Как найти время в динамике

Динамика – раздел механики, которому уделяется больше всего учебных часов. Уделите 5 минут на то, чтобы прочесть нашу статью и чуть больше разобраться в решении задач по динамике.

Наш телеграм – место, где мы скрупулезно отбираем, фильтруем и выкладываем все, что может быть полезно современному студенту. Под лежачий камень вода не течет, подписывайтесь!

Для начала, вопрос. Какой алгоритм решения задач по динамике? Собственно, алгоритм такой же, как и для любой задачи по физике. Мы уже писали об этом в памятке по решению задач. Не забываем держать под рукой полезные формулы, повторяем вопросы из теории, и можно приступать к практическим заданиям.

Вопросы по теме «Динамика»

Вопрос 1. Что изучает динамика?

Ответ. Динамика – раздел механики, который изучает взаимодействия между телами.

Вопрос 2. Каково основное уравнение динамики?

Ответ. Основное уравнение динамики устанавливает связь между приложенной к телу силой, его массой и ускорением тела.

Вопрос 3. Что такое вес тела и зависит ли он от местоположения тела на поверхности Земли?

Ответ. Вес – это сила, с которой тело действует на опору. Вес зависит от ускорения свободного падения, а значит и от географического местоположения на поверхности планеты. А вот масса тела всегда неизменна (за исключением движения со скоростью, близкой к скорости света).

Вопрос 4. В каких системах отсчета справедлив второй закон Ньютона?

Ответ. Второй закон Ньютона справедлив в инерциальных системах отсчета.

Вопрос 5. Сила тяжести на земле является отдельным проявлением одного из фундаментальных физических взаимодействий. Что это за взаимодействие.

Ответ. Конечно, это гравитационное взаимодействие. А сила тяжести – проявление силы всемирного тяготения.

Задачи по динамике поступательного движения с решениями

Задача №1. Определение времени движения

Условие

Тело находится у основания наклонной плоскости с углом при основании α = 30°. Коэффициент трения о поверхность равен µ = 0,6 и масса тела m = 2 кг. Сколько времени тело будет двигаться по наклонной плоскости, если его толкнуть вверх вдоль плоскости со скоростью υ0 = 20 м/с? (g = 9,8 м/с2).

Решение

Для начала, выполним рисунок:

Задача №1. Определение времени движения

Тело будет двигаться равнозамедленно с ускорением, равным –a в течение времени t, при этом

Задача №1. Определение времени движения

Откуда

Задача №1. Определение времени движения

Определим ускорение a. Запишем второй закон Ньютона в векторной форме и в проекциях на оси Х и Y соответственно:

Задача №1. Определение времени движения

Сила трения определяется выражением

Задача №1. Определение времени движения

Тогда,

Задача №1. Определение времени движения

Следовательно, время, в течение которого тело будет двигаться по наклонной плоскости:

Задача №1. Определение времени движения

Подставим числовые значения:

Задача №1. Определение времени движения

Ответ: 2 секунды.

Задача №2. Применение второго закона Ньютона

Условие

В изображенной на рисунке системе нижний брусок может двигаться по наклонной плоскости, составляющей с горизонтом угол α = 30, а верхний брусок – вдоль наклонной плоскости, составляющий с горизонтом некоторый угол β. Коэффициент трения между нижним бруском и наклонной плоскостью равен µ = 0,2, трение между верхним бруском и наклонной плоскостью отсутствует. Считая соединяющую бруски нить очень легкой и нерастяжимой, и пренебрегая массой блока и трением в его оси, найдите, при каких значениях угла β нить будет растянута.

Решение

Задача №2. Применение второго закона Ньютона

Так как  тангенс угла α больше, чем коэффициент трения между бруском и поверхностью, нижний брусок будет скользить по наклонной плоскости даже при ненатянутой нити. Следовательно, в том случае, когда оба бруска движутся и нить натянута, модули ускорений  брусков будут одинаковыми. Обозначим массу нижнего бруска как m1, массу верхнего бруска как m2, а силу натяжения соединяющей их нити как T. Тогда для каждого из брусков можно записать второй закон Ньютона в проекции на направление его движения:

Задача №2. Применение второго закона Ньютона

где Fтр – действующая на нижний брусок сила трения скольжения, N – действующая на него сила нормальной реакции опоры.
Так как нижний брусок не движется в направлении, перпендикулярном плоскости, то из второго закона Ньютона следует:

Задача №2. Применение второго закона Ньютона

Решая совместно полученные уравнения, найдем:

Задача №2. Применение второго закона Ньютона

Для того, чтобы нить была натянута, должно выполняться неравенство:

Задача №2. Применение второго закона Ньютона

С учетом полученного выражения для модуля ускорения a, это неравенство можно переписать в следующем виде:

Задача №2. Применение второго закона Ньютона

Подставим числовые значения и найдем искомый угол:

Задача №2. Применение второго закона Ньютона

Ответ: 19°.

Задача №3. Нахождение силы

Условие

Два одинаковых груза массой M = 100 г каждый подвешены на концах невесомой и нерастяжимой нити, перекинутой через невесомый блок с неподвижной осью. На один из них кладут перегрузок массой m = 20 г, после чего система приходит в движение. Найдите модуль силы F, действующей на ось блока во время движения грузов. Трением пренебречь.

Решение

Задача №3. Нахождение силы

На основании второго закона Ньютона уравнение движение для обоих грузов с учетом перегрузки на одном из них в проекции на вертикальную ось, направленную вниз, выглядит следующим образом:

Задача №3. Нахождение силы

где a1 и a2 – проекции ускорений грузов M и (M+m) на вертикальную ось;
T1 и T2 – проекции сил натяжения нити на вертикальную ось. Так как нить не растяжима (по условию задачи), то

Задача №3. Нахождение силы

Из-за невесомости блока и нити и отсутствия трения, справедливо равенство:

Задача №3. Нахождение силы

В силу третьего закона Ньютона:

Задача №3. Нахождение силы

где F с индексом штрих – сила, действующая на блок со стороны его оси. Из первых двух уравнений получим:

Задача №3. Нахождение силы

Подставим числовые значения:

Задача №3. Нахождение силы

Ответ: 2,14 Ньютона.

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Задачи по динамике вращательного движения с решениями

Задача №4. Нахождение числа оборотов маховика

Условие

Маховик радиусом R=0,5 м и массой 10 кг соединен с мотором при помощи приводного ремня. Натяжение ремня, идущего без скольжения, постоянно и равно Т=98 Н. Какое число оборотов в секунду будет делать маховик через Δt=10 с после начала движения. Маховик считать однородным диском.

Решение

Основное уравнение динамики вращательного движения:

Задача №4. Нахождение числа оборотов маховика

где J — момент инерции маховика. Принимая маховик за однородный диск, можно записать:

Задача №4. Нахождение числа оборотов маховика

Момент силы натяжения ремня:

Задача №4. Нахождение числа оборотов маховика

Угловое ускорение маховика:

Задача №4. Нахождение числа оборотов маховика

Угловая скорость маховика:

Задача №4. Нахождение числа оборотов маховика

Решая уравнения, записанные выше, получим ответ:

Задача №4. Нахождение числа оборотов маховика

Ответ: 62,4 оборота в секунду

Задача №5. Нахождение углового ускорения

Условие

Момент силы, приложенный к вращающемуся телу изменяется по закону M=M0-αt. Момент остаётся постоянным в течение всего времени вращения. Зависимость углового ускорения от времени представлена на рисунке. Найти выражение для углового ускорения.

Решение

Задача №5. Нахождение углового ускорения

Согласно основному закону динамики вращательного движения:

Задача №5. Нахождение углового ускорения
Это уравнение прямой с отрицательным углом наклона, что соответствует рисунку.

Нужна помощь в решении задач по динамике, теоретической механике, деталям машин, химии, etc? Обращайтесь за ней в профессиональный студенческий сервис.

Содержание:

  1. Динамика материальной точки
  2. Прямая задача динамики точки
  3. Основные законы динамики
  4. Уравнения движения материальной точки в декартовых и естественных системах отсчета
  5. Две основные задачи динамики материальной точки
  6. Порядок решения прямой задачи динамики невольной материальной точки
  7. Примеры решения задач на тему: Динамика материальной точки
  8. Решение задач на тему: Движение материальной точки по криволинейной траектории

Динамика − раздел механики, в котором изучается движение тел под действием приложенных сил. Основной задачей динамики является определение кинематического уравнения движения материальной точки, если известны, приложенные силы к ней со стороны окружающих тел и начальные условия, положение и скорость тела в начальный момент времени.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Динамика материальной точки

Динамикой называется раздел теоретической механики, в котором изучается механическое движение материальных объектов в зависимости от физических факторов, то есть от причин, вызывающих это движение.

Напомним, что в классической механике движение материальных объектов рассматривается с помощью абстрактных моделей: материальной точки, механической системы и абсолютно твердого тела.

Материальная точка — это материальное тело, размерами и разницей в движении его частей которого можно пренебречь.

Механической системой (системой материальных точек) называется совокупность материальных точек, которые между собой взаимодействуют, то есть, положение и движение которых взаимосвязаны.

Абсолютно твердым телом называется совокупность материальных точек, расстояния между которыми во время движения не меняются.

Движение механической системы определяется движением всех его точек. Поэтому изучение динамики начинается с изучения движения одной материальной точки.

В динамике точки рассматриваются две основные задачи:

— движение точки задается, а необходимо найти силы, которые это движение реализуют (первая, или прямая задача);
— силы задаются, а необходимо определить закон движения, который является результатом действия этих сил.

Для решения этих задач используются базовые сведения из статики и кинематики, а также законы динамики, то есть, общие законы движения тел и механических систем под действием приложенных к ним сил. Эти законы впервые в наиболее полном виде сформулированы Исааком Ньютоном в конце XVII века.

Прямая задача динамики точки

Первая (прямая) задача динамики содержит условие: По заданному движению, совершаемому точкой данной массы, требуется найти неизвестную действующую силу.

Основные законы динамики

В динамике изучается движение материальных систем в связи с действующими на них силами. Самым простым объектом механики является материальная точка.

Материальная точка — тело, размерами которого при решении данной задачи можно пренебречь.

Если на положение материальной точки и на ее движение не наложены никакие ограничения, точка называется свободной, в противном случае имеем дело с движением несвободной точки.

Движение механической системы определяется движением всех ее материальных точек. Поэтому изучение динамики начинается с изучения движения одной материальной точки.

В основе динамики лежат три закона И. Ньютона, которые впервые в наиболее полном и законченном виде были сформулированы в книге «Математические начала натуральной философии» (1686 г.).

1. Первый закон (закон инерции):
изолированная
от внешних действий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит этого состояния.

2. Второй закон (основной закон динамики):
cила, которая действует на материальную точку, равна произведению массы точки на ее ускорение, а направление силы совпадает с направлением ускорения:

Динамика материальной точки

Если на точку действует несколько сил, то их можно заменить равнодействующей:

Динамика материальной точки

Если точка движется по какой-то поверхности, то на нее, кроме активных сил действует и реакция связи Динамика материальной точки.

Таким образом в общем случае в уравнении (1.1):

Динамика материальной точки

3. Третий закон (закон равенства действия и противодействия):
Силы взаимодействия двух материальных точек равны между собой по модулю и направлены вдоль одной прямой, которая соединяет эти точки, в противоположные стороны.

Уравнения движения материальной точки в декартовых и естественных системах отсчета

Вместо уравнения движения (1.1) в векторной форме можно получить уравнение в скалярной форме, если спроектировать (1.1) на оси декартовой или естественной систем координат.

Уравнение движения в декартовых координатах:

Динамика материальной точки

Здесь Динамика материальной точки — проекции силы Динамика материальной точкина соответствующие декартовые оси координат;

Динамика материальной точки — проекции ускорения Динамика материальной точки на те же оси.

Две основные задачи динамики материальной точки

Первая задача (прямая): зная массу точки Динамика материальной точки и законы ее движения, например, в декартовых координатах:

Динамика материальной точки

определить равнодействующую приложенных к точке сил.

Сначала нужно определить проекции ускорения точки на оси координат:

Динамика материальной точки

Используя уравнение движения точки в декартовых координатах (1.3), определяем значения проекций равнодействующей приложенных к точке сил, а также ее модуль:

Динамика материальной точки

Направление вектора силы относительно осей координат определяется с помощью направляющих косинусов:

Динамика материальной точки

Вторая задача (обратная): зная силы, которые действуют на материальную точку, ее массу, а также первоначальные условия (положение точки и ее скорость в некоторые моменты времени, не обязательно в начальный), получить уравнение движения точки.

Порядок решения прямой задачи динамики невольной материальной точки

1. Изобразить на рисунке материальную точку в промежуточном положении.
2. Показать активные силы и реакции связей, которые на нее действуют.
3. Выбрать систему отсчета.
4. Записать векторное уравнение движения точки в форме второго закона динамики (1.1).
5. Спроектировать векторное уравнение движения точки на выделенные оси координат.
6. Из полученных уравнений определить необходимые величины.

Примеры решения задач на тему: Динамика материальной точки

Задача № 1

В шахту начинает опускаться равноускорено лифт, масса которого Динамика материальной точки В первые 10 с он проходит 35 м.

Определить натяжение Динамика материальной точки каната, на котором висит лифт.

Решение. Изобразим кабину лифта в произвольном положении (рис.1.1). На лифт действует сила тяжести Динамика материальной точки, которая направлена вниз, и натяжение каната Динамика материальной точки, который направлен вдоль троса вверх.

Динамика материальной точки

Движение происходит по вертикали, поэтому направим ось Динамика материальной точки вертикально вниз в соответствии с направлением скорости и ускорения.

Запишем уравнение движения кабины лифта в форме второго закона Ньютона:

Динамика материальной точки

где Динамика материальной точки — ускорение кабины лифта.

С учетом сил, действующих на кабину лифта, уравнение будет иметь вид:

Динамика материальной точки

Спроектируем это уравнение на ось Динамика материальной точки:

Динамика материальной точки

С учетом того, что Динамика материальной точки, находим

Динамика материальной точки

Мы получили зависимость натяжения каната от ускорения, с которым движется кабина лифта.

Проанализируем эту зависимость. Может быть три случая:

В первом случае

Динамика материальной точки

То есть, если кабина лифта движется без ускорения в любом направлении, натяжение троса будет равняться силе тяжести кабины лифта.

Во втором случае натяжение троса меньше силы тяжести кабины лифта, потому что Динамика материальной точки, а если Динамика материальной точки, то Динамика материальной точки

В третьем случае натяжение троса всегда больше силы тяжести кабины лифта, потому что Динамика материальной точки и Динамика материальной точки

Например, когда Динамика материальной точки то есть натяжение троса вдвое превышает силу тяжести кабины лифта.

В нашей задаче ускорение определится с выражения для пути при равнопеременном движении с учетом того, что начальная скорость Динамика материальной точки:

Динамика материальной точки

Тогда:

Динамика материальной точки

Ответ: натяжение троса Динамика материальной точки

Задача № 2

К телу весом Динамика материальной точки которое лежит на столе, привязали нить, второй конец которой (рис.1.2) держат в руке.

Динамика материальной точки

Определить, с каким ускорением Динамика материальной точки надо поднимать тело вверх вертикально, чтобы нить оборвалась, если она рвется когда натяжение достигает величины Динамика материальной точки

Решение: Изобразим тело с привязанной к нему нитью (рис.1.2). Покажем силы, которые действуют на тело: сила тяжести Динамика материальной точки и натяжение нити Динамика материальной точки. Ось Динамика материальной точки направляется по вертикали вверх в положительном направлении скорости и ускорения.

Запишем уравнение движения тела в векторной форме:

Динамика материальной точки

Спроектируем это уравнение на ось Динамика материальной точки:

Динамика материальной точки

Откуда:

Динамика материальной точки

Если учесть числовые данные, то

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 3

Пуля весом Динамика материальной точки падает вертикально вниз под действием силы тяжести и испытывает опору среды (рис.1.3). Закон движения шара соответствует уравнению Динамика материальной точки, причем Динамика материальной точки выражается в сантиметрах, Динамика материальной точки — в секундах.

Динамика материальной точки

Определить силу сопротивления среды Динамика материальной точки в виде функции скорости, то есть Динамика материальной точки

Решение. Изобразим шар в произвольном положении на траектории и покажем силы, которые на него действуют (рис.1.3):

Динамика материальной точки — сила тяжести;

Динамика материальной точки — сила сопротивления среды.

Движение шара происходит вдоль вертикали, поэтому направим ось Динамика материальной точки вертикально вниз по направлению скорости. Тогда положение шара будет определяться координатой Динамика материальной точки.

Запишем уравнение движения шара в векторной форме:

Динамика материальной точки

и спроектируем его на ось Динамика материальной точки:

Динамика материальной точки

откуда 

Динамика материальной точки

Таким образом, чтобы определить силу сопротивления Динамика материальной точки, необходимо знать ускорение шара Динамика материальной точки.

Поскольку закон изменения координаты Динамика материальной точки известен, то

Динамика материальной точки

Находим первую и вторую производные от закона движения пули:

Динамика материальной точки

Таким образом,

Динамика материальной точки

Из выражения Динамика материальной точки (с учетом того, что Динамика материальной точки) вытекает

Динамика материальной точки

то есть 

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 4

Движение тела массой Динамика материальной точки выражается уравнениями:

Динамика материальной точки

где Динамика материальной точки и Динамика материальной точки — в метрах, а Динамика материальной точки — в секундах.

Определить силу Динамика материальной точки, которая действует на тело, принимая его за материальную точку (рис.1.4).

Динамика материальной точки

Решение. Проекции на оси координат силы Динамика материальной точки, которая приложена к телу, определяются по формулам:

Динамика материальной точки

где Динамика материальной точки и Динамика материальной точки — проекции ускорения тела на оси координат.

В данном случае

Динамика материальной точки

Итак

Динамика материальной точки

Модуль силы Динамика материальной точки равен:

Динамика материальной точки

Сила Динамика материальной точки направлена вертикально вниз, поскольку Динамика материальной точки Таким образом, искомая сила, модуль которой равен Динамика материальной точки, является силой тяжести.

Ответ: Динамика материальной точки

Задача № 5

Прямолинейное движение ножа Динамика материальной точки резального аппарата жатки зерноуборочного комбайна (рис.1.5) приближено выражается уравнением Динамика материальной точки (Динамика материальной точки — в метрах; Динамика материальной точки — в секундах).

Динамика материальной точки

Определить силу Динамика материальной точки, которая приводит нож к движению, в зависимости от расстояния Динамика материальной точки. Вес ножа Динамика материальной точки

Объяснение: Для привода ножа резального аппарата жатки используются плоские и пространственные механизмы. Среди плоских механизмов нашли применение кривошипно-шатунные, которые состоят из кривошипа 1, шатуна 2 и ножа жатки 3. Механизм преобразует вращательное движение кривошипа 1 в обратно поступательное движение ножа 3.

В уборочных машинах ось кривошипного пальца Динамика материальной точки находится выше линии движения ножа Динамика материальной точки.

Решение. Изобразим нож резного аппарата в среднем положении на перемещении Динамика материальной точки и покажем силы, которые действуют на него.

На нож Динамика материальной точки действует сила веса Динамика материальной точки, нормальная реакция опорной поверхности направляющих ножа Динамика материальной точки и сила Динамика материальной точки со стороны шатуна Динамика материальной точки, которая вызывает движение ножа.

Запишем уравнение движения ножа в векторной форме:

Динамика материальной точки

Проектируем это уравнение на направление движения ножа (ось Динамика материальной точки):

Динамика материальной точки или Динамика материальной точки

Из последнего уравнения следует, что для определения силы Динамика материальной точки необходимо знать ускорение Динамика материальной точки.

Поскольку задан закон движения ножа Динамика материальной точки: Динамика материальной точки то ускорение Динамика материальной точки определяется как вторая производная от закона движения по времени:

Динамика материальной точки

Итак, 

Динамика материальной точки

Учтем, что Динамика материальной точки и получим:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 6

Нагруженная вагонетка массой Динамика материальной точки опускается по канатной железной дороге с наклоном Динамика материальной точки и имеет скорость Динамика материальной точки (рис.1.6).

Динамика материальной точки

Определить натяжение каната при равномерном опускании и при торможении вагонетки, если время торможения Динамика материальной точки, общий коэффициент сопротивления движению Динамика материальной точки. При торможении вагонетка движется равнозамедленно.

Решение. Изобразим вагонетку в произвольном положении. Покажем силы, которые действуют на нее: силу тяжести Динамика материальной точки, нормальную реакцию железной дороги Динамика материальной точки, натяжение каната Динамика материальной точки и силу сопротивления Динамика материальной точки.

Выбираем декартовую систему координат: ось Динамика материальной точки направим параллельно дороге в сторону движения; ось Динамика материальной точки — вверх перпендикулярно дороге. Запишем векторное уравнение движения вагонетки в форме второго закона Ньютона:

Динамика материальной точки

Проектируем векторное уравнение движения на оси координат:

Динамика материальной точки

Поскольку Динамика материальной точки все время движения вагонетки, то Динамика материальной точки, и из уравнение (2) легко находим величину нормальной реакции:

Динамика материальной точки

Тогда общая сила сопротивления движению составляет:

Динамика материальной точки

Для определения натяжения Динамика материальной точки используем уравнение (1)

Динамика материальной точки

При равномерном опусканье Динамика материальной точки и Динамика материальной точки составит:

Динамика материальной точки

При равнозамедленном торможении 

Динамика материальной точки

где Динамика материальной точки — начальная скорость;

Динамика материальной точки — конечная скорость.

Таким образом 

Динамика материальной точки

Тогда

Динамика материальной точки

Ответ: Динамика материальной точки

Из полученных результатов следует, что при торможении нагрузка на канат увеличивается по сравнению с нагрузкой при равномерном движении.

Задача № 7

Вагон весом Динамика материальной точки скатывается по колее, которая наклонена к горизонту под углом Динамика материальной точки.

Определить силу торможения вагона Динамика материальной точки, которая вызывается трением колес по рельсам, предполагая, что движение вагона происходит с постоянным ускорением, а также то значение угла Динамика материальной точки, при котором вагон будет скатываться равномерно.

Решение. Изображаем вагон в виде материальной точки в произвольном положении на наклонной плоскости и показываем силы, которые на него действуют (рис.1.7): Динамика материальной точки — сила тяжести вагона; Динамика материальной точки — нормальная реакция рельсов; Динамика материальной точки — сила трения.

Динамика материальной точки

Выбираем декартовую систему координат, причем ось Динамика материальной точки направим параллельно рельсам в сторону движения вагона; а ось Динамика материальной точки — перпендикулярно рельсам.

Запишем уравнение движения вагона в векторной форме:

Динамика материальной точки

и спроектируем его на оси выбранной системы координат:

Динамика материальной точки

По уравнению (2) определим силу торможения вагона:

Динамика материальной точки

По условиям задачи вагон движется с ускорением Динамика материальной точки которое направлено вдоль оси Динамика материальной точки, то есть Динамика материальной точки.

Если подставим в уравнение (3) Динамика материальной точки, то получим:

Динамика материальной точки

Определим значение угла Динамика материальной точки, при котором вагон будет скатываться равномерно. Поскольку

Динамика материальной точки

то

Динамика материальной точки

где Динамика материальной точки — коэффициент трения.

Откуда получим

Динамика материальной точки

Из этого уравнения вытекает, что при изменении угла Динамика материальной точки, можно найти значение угла, при котором Динамика материальной точки. Если в уравнении (4) присвоить Динамика материальной точки, то

Динамика материальной точки

Поскольку известно, что коэффициент трения равен тангенсу угла трения Динамика материальной точки, то

Динамика материальной точки

Таким образом, при углу наклона рельсов к горизонту, что равен углу трения Динамика материальной точки, вагон будет скатываться равномерно.

Ответ: Динамика материальной точки

Задачи, которые рекомендуются для самостоятельной работы: 26.2, 26.8, 26.10, 26.20, 26.24 [2].

Решение задач на тему: Движение материальной точки по криволинейной траектории

При решении задач, связанных с движением точки по криволинейной траектории, если траектория известна, удобно рассматривать движение точки в естественной системе координат Динамика материальной точки (рис.1.8):

Динамика материальной точки

где Динамика материальной точки — модуль скорости точки,

Динамика материальной точки — радиус кривизны траектории в заданном положении точки.

Динамика материальной точки

В уравнениях (1.6) и (1.8) Динамика материальной точки суммы проекций сил, действующих на точку, на направления осей: касательной (Динамика материальной точки), нормальной (Динамика материальной точки) и бинормальной (Динамика материальной точки) к  траектории в заданном положении точки.

Порядок решения прямой задачи динамики точки в случае использования уравнений (1.6) и (1.8) совпадает с рекомендациями пунктов 1 и 6 занятия № 1.

Если задано уравнение движения материальной точки по траектории в виде Динамика материальной точки, то для нахождения равнодействующей приложенных к этой точке сил, необходимо сначала найти проекции Динамика материальной точки и Динамика материальной точки полного ускорения Динамика материальной точки точки:

Динамика материальной точки

Далее, с уравнений (1.6), (1.7) находим значения касательной и нормальной проекции силы Динамика материальной точки:

Динамика материальной точки

Модуль приложенной к материальной точке силы, при естественном способе обозначения движения, будет равен

Динамика материальной точки

Задача № 1

Материальная точка массой Динамика материальной точки движется по окружности с радиусом Динамика материальной точки согласно закону Динамика материальной точки

Определить модуль Динамика материальной точки равнодействующей сил, приложенных к материальной точке.

Решение. В задаче движение материальной точки задано естественным способом, поэтому для определения равнодействующей сил воспользуемся зависимостями (1.6) и (1.7):

Динамика материальной точки

Определим касательное и нормальное ускорение материальной точки:

Динамика материальной точки

Поскольку Динамика материальной точки, то проекция Динамика материальной точки равнодействующей на касательную ось равняется нулю.

Находим нормальную составляющую равнодействующей сил:

Динамика материальной точки

Модуль равнодействующей определим из выражения (1.11):

Динамика материальной точки

Таким образом, заданное движение материальной точки происходит под действием силы, постоянной по модулю и направленной вдоль радиуса к центру окружности.

Ответ: Динамика материальной точки

Задача № 2

Материальная точка массой Динамика материальной точки движется по окружности с радиусом Динамика материальной точки согласно закону Динамика материальной точки

Определить проекцию Динамика материальной точки равнодействующей сил, приложенных к материальной точке, на касательную к траектории в момент времени Динамика материальной точки

Решение. Для определения проекции Динамика материальной точки воспользуемся уравнением (1.6):

Динамика материальной точки

Сначала найдем значение скорости материальной точки:

Динамика материальной точки

При Динамика материальной точки

Определяем величину касательного ускорения

Динамика материальной точки

при Динамика материальной точки

Подставив в уравнение (1) значения Динамика материальной точки и Динамика материальной точки, получим:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 3

Материальная точка массой Динамика материальной точки движется по окружности с радиусом Динамика материальной точки согласно закону Динамика материальной точки

Определить модуль Динамика материальной точки равнодействующей сил, действующих на точку, в момент времени Динамика материальной точки

Решение. Поскольку движение материальной точки задано естественным способом, то модуль равнодействующей сил, приложенных к точке, определяется по зависимостям (1.10) и (1.11):

Динамика материальной точки

Величины касательного и нормального ускорения материальной точки определяются по уравнениям (1.9):

Динамика материальной точки

Учитывая, что скорость точки 

Динамика материальной точки

то касательное ускорение точки равно:

Динамика материальной точки

Поскольку в момент времени Динамика материальной точки скорость точки:

Динамика материальной точки

то нормальное ускорение точки составит:

Динамика материальной точки

Определяем Динамика материальной точки и Динамика материальной точки по уравнениям (1.10):

Динамика материальной точки

Тогда модуль равнодействующей сил, действующих на материальную точку, равен:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 4

На криволинейных участках железнодорожного пути наружный рельс поднимают выше над внутренним (рис.1.9). При движении поезда на этом участке его скорость Динамика материальной точки поддерживают такой, чтобы давление вагона на рельсы было направлено перпендикулярно железнодорожному полотну.

Динамика материальной точки

Определить величину Динамика материальной точки повышения внешнего рельса над внутренним при следующих данных: радиус закругления железнодорожного пути Динамика материальной точки, скорость поезда Динамика материальной точки, расстояние между рельсами Динамика материальной точки

Решение. На вагон действуют: сила тяжести Динамика материальной точки, которая направлена вертикально вниз, и реакции рельсов на колеса Динамика материальной точки и Динамика материальной точки, которые направлены перпендикулярно железнодорожному полотну.

Запишем уравнение движения вагона в векторной форме:

Динамика материальной точки

где Динамика материальной точки — ускорение вагона.

Поскольку движение происходит по криволинейной траектории, то выбираем естественную систему координат: ось Динамика материальной точки направим по нормали к центру кривизны траектории, а ось Динамика материальной точки — по касательной в сторону движения вагона. Бинормаль, ось Динамика материальной точки, на рис. 1.9 не показано.

Проектируем уравнение движения (1) на ось Динамика материальной точки:

Динамика материальной точки или Динамика материальной точки

Из рис. 1.8 видно, что Динамика материальной точки

Итак, 

Динамика материальной точки

Подставив числовые значения известных величин, получаем:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 5

Груз Динамика материальной точки весом Динамика материальной точки который подвешен к нитке длиной Динамика материальной точки в неподвижной точке Динамика материальной точки, представляет собой конический маятник (рис.1.10), то есть движется по окружности в горизонтальной плоскости, при этом нитка с вертикалью образует угол ­ Динамика материальной точки.

Динамика материальной точки

Определить величину скорости груза Динамика материальной точки и модуль силы натяжения нити Динамика материальной точки.

Решение. Изобразим груз Динамика материальной точки в любом положении и покажем силы, которые на него действуют: силу тяжести Динамика материальной точки, которая направлена вертикально вниз, и натяжение нити Динамика материальной точки, которое направлено к точке подвеса Динамика материальной точки.

Для решения задачи выбираем естественную систему координат: ось Динамика материальной точки направлена по касательной к окружности в сторону движения груза, ось Динамика материальной точки — по нормали к центру кривизны и ось Динамика материальной точки — вертикально вверх.

Запишем уравнение движения груза в векторной форме:

Динамика материальной точки

Проектируем это векторное уравнение на оси координат:

Динамика материальной точки

Модуль силы натяжения нити Динамика материальной точки найдем из третьего из уравнений (1), учитывая, что Динамика материальной точки:

Динамика материальной точки

Из второго из уравнений (1) найдем Динамика материальной точки, если учесть, что 

Динамика материальной точки

Тогда

Динамика материальной точки

Откуда

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 6

Материальная точка весом Динамика материальной точки движется по горизонтальной поверхности под действием силы Динамика материальной точки. В период разгона точки путь, который она проходит, меняется по закону Динамика материальной точки (Динамика материальной точки — в секундах, Динамика материальной точки — в метрах). Траекторией движения точки на плоскости (рис.1.11) является окружность с радиусом Динамика материальной точки

Определить модуль силы Динамика материальной точки, которая действует, в момент, когда модуль скорости точки равен Динамика материальной точки

Решение. Изобразим точку Динамика материальной точки в любом положении на окружности (рис.1.11). Покажем силы, действующие на материальную точку: силу тяжести Динамика материальной точки; реакцию поверхности Динамика материальной точки, которая перпендикулярна поверхности, и заданную силу Динамика материальной точки, которая лежит в плоскости движения точки и направлена в сторону центра кривизны траектории.

Динамика материальной точки

С точкой Динамика материальной точки повяжем естественную систему координат. Ось Динамика материальной точки направим по касательной к окружности в сторону движения, а ось Динамика материальной точки — перпендикулярно ей в сторону центра кривизны окружности.

Запишем уравнение движения точки в виде второго закона Ньютона:

Динамика материальной точки

Спроектируем это векторное уравнение на оси выбранной системы координат:

Динамика материальной точки

Поскольку закон движения известен, то: 

Динамика материальной точки

По условиям Динамика материальной точки Найдем момент времени, когда это условие выполняется:

Динамика материальной точки

Тогда:

Динамика материальной точки

Учитывая, что масса точки равна Динамика материальной точки, находим:

Динамика материальной точки

Определяем модуль искомой силы:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 7

Радиус закругления моста в точке Динамика материальной точки равен Динамика материальной точки (рис.1.12).

Динамика материальной точки

Определить, с какой силой автомобиль давит на мост в точке Динамика материальной точки, если его масса Динамика материальной точки, а модуль скорости движения Динамика материальной точки

Решение. Рассмотрим автомобиль как материальную точку, поскольку его размерами по сравнению с размерами моста можно пренебречь. Изобразим автомобиль в точке Динамика материальной точки моста (рис.1.12) и покажем силы, которые действуют на него: Динамика материальной точки — силу тяжести автомобиля и Динамика материальной точки — реакцию моста.

Поскольку автомобиль движется по криволинейной траектории, то для решения задачи воспользуемся естественной системой координат Динамика материальной точки.

Запишем уравнение движения автомобиля в векторной форме:

Динамика материальной точки

и спроектируем его на оси выбранной системы координат:

Динамика материальной точки (поскольку Динамика материальной точки то Динамика материальной точки),                           (1)

Динамика материальной точки

Из уравнения (2) определяем реакцию моста Динамика материальной точки по модулю:

Динамика материальной точки

Сила давления Динамика материальной точки автомобиля на мост равна по модулю реакции моста, но направлена вниз.

Поскольку вес автомобиля Динамика материальной точки равен

Динамика материальной точки

то, если мост выпуклый, сила давления автомобиля на него уменьшается по сравнению с тем случаем, когда автомобиль движется по горизонтальному мосту.

Зададим дополнительный вопрос: с какой скоростью Динамика материальной точки должен двигаться автомобиль, чтобы сила давления автомобиля на мост Динамика материальной точки равнялась нулю?

Поскольку Динамика материальной точки, то 

Динамика материальной точки илиДинамика материальной точки

Отсюда

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 8

Камень весом Динамика материальной точки который привязан к нитке длиной Динамика материальной точки, описывает окружность в вертикальной плоскости (рис.1.13).

Динамика материальной точки

Определить наименьшее значение угловой скорости вращения, при которой нить разорвется, если ее сопротивление разрыву составляет Динамика материальной точки

Решение. Представим камень Динамика материальной точки в любом положении на дуге окружности. Положение точки Динамика материальной точки определяется углом Динамика материальной точки, который отсчитывается от вертикали Динамика материальной точки в направлении угловой скорости.

На камень (точку Динамика материальной точки) действуют сила тяжести Динамика материальной точки и сила натяжения нити Динамика материальной точки.

С точкой Динамика материальной точки свяжем естественную систему координат Динамика материальной точки и запишем уравнение движения точки Динамика материальной точки в векторной форме:

Динамика материальной точки

Спроектируем это уравнение на оси выбранной системы координат:

Динамика материальной точки

Заметим, что Динамика материальной точки, а Динамика материальной точки. То есть уравнение (2) преобразуется в вид:

Динамика материальной точки

Отсюда

Динамика материальной точки

Из уравнения (3) вытекает, что при Динамика материальной точки угловая скорость Динамика материальной точки является только функцией угла Динамика материальной точки. Наименьшее значение Динамика материальной точки, когда нить разрывается, будет при Динамика материальной точки, то есть, когда Динамика материальной точки, что соответствует положению камня в точке Динамика материальной точки. Таким образом:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 9

Трек для испытания автомобилей на кривых отрезках пути имеет виражи, профиль которых (рис.1.14) в поперечном пересечении является прямой, которая наклонена к горизонту так, что внешний край трека выше внутреннего.

Динамика материальной точки

Определить, с какой наименьшей и самой большой скоростью можно ехать по виражу, имеющему радиус кривизны Динамика материальной точки и угол наклона к горизонту ­Динамика материальной точки? Коэффициент трения шин Динамика материальной точки о поверхность трека считать известным.

Решение. На автомобиль, который движется по виражу, действуют: сила тяжести Динамика материальной точки, сила нормального давления со стороны поверхности виража Динамика материальной точки и сила трения Динамика материальной точки, которая направлена вдоль поверхности виража в плоскости, которая перпендикулярна направлению скорости. Возникновение силы трения обуславливается трением колес автомобиля о поверхность виража.

Рассмотрим движение центра тяжести автомобиля (точка Динамика материальной точки), считая, что все силы приложены к этой точке. Первым рассмотрим случай движения автомобиля, когда сила трения Динамика материальной точки (рис.1.14, а). С точки Динамика материальной точки повяжем естественную систему координат Динамика материальной точки: нормаль Динамика материальной точки направим в центр кривизны, Динамика материальной точки — перпендикулярно Динамика материальной точки.

Запишем уравнение движения автомобиля в векторной форме:

Динамика материальной точки

и спроектируем это уравнение на оси координат Динамика материальной точки и Динамика материальной точки:

Динамика материальной точки

Из уравнения (1) найдем величину нормальной реакции Динамика материальной точки:

Динамика материальной точки

Подставим найденное значение Динамика материальной точки в уравнение (2) и определим скорость автомобиля, когда сила трения о поверхность трека равна нулю:

Динамика материальной точки

При максимальной скорости автомобиля Динамика материальной точки сила трения Динамика материальной точки направлена к нижнему краю виража (рис.1.14, б) и равняется Динамика материальной точки

Векторное уравнение движения автомобиля в этом случае будет иметь вид:

Динамика материальной точки

Проектируем уравнение (4) на оси Динамика материальной точки:

Динамика материальной точки

Уравнение (5) перепишем в виде:

Динамика материальной точки

откуда

Динамика материальной точки

Подставим значение Динамика материальной точки в уравнение (6) и определим максимальное значение скорости Динамика материальной точки:

Динамика материальной точки

Отсюда:

Динамика материальной точки

Если скорость автомобиля минимальная Динамика материальной точки (рис.1.14, в), то трение направлено к верхнему краю трека и проекции уравнения (4) на оси Динамика материальной точки будут иметь вид:

Динамика материальной точки

Из уравнений (8) и (9) получаем:

Динамика материальной точки

Ответ: Динамика материальной точки

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика механической системы
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Инертность, масса, ускорение

a1/a2 = m2/m1

m1, m2 — массы взаимодействующих тел
a1, a2 — ускорение

Сила, масса, ускорение

F = ma

F — сила
m — масса
a — ускорение

Сила тяжести

N = mg

N — сила тяжести
m — масса
g — ускорение свободного падения

Сила трения

F_tr = μN

F_тр — сила трения
μ — коэффициент трения
N — сила тяжести

Сила трения

F_tr = μmg

F_тр — сила трения
μ — коэффициент трения
m — масса
g — ускорение свободного падения

Закон всемирного тяготения

F = G(m1*m2)/r^2

F — сила
G — гравитационная постоянная
m1, m2 — массы взаимодействующих тел
r — расстояние

Центростремительное ускорение спутника

a = v^2/(R+h)

a — ускорение
v — скорость
R — радиус земли
h — высота

Скорость спутника

v = saknis(G*M/(R+h))

v — скорость
G — гравитационная постоянная
M — масса Земли
R — радиус земли
h — высота

Первая космическая скорость (движение по круговой орбите)

v = saknis(gR)

v — скорость
g — ускорение свободного падения
R — радиус земли

Вторая космическая скорость (преодоление гравитации)

v = saknis(2gR)

v — скорость
g — ускорение свободного падения
R — радиус земли

Третий закон Кеплера

T1^2/T2^2 = a1^3/a2^3

T1, T2 — периоды обращения двух планет вокруг Солнца
a1, a2 — длины больших полуосей их орбит

Ускорение свободного падения на поверхности земли

g = G*M/R^2

g — ускорение свободного падения
G — гравитационная постоянная
M — масса Земли
R — радиус земли

Вес тела

P = mg

P — вес
m — масса
g — ускорение свободного падения

Вес тела: невесомость

P = m(g-a)

Вес тела, когда ускорение тела совпадает по направлению с ускорением свободного падения
P — вес
m — масса
g — ускорение свободного падения
a — ускорение

Вес тела: перегрузка

P = m(g+a)

Вес тела, когда ускорение тела противоположно направлению ускорения свободного падения
P — вес
m — масса
g — ускорение свободного падения
a — ускорение

Время торможения

t = mv/F_tr

t — время
m — масса
v — скорость
F_тр — сила трения

Время торможения

t = v/μg

t — время
v — скорость
μ — коэффициент трения
g — ускорение свободного падения

Путь торможения

s = mv^2/(2*F_tr)

s — путь
m — масса
v — скорость
F_тр — сила трения

Путь торможения

s = v^2/(2μg)

s — путь
v — скорость
μ — коэффициент трения
g — ускорение свободного падения

Сила трения качения

F_tr = μN/R

F_тр — сила трения качения
μ — коэффициент трения качения
N — сила тяжести
R — радиус

Сила упругости

F_tampr = k x

F_упруг — сила упругости
k — жёсткость
x — удлинение (сокращение) предмета

Кинетическая энергия вращающегося тела

W_k  = J ω^2/2

W_k — кинетическая энергия
J — момент инерции
ω — угловая скорость

Динамика в физике, теория и онлайн калькуляторы

Динамика

Определение

Динамикой называют раздел механики, рассматривающий причины механического движения.
Иначе говоря, динамика — это часть механики, которая изучает движение тела, связывая характер перемещения тела с действующими на него силами.

Сила рассматривается как мера взаимодействия тела с окружающими его объектами природы (другими телами, полями).

Законы классической динамики были сформулированы И. Ньютоном и имеют его имя. Основные законы динамики являются обобщением экспериментальных данных. Эти законы следует рассматривать в совокупности, как взаимосвязанные. Экспериментальной проверке стоит подвергать не каждый закон отдельно, а всю систему законов динамики целиком.

Основная задача динамики

Многие задачи науки и техники формулируют следующим образом: имеется тело, известны силы, действующие на тело, следует сформулировать закон движения тела, то есть записать координаты рассматриваемого тела как функции времени.

И так, кратко основную задачу динамики определим так: найти закон движения материальной точки (тела), при известных силах, действующих на нее.

Для решения такой задачи при помощи основного закона динамики (второго закона Ньютона) определяют ускорение движения точки. Затем при помощи кинематических уравнений находят функции скорости и координат зависящих от времени. Такие функции позволяют предсказывать поведение частицы в любой момент времени.

Решение этой задачи в общем виде может быть проблематично. Частное решение любой задачи в классической динамике можно получить при помощи численных методов приближенно, но заданной степенью точности. Точное решение задачи часто удается получить только в самом простом случае, когда проводится расчет движения тела под воздействием постоянной силы. Численные методы применимы для решения любых задач, но они требуют проведения большого числа арифметических операций.

Выделяют и такую задачу динамики, как определение равнодействующей сил, приложенных к телу (материальной точке) при известном характере его движения.

Для определения закона движения материальной точки необходимы:

  1. Сила, которая действует на материальную точку. Ее можно задать как функцию времени или координат.
  2. Начальные условия: координаты и скорость точки в некоторый момент времени. Вместо начальной скорости иногда используют начальный импульс.

Основные законы классической динамики

Законы Ньютона составили основу динамики, и по сей день играют в ней исключительную роль.

  1. Первый закон Ньютона: Если тело не взаимодействует с другими телами или действие других тел скомпенсировано, то скорость тела не изменяется ни по модулю, ни по направлению. Тело перемещается равномерно и прямолинейно.
  2. Второй закон Ньютона: если тело движется с ускорением, по отношению к инерциальной системе отсчета, то на него действует сила. Сила, вызывает ускорение, величина которого пропорциональна модулю этой силы. Направление ускорения совпадает с направлением, действующей силы.
  3. [overline{F}=moverline{a}left(1right).]

Выражение (1)- это второй закон Ньютона в классической динамике.

Этот закон можно записать в иной форме:

[overline{F}=frac{dleft(moverline{v}right)}{dt}=frac{dleft(overline{p}right)}{dt}left(2right),]

где $overline{p}=moverline{v}$ — импульс тела. Тогда второй закон Ньютона формулируют так: сила равна производной от импульса по времени — это наиболее общая формулировка основного закона динамики.

  1. Третий закон Ньютона: Силы взаимодействия тел равны по величине, направлены вдоль одной прямой и имеют противоположные направления.

То есть, если тело 1 действует на тело 2 с силой ${overline{F}}_{12}$, то в этот же момент тело 2 действует на тело 1 с силой ${overline{F}}_{21}$, при этом:

[{overline{F}}_{12}=-{overline{F}}_{21}left(3right).]

Релятивистское уравнение движения

Как известно, динамика Ньютона носит ограниченный характер. Ее законы применяют, рассматривая движение макроскопических тел со скоростями много меньшими скорости света. При больших скоростях используют законы и уравнения релятивистской динамики, которая основывается на теории относительности.

Релятивистское уравнение движения материальной точки, являющееся обобщением уравнения движения Ньютона, записывают в виде:

[overline{F}=frac{d}{dt}left(frac{m_0overline{v}}{sqrt{1-frac{v^2}{c^2}}}right)left(4right),]

где $m_0$ — масса покоя частицы; $v$ — скорость движения частицы; $c$ — скорость света в вакууме. Уравнение (4) часто записывают в виде:

[overline{F}=frac{dleft(moverline{v}right)}{dt}=frac{dleft(overline{p}right)}{dt},]

где импульс называют релятивистским импульсом; $m$ — релятивистская масса, равная:

[m=frac{m_0}{sqrt{1-frac{v^2}{c^2}}}left(5right).]

Следует иметь в виду, что сила и ускорение точки в релятивистском случае совпадают. Сила совпадает по направлению с изменением импульса.

Примеры задач с решением

Пример 1

Задание. Железнодорожный вагон нагружен песком. Начальная масса вагона с грузом составляет $m_n$ кг. Вагон движется прямолинейно из состояния покоя под действием силы тяги равной $overline{F}$. Эта сила направлена горизонтально и она постоянна (рис.1). В дне вагона имеется отверстие, через него высыпается песок с постоянной скоростью $sigma frac{кг}{с}$. Запишите функцию скорости в зависимости от времени ($v(t)$). Силой трения пренебречь.

Динамика, пример 1

Решение. Запишем второй закон Ньютона для сил, действующих на вагон:

[moverline{g}+overline{N}+overline{F}=moverline{a}left(1.1right).]

Запишем проекцию уравнения (1.1) на ось X:

[F=ma left(1.2right),]

где $m=m_n-sigma t$. Выразим ускорение из (1.2):

[a=frac{F}{m_n-sigma t}left(1.3right).]

Учитывая кинематическое уравнение вида:

[a=frac{dv}{dt}left(1.4right)]

скорость найдем как:

[vleft(tright)=int{aleft(tright)dt=int{frac{F}{m_n-sigma t}dt=frac{F}{sigma }}}{ln left(frac{m_n}{m_n-sigma t}right) }+Cleft(1.5right).]

Из начального условия ($vleft(0right)=0$) найдем постоянную интегрирования $C$:

[vleft(0right)=frac{F}{sigma }{ln left(frac{m_n}{m_n-sigma cdot 0}right) }+C=0to C=0.]

Получаем:

[vleft(tright)=frac{F}{sigma }{ln left(frac{m_n}{m_n-sigma t}right) }.]

Ответ. $vleft(tright)=frac{F}{sigma }{ln left(frac{m_n}{m_n-sigma t}right) }$

Пример 2

Задание. Закон движения тела в плоскости задан уравнениями:

[left{ begin{array}{c}
x=A{sin omega t; } \
y=B{cos omega t. } end{array}
right.]

где $A$, $B$, $omega $ — постоянные величины. Каков модуль силы, действующий на тело?

Решение. Основой для решения задачи служит второй закон Ньютона:

[overline{F}=moverline{a}left(2.1right).]

Используем для решения также кинематические уравнения для ускорения:

[a_x=frac{d^2x}{dt^2} и a_y=frac{d^2y}{dt^2}left(2.2right).]

Подставляя уравнения движения точки из условий задачи в (2.2), получим проекции ускорения:

[a_x=frac{d}{dt}left(frac{d}{dt}left(A{sin omega t }right)right)=frac{d}{dt}left(Aomega {cos omega t }right)=-A{omega }^2{sin omega t };]

[a_y=frac{d}{dt}left(frac{d}{dt}left(B{cos omega t }right)right)=frac{d}{dt}left(-B{sin omega t }right)=-B{omega }^2{cos omega t. }]

Модуль ускорения найдем как:

[a=sqrt{a^2_x+a^2_y}=sqrt{{(A{omega }^2{sin omega t })}^2+{(B{omega }^2{cos omega t })}^2}={omega }^2sqrt{x^2+y^2}left(2.3right).]

Из (2.1) и (2.3) получим модуль силы:

[F=m{omega }^2sqrt{x^2+y^2}.]

Ответ. $F=m{omega }^2sqrt{x^2+y^2}$

Читать дальше: закон сохранения импульса.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Как найти хозяева собаки
  • Как найти клад картинки
  • Как найти общий язык с покупателем
  • Со словом who как составить вопросительное предложение
  • Как исправить ошибку с usb в компьютере