности среды — чем она больше, тем меньше скорость распространения света.

Основной характеристикой в данном случае служит показатель преломления среды. Он равен отношению скорости света в вакууме к скорости распространения света в среде.

Абсолютный оказатель преломления среды

n = c/v

n — показатель преломления среды [—]

с — скорость света [м/с]

v — скорость света в заданной среде [м/с]

Ниже представлена таблица скоростей света в разных средах и показателей преломления в них.

Среда

Скорость света, км/с

Абсолютный показатель преломления среды

Вакуум

300 000

1

Воздух

299 704

1,003

Лед

228 782

1,31

Вода

225 341

1,33

Стекло

200 000

1,5

Сахар

192 300

1,56

Сероуглерод

184 000

1,63

Рубин

170 386

1,76

Алмаз

123 845

2,42

Параметры, связанные со скоростью света

Самые важные параметры — это длина волны и период.

Формула скорости света

c = λ/T

с — скорость света [м/с]

λ — длина волны [м]

T — период [с]

Задачка для практики

Определите цвет освещения, проходящий расстояние в 1000 раз больше его длины волны за 2 пикосекунды.

Решение

Для начала переведем 2 пикосекунды в секунды — это 2 * 10-12 с.

Теперь возьмем формулу скорости: v = S/t

По условию S = 1000λ, то есть v = 1000λ/t.

Выражаем длину волны:

λ = vt/1000

Подставляем значения скорости света и известного нам времени:

λ = (3 * 108 * 2 * 10-12)/1000 = 600

И соотносим со шкалой видимого света:

Шкала видимого света

На шкале видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Скорость выше, чем скорость света

Здесь мы подходим к самому интересному. По сути, преодолеть скорость света — это то же самое, что изобрести машину времени. Ведь мы не можем увидеть свет от зажженного на улице фонаря раньше, чем он зажегся. Казалось бы, вопрос закрыт, машина времени невозможна и вообще все мечты детства разрушены. Но на самом деле это не совсем так.

Физически машину времени ничто не запрещает. То есть с точки зрения физики она вполне возможна, у нас есть только технические ограничения.

Согласно общей теории относительности, чем быстрее мы разгоняем частицу, у которой есть некая масса, тем больше энергии нам требуется. По мере приближения к скорости света эта энергия будет стремиться к бесконечности. Но это не означает, что свет на порядки быстрее всего во Вселенной. Например, ученые ЦЕРНа разогнали протоны в Большом адронном коллайдере до скорости 299 792 455 м/c, что всего на 3 м/с уступает невесомым фотонам света.

Описанные выше ограничения, которые накладывает на скорости во Вселенной современная физика, не касаются частиц, которые не имеют массы, не взаимодействуют с обычными частицами и могут перемещаться быстрее скорости света. Такие частицы принято называть тахионами и на данный момент их существование является лишь предположением (сложно придумать эффективный инструмент для их обнаружения, ведь они ни с чем не взаимодействуют).

В специальной теории относительности есть даже такое понятие, как релятивистское замедление времени. Его смысл заключается в том, что в движущемся теле все физические процессы проходят медленнее.

Классическим примером этого явления является сценарий близнецов. Представим, что один близнец летит на космическом корабле со скоростью, близкой к скорости света, а другой остается на Земле. Когда близнец-космонавт вернется на Землю постаревшим всего на год или на два, он обнаружит, что его брат стал старше на несколько десятилетий.

В реальной жизни эксперимент с близнецами никто не проводил, но проводили аналогичный — с часами. Ученые запустили атомные часы на орбиту и оставили идентичные часы на Земле. Когда часы вернулись, они шли с некоторым отставанием от своего земного близнеца.

Еще один популярный пример сверхсветовой скорости — это явления квантовой механики. В тот самый момент, когда вы надели на правую ногу один носок, второй моментально и автоматически стал левым, несмотря на расстояние между ними.

Или эксперимент с котом Шрёдингера, про который вы наверняка что-то слышали.

Лирическое отступление про кота Шрёдингера

Физик, которому не очень нравятся кошки, помещает кота в коробку вместе с бомбой, которая взрывается с вероятностью 50% после того, как закрыли крышку. До того, как мы откроем коробку, нет способа узнать, взорвалась ли бомба. Поэтому мы не знаем, жив кот или мертв.

Оперируя понятиями квантовой физики, мы можем сказать, что до нашего наблюдения кот находился в состоянии суперпозиции — состоянии, сочетающем в себе обе возможности с шансом 50% для каждой.

Нечто подобное случается с физическими системами квантовых размеров, вроде электрона, вращающегося вокруг атома водорода. Электрон не совсем вращается — он как бы находится во всем пространстве одновременно, а в некоторых местах с большей вероятностью. Только после того, как мы определили его местоположение, мы можем точно указать, где он находится в этот момент. Так же, как мы не знали, был кот жив или мертв до того, как мы открыли коробку.

Это подводит нас к странному и красивому феномену квантовой запутанности. Представим себе, что вместо одного кота в одной коробке у нас было бы два кота в двух разных коробках. Если мы повторим эксперимент с котом Шрёдингера с парой этих котов, в результате эксперимента могут быть четыре возможности:

  • оба кота будут живы,
  • оба мертвы,
  • первый будет жив, второй мертв,
  • первый мертв, второй жив.

Ситуации, когда оба кота мертвы или оба кота живы, не соответствуют состоянию суперпозиции. Другими словами, возможна такая система из двух котов, в которой в итоге всегда один из котов будет мертв, а другой жив. Пользуясь техническими терминами, можно сказать, что состояния этих двух котов запутаны.

Назревает вопрос: что произойдет, если этих котов поместить в разных уголках Вселенной. Не поверите, но то же самое! Один из котов в любом случае будет жив, а другой — мертв, хотя какой конкретно кот будет жив, а какой мертв, совершенно непредсказуемо.

Квантовая запутанность была подтверждена в настоящих лабораторных экспериментах. Две субатомные частицы запутаны в состоянии суперпозиции так, что если одна вращается в одну сторону, то другая — в противоположную.

Запутанность находится в центре квантовой информатики — развивающейся области науки, которая ищет применение законам странного квантового мира. Так, квантовая криптография позволяет шпионам надежно посылать друг другу информацию, а квантовое программирование — взламывать секретные коды.

Каждодневная физика со временем может стать более похожей на странный мир квантовой механики. Квантовая телепортация сможет достигнуть такого прогресса, что однажды ваш кот сможет сбежать в более безопасную вселенную, где нет физиков и коробок.

В общем, сверхсветовая скорость существует, хоть у нее и очень слабая доказательная база. Если ученые добьются того, чтобы скорости выше скорости света стали нашей реальностью, то и до машины времени недалеко.

Евгений Александров,
академик
«Наука и жизнь» №8, 2011

 Изображение: «Наука и жизнь»

А пуд как был — он так и есть, шестнадцать килограмм.
М. Танич (из песни к к/ф «Таинственный монах»)

Специальная теория относительности (СТО), несомненно, самая знаменитая из физических теорий. Популярность СТО связана с простотой её основных принципов, поражающей воображение парадоксальностью выводов и её ключевым положением в физике ХХ века. СТО принесла небывалую славу Эйнштейну, и эта слава стала одной из причин неустанных попыток ревизии теории. В среде профессионалов споры вокруг СТО прекратились уже более полувека назад. Но и по сей день редакции физических журналов постоянно осаждают любители, предлагающие варианты пересмотра СТО. И, в частности, второго постулата, утверждающего постоянство скорости света для всех инерциальных систем отсчёта и её независимость от скорости источника (проще говоря, в какую бы сторону от наблюдателя и с какой бы скоростью ни двигался наблюдаемый объект, посланный с него световой луч имел бы всё ту же скорость, приблизительно равную 300 тысячам километров в секунду, не больше и не меньше).

Критики СТО, например, утверждают, что скорость света вовсе не постоянна, а меняется для наблюдателя в зависимости от скорости источника (баллистическая гипотеза) и лишь несовершенство измерительной техники не позволяет доказать это экспериментально. Баллистическая гипотеза восходит к Ньютону, рассматривавшему свет в виде потока частиц, скорость которых снижается в преломляющей среде. Этот взгляд возродился с появлением фотонной концепции Планка—Эйнштейна, что придавало убедительную наглядность идее сложения скорости света со скоростью источника по аналогии со скоростью снаряда, вылетающего из движущейся пушки.

В наше время подобные наивные попытки пересмотра СТО в серьёзные научные издания попасть конечно же не могут, зато переполняют СМИ и интернет, что весьма печально сказывается на состоянии умов массового читателя, включая школьников и студентов.

Нападки на теорию Эйнштейна — как в начале прошедшего столетия, так и теперь — мотивируются разночтениями в оценке и трактовке результатов экспериментов по измерению скорости света, первый из которых, к слову, был проведён ещё в 1851 году выдающимся французским учёным Арманом Ипполитом Луи Физо. В середине прошедшего столетия это побудило тогдашнего президента Академии наук СССР С. И. Вавилова озаботиться разработкой проекта демонстрации независимости скорости света от скорости источника.

К тому времени постулат о независимости скорости света прямо подтверждался только астрономическими наблюдениями двойных звёзд. По идее голландского астронома Виллема де Ситтера, если скорость света зависит от скорости источника, траектории движения двойных звёзд должны были бы качественно отличаться от наблюдаемых (согласующихся с небесной механикой). Однако этот аргумент встретил возражение, связанное с учётом роли межзвёздного газа, который в качестве преломляющей среды рассматривался как вторичный источник света. Критики утверждали, что свет, испущенный вторичным источником, «теряет память» о скорости первичного источника по мере распространения в межзвёздной среде, потому что фотоны источника поглощаются, а затем переизлучаются средой вновь. Поскольку данные об этой среде известны лишь с очень большими допущениями (как и абсолютные значения расстояний до звёзд), такая позиция позволяла подвергнуть сомнению большинство астрономических доказательств постоянства скорости света.

С. И. Вавилов предложил своему докторанту А. М. Бонч-Бруевичу спроектировать установку, в которой источником света стал бы пучок быстрых возбуждённых атомов. В процессе детальной проработки плана эксперимента оказалось, что шансов на надёжный результат нет, поскольку техника того времени не позволяла получить пучки нужной скорости и плотности. Эксперимент не был осуществлён.

С тех пор различные попытки экспериментального доказательства второго постулата СТО предпринимались неоднократно. Авторы соответствующих работ приходили к выводу о справедливости постулата, что, однако, не прекращало потока критических выступлений, в которых либо выдвигались возражения против идей экспериментов, либо ставилась под сомнение их точность. Последнее было связано, как правило, с незначительностью достижимой скорости источника излучения по сравнению со скоростью света.

Однако сегодня физика обладает инструментом, позволяющим вернуться к предложению С. И. Вавилова. Это синхротронный излучатель, где очень ярким источником света служит сгусток электронов, двигающийся по искривлённой траектории со скоростью, практически неотличимой от скорости света с. В таких условиях легко померить скорость испущенного света в безукоризненном лабораторном вакууме. По логике сторонников баллистической гипотезы эта скорость должна быть равна удвоенной скорости света от неподвижного источника! Обнаружить такой эффект (в случае его существования) не составило бы труда: достаточно просто измерить время прохождения световым импульсом мерного отрезка в вакуумированном пространстве.

Разумеется, для профессиональных физиков нет никаких сомнений в ожидаемом результате. В этом смысле опыт бесполезен. Однако прямая демонстрация постоянства скорости света имеет большую дидактическую ценность, ограничивая почву для дальнейших спекуляций о недоказанности основ теории относительности. Физика в своём развитии постоянно возвращалась к воспроизведению и уточнению основополагающих экспериментов, осуществляемых с новыми техническими возможностями. В данном случае не ставится цель уточнить скорость света. Речь идёт о восполнении исторической недоработки в экспериментальном обосновании истоков СТО, что должно облегчить восприятие этой достаточно парадоксальной теории. Можно сказать, что речь идёт о демонстрационном опыте для будущих учебников физики.

Такой опыт недавно осуществлён группой российских учёных в Курчатовском центре синхротронного излучения НИЦ КИ. В экспериментах в качестве импульсного источника света использовался источник синхротронного излучения (СИ) — накопитель электронов «Сибирь-1». СИ электронов, разогнанных до релятивистских скоростей (близких к скорости света), имеет широкий спектр от инфракрасного и видимого до рентгеновского диапазона. Излучение распространяется в узком конусе по касательной к траектории электронов по каналу отведения и выводится через сапфировое окно в атмосферу. Там свет собирается линзой на фотокатод быстрого фотоприёмника. Пучок света на пути в вакууме мог перекрываться стеклянной пластиной, вводимой с помощью магнитного привода. При этом по логике баллистической гипотезы свет, до того предположительно имевший удвоенную скорость 2с, после окна должен был обрести обычную скорость с.

Электронный сгусток имел длину около 30 см. Проходя мимо окна отведения, он порождал в канале импульс СИ длительностью около 1 нс. Частота обращения сгустка по кольцу синхротрона составляла ~34,5 МГц, так что на выходе фотоприёмника наблюдалась периодическая последовательность коротких импульсов, которую регистрировали с помощью скоростного осциллографа. Импульсы синхронизировались сигналом высокочастотного электрического поля той же частоты 34,5 МГц, компенсирующим потери энергии электронов на СИ. Сравнивая две осциллограммы, полученные при наличии в пучке СИ стеклянного окна и при его отсутствии, можно было измерить отставание одной последовательности импульсов от другой, вызванное гипотетическим снижением скорости. При длине 540 см участка канала отведения СИ от вводимого в пучок окна до выхода в атмосферу снижение скорости света от 2с до с должно было привести к временнoму сдвигу 9 нс. На опыте никакого сдвига не наблюдалось с точностью порядка 0,05 нс.

В дополнение к опыту провели и прямое измерение скорости света в канале отведения путём деления длины канала на время распространения импульса, что привело к значению всего на 0,5% ниже табличной скорости света.

Итак, результаты эксперимента оказались, разумеется, ожидаемыми: скорость света не зависит от скорости источника в полном соответствии со вторым постулатом Эйнштейна. Новым стало то, что впервые его подтвердили прямым измерением скорости света от релятивистского источника. Едва ли этот эксперимент прекратит наскоки на СТО со стороны ревнивцев славы Эйнштейна, однако он существенно ограничит поле новых претензий.

Детали эксперимента описаны в статье, которая будет опубликована в одном из ближайших номеров журнала «Успехи физических наук».

См. также:
Е. Б. Александров. Теория относительности: прямой эксперимент с кривым пучком, «Химия и жизнь», №3, 2012 (более подробно об этом эксперименте).

Скорость света
Sun to Earth ru

Указано расстояние от Солнца до Земли, равное 150 миллионам километров.
Солнечному свету требуется около 8 минут 19 секунд, чтобы достигнуть Земли

Точные значения
Метров в секунду 299 792 458
Планковских единиц 1
Приблизительные значения
километров в секунду 300 000
километров в час 1,08 млрд
миль в секунду 186 000
миль в час 671 млн
астрономических единиц в день 173
Приблизительное время путешествия светового сигнала
Расстояние Время
один фут 1,0 нс
один метр 3,3 нс
один километр 3,3 микросекунды (мкс)
одна статутная миля 5,4 мкс
от геостационарной орбиты до Земли 119 мс
длина экватора Земли 134 мс
от Луны до Земли 1,255 с
от Солнца до Земли (1 а. е.) 8,3 мин.
от Вояджера-1 до Земли 17,34 часов (на ноябрь 2013)[1].
Один световой год 1 год
один парсек 3,26 лет
от Проксимы Центавра до Земли 4,24 лет
от Альфы Центавра до Земли 4,37 лет
от ближайшей галактики (Карликовой галактики в Большом Псе) до Земли 25 000 лет
через Млечный Путь 100 000 лет
от Галактики Андромеды до Земли 2,5 млн лет
от самой удалённой известной галактики до Земли 30 млрд лет[2]

Ско́рость све́та в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме[3]. В физике традиционно обозначается латинской буквой «c» (произносится как «цэ»). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

В вакууме (пустоте)

Speed of light from Earth to Moon

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году[Прим. 1].

На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или 1 079 252 848,8 км/ч. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[5]. Для решения школьных задач и разного рода оценок, не требующих большой точности, обычно используют значение 300 000 000 м/с (3×108 м/с).

В природе со скоростью света распространяются (в вакууме):

  • собственно, видимый свет и другие виды электромагнитного излучения (радиоволны, рентгеновские лучи, гамма-кванты и др.);
  • предположительно — гравитационные волны.

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света, но всё же не достигающую её точно. Например, околосветовую скорость имеют массивные частицы, полученные на ускорителе или входящие в состав космических лучей.

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний» частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно. Однако и в этом случае сверхсветовой передачи информации не происходит, поскольку два запутанных фотона всё равно разлетаются друг от друга со скоростью света.

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой)[6]. (Подробнее см. Сверхсветовое движение, также соответствующий раздел данной статьи ниже).

В прозрачной среде

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ = c). Эта скорость обычно (но не обязательно) меньше c. Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды. Групповая скорость света в равновесной среде всегда меньше c. Однако в неравновесных средах она может превышать c. При этом, однако, передний фронт импульса все равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.

Фундаментальная роль в физике

Lorentz factor

Фактор Лоренца (Лоренц-фактор) γ как функция скорости. Он растет от 1 (для нулевой скорости) до бесконечности (с приближением v к c).

Скорость, с которой световые волны распространяются в вакууме, не зависит ни от движения источника волн, ни от системы отсчета наблюдателя[Прим. 2]. Эйнштейн постулировал такую ​​инвариантность скорости света в 1905 году[7].Он пришел к этому выводу на основании теории электромагнетизма Максвелла и отсутствия доказательств существования светоносного эфира[8]. Инвариантность скорости света неизменно подтверждается множеством экспериментов[9]. Существует возможность проверить экспериментально лишь то, что скорость света в «двустороннем» эксперименте (например, от источника к зеркалу и обратно) не зависит от системы отсчета, поскольку невозможно измерить скорость света в одну сторону (например, от источника к удаленному приемнику) без дополнительных договоренностей относительно того, как синхронизировать часы источника и приемника. Однако, если применить для этого синхронизацию Эйнштейна, односторонняя скорость света становится равной двусторонней по определению[10][11]. Специальная теория относительности исследует последствия этой инвариантности c в предположении, что законы физики одинаковы во всех инерциальных системах отсчета[12][13]. Одним из последствий является то, что c — это та скорость, с которой должны двигаться в вакууме все безмассовые частицы и волны (в частности, и свет).

Специальная теория относительности имеет много экспериментально проверенных последствий, которые противоречат интуиции[14]. Такие последствия включают: эквивалентность массы и энергии ({displaystyle E_{0}=mc^{2}}), сокращение длины (сокращение объектов во время движения)[Прим. 3] и замедление времени (движущиеся часы идут медленнее). Коэффициент γ, на которое сокращается длина и замедляется время, известен как фактор Лоренца (Лоренц-фактор) {displaystyle gamma ={frac {1}{sqrt {1-{frac {v^{2}}{c^{2}}}}}}}, где V — скорость объекта. Для скоростей гораздо меньших, чем c (например, для скоростей, с которыми мы имеем дело каждый день) разница между γ и 1 настолько мала, что ею можно пренебречь. В этом случае специальная теория относительности хорошо аппроксимируется относительностью Галилея. Но на релятивистских скоростях разница увеличивается и приближается к бесконечности с приближением V к c .

Объединение результатов специальной теории относительности требует выполнения двух условий: (1) пространство и время являются единой структурой, известной как пространство-время (где c связывает единицы измерения пространства и времени), и (2) физические законы удовлетворяют требованиям особой симметрии, которая называется инвариантность Лоренца (Лоренц-инвариантность), формула которой содержит параметр с[17]. Инвариантность Лоренца встречается повсеместно в современных физических теориях, таких как квантовая электродинамика, квантовая хромодинамика, стандартная модель физики элементарных частиц и общая теория относительности. Таким образом, параметр c встречается повсюду в современной физике и появляется во многих смыслах, которые не имеют отношения собственно к свету. Например, общая теория относительности предполагает, что гравитация и гравитационные волны распространяются со скоростью c[18][19]. В неинерциальных системах отсчета (в гравитационно искривленном пространстве или в системах отсчета, движущихся с ускорением), локальная скорость света также является постоянной и равна c, однако скорость света вдоль траектории конечной длины может отличаться от c в зависимости от того, как определено пространство и время[20].

Считается, что фундаментальные константы, такие как c, имеют одинаковое значение во всем пространстве-времени, то есть, они не зависят от места и не меняются со временем. Однако некоторые теории предполагают, что скорость света может изменяться со временем[21][22]. Пока нет убедительных доказательств таких изменений, но они остаются предметом исследований[23][24].

Кроме того, считается, что скорость света изотропна, то есть не зависит от направления его распространения. Наблюдение за излучением ядерных энергетических переходов как функции от ориентации ядер в магнитном поле (эксперимент Гугса-Древера), а также вращающихся оптических резонаторов (эксперимент Майкельсона-Морли), наложили жёсткие ограничения на возможность двусторонней анизотропии[25][26].

Верхний предел скорости

Согласно специальной теории относительности, энергия объекта с массой покоя m и скоростью v равна γmc2, где γ — определенный выше фактор Лоренца. Когда v равна нулю, γ равен единице, что приводит к известной формуле эквивалентности массы и энергии E = mc2. Поскольку фактор γ приближается к бесконечности с приближением v к c, ускорение массивного объекта до скорости света потребует бесконечной энергии. Скорость света — это верхний предел скорости для объектов с массой покоя. Это экспериментально установлено во многих тестах релятивистской энергии и импульса[27].

Relativity of Simultaneity

Событие A предшествует событию B в красной системе отсчета (СО), одновременно с B в зелёной СВ и происходит после B в синей СВ.

Вообще, информация или энергия не может передаваться в пространстве быстрее, чем со скоростью света. Один из аргументов в пользу этого следует из контринтуитивного заключения специальной теории относительности, известного как относительность одновременности. Если пространственное расстояние между двумя событиями А и В больше, чем промежуток времени между ними, умноженный на c, то существуют такие системы отсчёта, в которых А предшествует B, и другие, в которых B предшествует А, а также такие, в которых события А и B одновременны. В результате, если объект двигался бы быстрее скорости света относительно некоторой инерциальной системы отсчета, то в другой системе отсчета он бы путешествовал назад во времени, и принцип причинности был бы нарушен[Прим. 4][29]. В такой системе отсчета «следствие» можно было бы наблюдать раньше его «первопричины». Такое нарушение причинности никогда не наблюдалось[11]. Оно также может приводить к парадоксам, таким как тахионный антителефон[30].

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной[31]. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. Спустя полвека открытие аберрации позволило подтвердить конечность скорости света и уточнить её оценку.

В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с[32]. После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4×10-9[33], что соответствует абсолютной погрешности 1,2 м/с[34].

Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4×10-9[34]. Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[35].

Сверхсветовое движение

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами, движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами.

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года появляются сообщения о том, что в так называемом эффекте квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана — сверхсветовая скорость при туннельном эффекте[36]. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества[37].

В результате обработки данных эксперимента OPERA[38], набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино[39]. Сообщение об этом сопровождалось публикацией в архиве препринтов[40]. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино[41]. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили[42][43]. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля)[44]. Учёные смогли его замедлить до 17 метров в секунду.

См. также

  • Сверхсветовое движение
  • Скорость звука
  • Переменная скорость света
  • Световой год

Комментарии

  1. В настоящее время наиболее точные методы измерения скорости света основаны на независимом определении значений длины волны {displaystyle lambda } и частоты {displaystyle nu } света или другого электромагнитного излучения и последующего расчёта в соответствии с равенством {displaystyle c} = {displaystyle lambda } {displaystyle nu }.[4]
  2. Однако, частота света зависит от движения источника света относительно наблюдателя, благодаря эффекту Доплера
  3. В то время как движущиеся измеряемые объектов оказываются короче по линии относительного движения, они также выглядят как будто их вращают. Этот эффект, известный как вращение Террелла, связанный с разницей во времени, между пришедшими к наблюдателю сигналами от разных частей объекта[15][16]
  4. Считается, что эффект Шарнхорста позволяет сигналам распространяться немногим выше c, но особые условия, при которых эффект может возникать, мешают применить этот эффект для нарушения принципа причинности[28]

  1. Where Are the Voyagers — NASA Voyager. Voyager — The Interstellar Mission. Jet Propulsion Laboratory, California Istitute of Technology. Проверено 12 июля 2011. Архивировано из первоисточника 3 февраля 2012.
  2. New galaxy ‘most distant’ yet discovered
  3. Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
  4. Сажин М. В. Скорость света // Физика космоса. Маленькая энциклопедия / Гл. ред. Р. А. Сюняев. — 2-е изд. — М.: Советская энциклопедия, 1986. — С. 622. — 783 с. (см. ISBN )
  5. ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин.
  6. Болотовский Б. М., Гинзбург В. Л. Эффект Вавилова — Черенкова и эффект Допплера при движении источников со скоростью больше скорости света в вакууме // УФН. — 1972. — Т. 106. — № 4. — С. 577-592.
  7. Stachel, JJ (2002). Einstein from «B» to «Z» – Volume 9 of Einstein studies. Springer. p. 226. ISBN 0-8176-4143-2. http://books.google.com/books?id=OAsQ_hFjhrAC&pg=PA226.
  8. Einstein, A (1905). «Zur Elektrodynamik bewegter Körper» (in German). Annalen der Physik 17: 890–921. doi:10.1002/andp.19053221004.
    English translation: Perrett, W On the Electrodynamics of Moving Bodies. Fourmilab. Проверено 27 ноября 2009. Архивировано из первоисточника 1 февраля 2013.
  9. Александров Е. Б. Теория относительности: прямой эксперимент с кривым пучком // Химия и жизнь. — 2012. — № 3.
  10. Hsu, J-P; Zhang, YZ (2001). Lorentz and Poincaré Invariance. Advanced Series on Theoretical Physical Science. 8. World Scientific. pp. 543ff. ISBN 981-02-4721-4. http://books.google.com/?id=jryk42J8oQIC&pg=RA1-PA541#v=onepage&q=.
  11. 11,0 11,1 Zhang, YZ (1997). Special Relativity and Its Experimental Foundations. Advanced Series on Theoretical Physical Science. 4. World Scientific. pp. 172–3. ISBN 981-02-2749-3. http://www.worldscibooks.com/physics/3180.html.
  12. d’Inverno, R (1992). Introducing Einstein’s Relativity. Oxford University Press. pp. 19–20. ISBN 0-19-859686-3.
  13. Sriranjan, B (2004). «Postulates of the special theory of relativity and their consequences». The Special Theory to Relativity. PHI Learning. pp. 20 ff. ISBN 81-203-1963-X.
  14. Roberts, T What is the experimental basis of Special Relativity?. Usenet Physics FAQ. University of California, Riverside (2007). Проверено 27 ноября 2009. Архивировано из первоисточника 1 февраля 2013.

  15. Terrell, J (1959). «Invisibility of the Lorentz Contraction». Physical Review 116 (4): 1041–5. doi:10.1103/PhysRev.116.1041. Bibcode: 1959PhRv..116.1041T.

  16. Penrose, R (1959). «The Apparent Shape of a Relativistically Moving Sphere». Proceedings of the Cambridge Philosophical Society 55 (01): 137–9. doi:10.1017/S0305004100033776. Bibcode: 1959PCPS…55..137P.
  17. Hartle, JB (2003). Gravity: An Introduction to Einstein’s General Relativity. Addison-Wesley. pp. 52–9. ISBN 981-02-2749-3.
  18. Hartle, JB (2003). Gravity: An Introduction to Einstein’s General Relativity. Addison-Wesley. p. 332. ISBN 981-02-2749-3.
  19. The interpretation of observations on binary systems used to determine the speed of gravity is considered doubtful by some authors, leaving the experimental situation uncertain; seeSchäfer, G; Brügmann, MH (2008). «Propagation of light in the gravitational filed of binary systems to quadratic order in Newton’s gravitational constant: Part 3: ‘On the speed-of-gravity controversy’». in Dittus, H; Lämmerzahl, C; Turyshev, SG. Lasers, clocks and drag-free control: Exploration of relativistic gravity in space. Springer. ISBN 3-540-34376-8. http://books.google.com/?id=QYnfdXOI8-QC&pg=PA111.
  20. Gibbs, P Is The Speed of Light Constant?. Usenet Physics FAQ. University of California, Riverside (1997). Проверено 26 ноября 2009. Архивировано из первоисточника 17 ноября 2009.
  21. Ellis, GFR (2005). «‘c’ is the speed of light, isn’t it?». American Journal of Physics 73 (3): 240–7. doi:10.1119/1.1819929. Bibcode: 2005AmJPh..73..240E. “The possibility that the fundamental constants may vary during the evolution of the universe offers an exceptional window onto higher dimensional theories and is probably linked with the nature of the dark energy that makes the universe accelerate today.”
  22. An overview can be found in the dissertation of Mota, DF (2006). «Variations of the fine structure constant in space and time». arΧiv:astro-ph/0401631 [astro-ph].
  23. Uzan, J-P (2003). «The fundamental constants and their variation: observational status and theoretical motivations». Reviews of Modern Physics 75 (2). doi:10.1103/RevModPhys.75.403. Bibcode: 2003RvMP…75..403U.
  24. Amelino-Camelia, G (2008). «Quantum Gravity Phenomenology». arΧiv:0806.0339 [gr-qc].
  25. «Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level» (2009). Physical Review D 80 (100): 105011. doi:10.1103/PhysRevD.80.105011. Bibcode: 2009PhRvD..80j5011H.
  26. Lang, KR (1999). Astrophysical formulae (3rd ed.). Birkhäuser. p. 152. ISBN 3-540-29692-1. http://books.google.com/?id=OvTjLcQ4MCQC&pg=PA152.
  27. Fowler, M Notes on Special Relativity. University of Virginia (March 2008). Проверено 7 мая 2010. Архивировано из первоисточника 1 февраля 2013.

  28. Liberati, S (2002). «Faster-than-c signals, special relativity, and causality». Annals of Physics 298 (1): 167–85. doi:10.1006/aphy.2002.6233. Bibcode: 2002AnPhy.298..167L.
  29. Taylor, EF; Wheeler, JA (1992). Spacetime Physics. W. H. Freeman. pp. 74–5. ISBN 0-7167-2327-1.
  30. Tolman, RC (2009) [1917]. «Velocities greater than that of light». The Theory of the Relativity of Motion (Reprint ed.). BiblioLife. p. 54. ISBN 978-1-103-17233-7.
  31. Гиндикин С. Г. Рассказы о физиках и математиках. — издание третье, расширенное. — М.: МЦНМО, 2001. — С. 105-108. — ISBN 5-900916-83-9. (см. ISBN )
  32. Evenson K. M., Wells J. S., Petersen F. R., Danielson B. L., Day G. W. Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser // Phys. Rev. Lett.. — 1972. — № 19.
  33. Указанное число представляет собой утроенное стандартное отклонение.
  34. 34,0 34,1 Рекомендованное значение скорости света  (англ.) Резолюция 2 XV Генеральной конференции по мерам и весам (1975)
  35. Определение метра (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
  36. Давидович М. В. О парадоксе Хартмана, туннелировании электромагнитных волн и сверхсветовых скоростях // Успехи физических наук. — М.: 2009 (апрель). — С. 443.
  37. И. Иванов. Проведены новые эксперименты по проверке механизма квантовой запутанности. Элементы.ру.
  38. Oscillation Project with Emulsion-tRacking Apparatus
  39. OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso
  40. OPERA Collaboration (Adam T. et al.) (2011). «Measurement of the neutrino velocity with the OPERA detector in the CNGS beam». arΧiv:1109.4897..
  41. И.Иванов. Эксперимент OPERA сообщает о наблюдении сверхсветовой скорости нейтрино. Элементы.ру, 23 сентября 2011 года.
  42. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam.
  43. Эйнштейн оказался прав.
  44. Эксперимент OPERA окончательно «закрыл» сверхсветовые нейтрино.

Литература

  • Е. Б. Александров, П. А. Александров, В. С. Запасский, В. Н. Корчуганов, А. И. Стирин. Эксперименты по прямой демонстрации независимости скорости света от скорости движения источника // Успехи физических наук. — 2011..
  • Физические величины: Справочник./А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; под ред. И. С. Григорьева, Е. З. Мейлихова М.: Энергоатомиздат, 1991, — 1232 с — ISBN 5-283-04013-5

Ссылки

  • «Скорость света» — статья в Физической энциклопедии
  • «Скорость света» — Физика Космоса: Маленькая энциклопедия

  1. Википедия Скорость света адрес
  2. Викисловарь — адрес
  3. Викицитатник — адрес
  4. Викиучебник — адрес
  5. Викитека — адрес
  6. Викиновости — адрес
  7. Викиверситет — адрес
  8. Викигид — адрес

Выделить Скорость света и найти в:

  1. Вокруг света света адрес
  2. Академик света/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы света+&search адрес
  5. Научная Россия света&mode=2&sort=2 адрес
  6. Кругосвет света&results_per_page=10 адрес
  7. Научная Сеть
  8. Традиция — адрес
  9. Циклопедия — адрес
  10. Викизнание — света адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 — краткая статья
  • Страница 1 — энциклопедическая статья
  • Разное — на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Скорость света 1», чтобы сохранить ее

Комментарии читателей:

Просмотров 1к.
Обновлено 31.01.2022

В астрономии есть много интересных терминов. Многие из них человек использует в повседневной жизни и даже не задумывается о их значении.

в чем измеряется скорость света

Что такое скорость света и в чём измеряется данная величина?

Содержание

  1. Что под собой подразумевает скорость света
  2. Чему равняется скорость света
  3. Какое значение скорости света можно назвать самым точным
  4. Какое значение имеет скорость света в различных условиях и средах
  5. Формула определения скорости света
  6. Как изменялась скорость света
  7. Галилей и его открытия
  8. Рёмер и Бредли и их расчёты, касательно скорости света
  9. Физо и его расчёты
  10. Существует ли скорость быстрее световой

Что под собой подразумевает скорость света

Каждый из нас хоть раз слышал выражение “быстрее скорости света”, но далеко не все понимают, чему равна данная величина и в чём она измеряется. Если не использовать терминологию, и объяснять простыми словами, то скорость света – это некий временной промежуток.

скорость света в воздухе формула

Если быть точнее, то временной промежуток, за который преодолел солнечный луч определённое расстояние. Временные промежутки физика измеряет в секундах. Расстояние принято измерять в метрах.

Справка! Некоторые учёные используют в своих измерениях другие условные единицы.

Но если обратить внимание на измерение скорости света, то данная величина подразумевает измерение в метрах в секунду. Основная закономерность движения света заключается в том, что солнечный луч будет двигаться с постоянной быстротой и скоростью.

скорость света в вакууме формула

Это невозможно сделать человеку или автомобилю, потому что рано или поздно скорость увеличится или понизится, а некоторые условия заставят предмет остановиться. Солнечный луч движется без остановки.

Чему равняется скорость света

В физике также принято рассматривать положение света в безвоздушном пространстве, то есть вакууме. Если световой луч выходит за приделы этого вакуума, то на него начинают влиять различные условия.

Например, в вакууме нет кислорода и ветра, а в воздушном пространстве есть ветра. Свет проходит несколько медленнее через различный материал: стекло, воду, и так далее. Поскольку это является неким барьером, к таким предметам применяется понятие преломления.

относительно чего измеряется скорость света

Каждый из этих барьеров имеет свой уровень преломления, и при различных физических вычислениях эти преломления должны учитываться.

Справка! Также преломление света принято называть рефракцией. Активно используется при проектировании каких-либо изобретений. Зачастую это относится к изобретениям, где используется оптика и линзы: бинокли, телескопы, очки.

Меньше всего солнечный луч поддаётся преломлению, если проходит через воздушное пространство.

Какое значение скорости света можно назвать самым точным

Поскольку определение скорости света – термин не новый, учёные сделали достаточное количество открытий и провели множество исследований, касательно света и его преломления.

скорость света чему равна

На сегодняшний день самым точным значение скорости света является – 299 792 километра в секунду. Такое число было установлено еще в 1933 году, и это значение актуально по сей день.

Справка! Со временем произошли погрешности в измерении метра, поэтому число неоднократно искажалось.

Какое значение имеет скорость света в различных условиях и средах

Скорость света принято высчитывать, исходя из определённых условий. Стоит сразу уточнить, что процедура достаточно сложная и проблематичная. Важно учесть все возможные преломления.

На сегодняшний день рассматривают три основных показателя:

  • вода;
  • стекло;
  • воздух.

Как правило, величина преломления через воздух самая низкая. При высчитывании принято считать и сравнивать солнечные лучи в безвоздушном пространстве, а затем вводится коэффициент преломления. Только при правильно составленной формуле можно точно высчитать скорость света в различных условиях.

Формула определения скорости света

Как и любая физическая величина, скорость света имеет свою формулу. Выглядит она таким образом: C = λ/T.

Каждая буква имеет своё значение. Учёные берут эту формулу, как основу для расчёта скорости света в безвоздушном пространстве.

максимальная скорость света

Величина этой скорости в идеальном вакуумном пространстве составляет 299 792 458 метров в секунду. Создать такой вакуум можно только в космосе, поэтому физики рассматривают многие примеры только на примере космического пространства.

Тогда не нужно учитывать различную величину преломления и так далее. В условиях земли идеальный вакуум с постоянной скоростью света можно только в искусственных условиях.

Скорость света также принято называть скоростью фотона.

фотон

Справка! Фотоном называют малейшую частицу света, который больше всего во Вселенной.

В безвоздушном пространстве скорость света не будет никак изменяться. Она не сможет увеличиваться и уменьшаться в идеальных условиях, так как нет никаких дополнительных преломлений.

Если рассматривать пример скорости света на Земле, то минимальная скорость света будет изменяться в зависимости от дополнительных условий.

Как изменялась скорость света

Скорость света менялась со временем. Чем точнее становилась аппаратура и чем больше проводилось опытов, тем точнее можно было установить скорость света. Многие учёные пытались неоднократно измерить скорость света.

скорость света в воздухе в км час

Долгое время считалось, что она бесконечная и её невозможно изменить. Такой позиции придерживались вплоть до 17 века. После этого периода появились новый умы, который посчитали, что луч может иметь начало и конец и его можно измерить.

Справка! Первые измерения провел учёный Олаф Рёмер. Учёный из Дании заметил, что затмение Юпитера немного запаздывает.

скорость света в воздухе в км часЭто стало отправной точкой и учёный решил примерно пересчитать эту скорость. Значение было приближено в 220 тысячам километров в секунду. Чуть позже за примерные расчёты взялись и другие учёные. Он также был далёк от нынешнего значения, но получил более точное значение.

вычисления

Затем скоростью света начали интересоваться и другие служители науки. Вычисления пытались произвести учёные из разных стран и городов. Но до 70-х годов прошлого века не было введено более точных и новых измерений.

После 70-х годов начала появляться новая аппаратура, которая позволила произвести более точные измерения.

Галилей и его открытия

Измерения Галилея буквально поразили публику и своей простотой, и гениальностью. Он смог измерить примерную скорость света буквально подручными средствами.

Он со своим помощником посетили ближайшие холмы у дома, и заранее записали расстояние между ними. Запасаясь фонарями и заслонками, они приступили к осуществлению своего опыта.

что такое скорость света

Они начали поочерёдно закрывать и открывать фонари, тем самым пытались рассчитать скорость света. Они заранее договорились с каким временным промежутком будут открывать и закрывать фонарный свет.

Но, к сожалению, эксперимент не увенчался успехом. Для того, чтобы рассчитать скорость света, им бы пришлось находиться друг от друга на слишком большом расстоянии.

Рёмер и Бредли и их расчёты, касательно скорости света

определение скорости света

Один из опытов, который позволил узнать примерное значение скорости света. Этот тот самый опыт, который был связан с затмением Юпитера. Учёные сделали достаточно простой шаг и разделили расстояние на время и получили примерное значение в 214 тысяч километров.

измерение скорости

Это стало отправной точкой. Пускай, это было не точно и с большим количеством недочётов, но благодаря именно этим учёным величиной заинтересовались и начали изучать её более подробно.

Физо и его расчёты

Многие учёные отнеслись к расчётам предыдущих коллег достаточно скептически. Но не взирая на это, результаты были близки к настоящей длине, которая подтверждена сейчас официально и широко используется в расчётах, тогда этого не знали и пытались пересчитать.

физо

Подобно Галилею, Физо игнорировал наблюдение за космическими телами и проводит опыт в лабораторных условиях. Эксперимент был прост: луч направлялся на зеркало, и отразившись проходил через колёсные зубцы.

После этого свет отражался на дополнительную поверхность, расположенную на достаточном расстоянии. Вращение колеса увеличивалось до тех пор, пока луч не попадал на то самое зеркало. Тогда были получены цифры в 313 тысяч километров, после того, как пересмотрели эти расчёты, была определена более точная цифра.

Существует ли скорость быстрее световой

Такое возможно только при создании дополнительных условий. Быстрее солнечного света будет солнечный зайчик или энергия. Также электроны и другие частицы.

Такие условия возможны в искусственных условиях, либо при наличии каких-то дополнительных условий.

скорость света в метрах в секунду

Справка! Скорость времени также быстрее скорости света.

Физика и космос – это связанные между собой отрасли, которые постоянно подвергаются изучению. Благодаря этим измерениям можно проводить дальнейшие исследования и ставить более точные числа.

За сколько свет доходит от Солнца до Земли

Содержание

  • 1 Каким образом светит Солнце
  • 2 Сколько идет свет от Солнца до Земли
  • 3 За какое время свет достигает Земли от других объектов

Многие думают, что центральная звезда нашей галактики просто светит, и ее лучи распространяются мгновенно, но это не так. Как рассчитать, сколько времени идет свет от Солнца до Земли, почему в разное время года это значение будет отличаться — факты, которые будут интересны не только детям, но и взрослым.

Время прохождения света

Время прохождения света от Солнца до Земли может быть разным. Credit: spacegid.com.

Каким образом светит Солнце

Солнечный свет, согревающий своими лучами все живое на Земле — это результат сложных химических реакций. Солнце — это большой раскаленный шар. Он имеет несколько слоев из водорода и гелия толщиной сотни тысяч километров. Температура на поверхности звезды равна 6000 Кельвинов или 5726,85°С. У ядра, где рождается солнечный свет, этот показатель намного выше — 15 млн °К.

При такой температуре и давлении непрерывно происходит реакция термоядерного синтеза внутри ядра: 4 атома водорода сливаются в ядро гелия. Это повторяется бесконечное количество раз. В одну секунду в результате такого синтеза 600 млн т водорода становятся гелием. И каждые 70 тыс. лет солнце преобразовывает водород в количестве, равном массе Земли.

В результате термоядерного синтеза высвобождается большое количество энергии в виде фотонов — безмассовых частиц, которые существуют, только двигаясь со скоростью света. За время своей жизни фотон миллионы раз испускается и поглощается молекулами газа.

Интересный факт: чтобы от ядра Солнца добраться до поверхности, фотону потребуется 200 тысяч лет.

Состав солнца.

Состав Солнца. Фотону, чтобы добраться от ядра до поверхности нужно 200 тыс. лет. Credit: 100-000-pochemu.info.

Сколько идет свет от Солнца до Земли

Чтобы рассчитать время, за которое луч света доходит до Земли, нужно знать расстояние между нашей планетой и светилом, а также скорость света. Первые попытки вычислить путь, которые ежедневно преодолевает бесконечное количество фотонов, были сделаны в конце XVII в. Учеными того времени была получена цифра — 139 млн км, но она была неточной.

Позже были произведены более точные расчеты, по которым расстояние от Солнца до Земли равно 150 млн км. Хоть эта величина принята за константу и называется астрономической единицей, но наша планета движется по вытянутой эллиптической орбите, поэтому расстояние между двумя небесными телами изменяется. В январе оно сокращается до 147 млн км (перигелий), а в июле километраж максимальный — 152 млн км (афелий).

В 1975 г. была установлена точная скорость фотонов в вакууме 299 792 458 м/с, но в большинстве расчетов используют ее приближенное значение — 300 тыс. км/с.

Время, необходимое на преодоление солнечными лучами расстояния до Земли на разных отрезках орбиты нашей планеты, приведено в нижеследующей таблице:

Время, за которое свет достигает Земли
мин. сек.
для астрономической единицы 8 17
для перигелия 8 3
для афелия 8 25

Таким образом, в любое время года солнечный свет достигает Земли за 8 минут и 3-25 секунд. Если бы вдруг Солнце погасло, то земляне узнали бы это, спустя указанное время.

Интересно: солнечное излучение способно проникать вглубь океана на 85 метров, а проходя через различные вещества, оно может замедляться или преломляться, фокусируясь в одной точке.

Формула вычисления.

Формула вычисления времени, за которое свет от Солнца идёт до Земли. Credit: ru-static.z-dn.net.

За какое время свет достигает Земли от других объектов

Для определения расстояния между различными объектами в космосе в астрономии используется такая величина, как световой год. Этот показатель равен пути, который проходит свет в космическом пространстве за стандартный земной год. В количественном измерении световой год составляет 9 460 730 472 580 800 м или больше 63 тыс. астрономических единиц.

Время, за которое фотоны солнечного света будут лететь до следующих объектов во вселенной, будет равно:

  • для самой дальней от Солнца планеты Плутона фотоны — 5 часов;
  • для самой дальней точки нашей системы, облака астероидов и обломков Оорта — целых 1,5 года;
  • для ближайшей к Земле яркой звезды Проксима Центавра — 4 года.

Расстояние между Луной и Землей свет преодолеет за 1,2 секунды, с такой же скоростью распространяются и радиоволны. Это создает трудности в управлении космическими аппаратами (например, «Луноходом»), поскольку сигнал приходит и уходит с задержкой.

Свет распространяется не мгновенно. Это является причиной того, что многие космические явления можно наблюдать с большой задержкой. Так, яркая Полярная звезда расположена от Земли на удалении в 400 световых лет. Ее лучи, которые можно наблюдать сейчас, были посланы еще во времена Колумба.

Оценка статьи:

1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)

Загрузка…

Понравилась статья? Поделить с друзьями:
  • Как составить фото своего будущего ребенка
  • Как найти работу оператором колл центра
  • Как составить афишу по музыке
  • Забытый каньон genshin impact как найти
  • Как быстро найти человека в социальных сетях