Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Решение:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Решение:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Пример:
Решение:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.
Производная функции. Геометрический смысл производной
Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.
В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна. Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.
Запомним определение:
Производная — это скорость изменения функции.
На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?
Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.
Вот другой пример.
Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:
На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.
Определение.
Производная – это скорость изменения функции.
Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?
На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.
Производная функции обозначается .
Покажем, как найти с помощью графика.
Нарисован график некоторой функции . Возьмем на нем точку А с абсциссой
. Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.
Производная функции в точке
равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.
Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси ОХ.
Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.
Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника
Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике.
Есть и другое важное соотношение. Вспомним, что прямая задается уравнением
.
Величина k в этом уравнении называется угловым коэффициентом прямой. Она равна тангенсу угла наклона прямой к оси X.
.
Мы получаем, что
Запомним эту формулу. Она выражает геометрический смысл производной.
Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.
Другими словами, производная равна тангенсу угла наклона касательной.
Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.
Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.
В точке A функция возрастает. Касательная к графику, проведенная в точке A, образует острый угол
с положительным направлением оси X. Значит, в точке A производная положительна.
В точке B наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси X. Поскольку тангенс тупого угла отрицателен, в точке B производная отрицательна.
Вот что получается:
Если функция возрастает, ее производная положительна.
Если убывает, ее производная отрицательна.
А что же будет в точках максимума и минимума? Мы видим, что в точках C (точка максимума) и D (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.
Точка С — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке С с «плюса» на «минус».
В точке D — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».
Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.
Если производная положительна, то функция
возрастает.
Если производная отрицательная, то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
Запишем эти выводы в виде таблицы:
Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.
1. Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая точка перегиба:
В точке E касательная к графику горизонтальна, и производная равна нулю. Однако до точки E функция возрастала — и после точки E продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.
2. Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.
А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных. В ней вы найдете производные всех элементарных функций и правила взятия производных, то есть дифференцирования.
Геометрический смысл производной, задачи
Покажем, что такое геометрический смысл производной, на примере нескольких задач из Банка заданий ФИПИ.
Задача 1. На рисунке изображен график функции ). Найдите количество решений уравнения
)=0 на отрезке [-2,5; 9,5].
Решение:
Производная функции равна нулю в точках максимума и минимума функции
Таких точек на графике 5.
Ответ: 5.
Задача 2. На рисунке изображен график функции y= ) — производной функции
). Сколько точек максимума имеет функция
) на отрезке
? В ответе запишите это число.
Решение:
Обратите внимание, что на этом рисунке изображен не график функции, а график ее производной.
В вариантах ЕГЭ по математике таких задач много. Пользуясь графиком производной, надо ответить на вопрос о поведении функции.
В точке максимума функции производная равна нулю и меняет знак с «плюса» на «минус». Такая точка на отрезке на графике одна.
Ответ: 1.
Задача 3. На рисунке изображены график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции
в точке
Решение:
Вспомним определение.
Производная функции в точке равна тангенсу угла наклона касательной, проведенной к графику функции в этой точке (то есть угловому коэффициенту касательной).
Это геометрический смысл производной.
В точке функция y = f(x) убывает. Касательная, проведенная к ее графику в этой точке, образует тупой угол
с положительным направлением оси Х. Найдем тангенс острого угла
смежного с углом
Ответ: -0,5.
Задача 4. На рисунке изображен график производной функции определенной на отрезке
В какой точке отрезка
принимает наименьшее значение?
Решение:
На рисунке изображен график производной. Если функция возрастает — ее производная положительна. Если функция убывает — ее производная отрицательна. В точке минимума производная равна нулю и меняет знак с «минуса» на «плюс».
На рисунке есть такая точка, и это x = 1,5.
Слева от этой точки, на отрезке [1; 1,5] производная отрицательна, и функция убывает. Справа от этой точки, на интервале [1,5; 5), производная положительна, и функция возрастает.
Значит, — точка минимума функции
Поэтому и свое наименьшее значение функция принимает в точке 1,5.
Ответ: 1,5.
Задача 5. На рисунке изображен график — производной функции
В какой точке отрезка
функция
принимает наименьшее значение?
Решение:
На рисунке изображен график производной. Если функция возрастает — ее производная положительна. Если функция убывает — ее производная отрицательна. В точке минимума производная равна нулю и меняет знак с «минуса» на «плюс».
На рисунке есть такая точка, и это x = 3.
Слева от этой точки производная отрицательна, и функция убывает. Справа от точки x = 3 производная положительна, и функция возрастает.
Значит, — точка минимума функции
Кстати, вид графика функции определить нетрудно. Это квадратичная парабола с ветвями вверх.
Ответ: 3.
Задача 6. На рисунке изображен график производной непрерывной функции
В какой точке отрезка
функция
принимает наибольшее значение?
Решение:
На отрезке расположена точка
в которой производная равна нулю и меняет знак с «+» на «-».
Это значит, что — точка максимума функции
на отрезке
и наибольшее значение функция
принимает именно в этой точке.
Ответ: — 2,5.
Задача 7. На рисунке изображен график производной функции определенной на интервале (-3;7). В какой точке отрезка [-2; 4] функция
принимает наименьшее значение?
Решение:
Точка минимума функции f(x) — это x = 0. В этой точке производная равна 0 и меняет знак с «минуса» на «плюс».
Слева от точки 0 производная отрицательна, функция убывает. Справа от этой точки производная положительна, функция возрастает.
Наименьшее значение на отрезке достигается при x = 0.
Ответ: 0.
Задача 8. На рисунке изображены график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции
в точке
Решение:
Производная функции в точке
равна тангенсу угла наклона касательной, проведенной к графику функции
в этой точке.
— касательная к
В точке производная отрицательная,
т.к. функция
— убывает в этой точке.
— угол, который образует касательная с положительным направлением оси Х.
Угол — тупой, а смежный с ним угол
— острый.
Ответ: -0,375.
Задача 9. На рисунке изображен график непрерывной функции f(x) и касательные CD и MN, проведенные к ее графику в точках А и В. Найдите отношение значений производной функции f(x) в точках А и В.
Решение:
Найдём значения производных в точках А и В с помощью графика.
где
— угол наклона касательной к графику функции в точке с абсциссой
Для точки А:
Для точки В:
Отношение производных:
Ответ: 0,15.
Условия касания
Пусть прямая касается графика функции
в точке
Тогда для точки
выполняются условия касания:
Первое уравнение показывает, что значения функций и
в точке
равны друг другу. Это верно, поскольку эта точка лежит и на одном, и на другом графике.
Второе условие показывает, что производная функции в точке
равна угловому коэффициенту касательной, то есть k.
Задача 10. Прямая касается графика функции
причем абсцисса точки касания положительна. Найдите b.
Решение:
Запишем условие касания:
Начнем со второго уравнения:
Т.к. то
Найдем подставив
в первое уравнение:
отсюда
Ответ: -7.
Условия касания встречаются нам не только в заданиях 1 части ЕГЭ по математике, но и в задачах с параметрами. Более того, это один из приемов решения уравнений и неравенств с параметрами.
Физический смысл производной
Мы узнали, что такое геометрический смысл производной. Научились находить производную с помощью графика функции и решать задачи ЕГЭ. Производная помогает нам исследовать функции, находить их точки максимума и минимума, строить графики функций.
И оказывается, что с производной вы познакомились намного раньше — в школьном курсе физики. Вы уже пользовались этим математическим понятием, но не называли его словом «производная».
Вспомним тему «Кинематика» в физике. Это раздел физики, описывающий механическое движение. Величины, которыми описывается движение какого-либо тела, — это скорость v, время t, координата х, если тело движется вдоль прямой. Или координаты x и y, если оно движется по плоскости.
Вспомним формулу для равномерного прямолинейного движения: где x — координата.
Пусть 3 материальных точки — например, три автомобиля — одновременно выезжают с постоянными скоростями из точки А и едут по прямолинейному шоссе. На графике показано, как меняется их координата x с течением времени. У какого из автомобилей скорость больше?
Очевидно, у третьего. Считая, что x = vt, для первого автомобиля найдем = 20 км/ч. Возможно, это машина, которая поливает или чистит дорогу, и поэтому так медленно едет. Для второго автомобиля
= 40 км/ч, для третьего
= 75 км/ч.
Но если пройденный путь, то есть изменение координаты тела, мы разделим на время, то найдем тангенс угла наклона для каждой из этих прямых. Так и есть.
Скорость тела — это производная от его координаты по времени.
А теперь пусть тело, например, автомобиль, движется вдоль оси x, причем его скорость не является постоянной. Зависимость его координаты от времени x(t) показана на графике.
Возьмем на графике точку, соответствующую моменту времени и проведем в этой точке касательную к графику функции.
Тангенс угла наклона этой касательной численно равен мгновенной скорости тела в момент
Мы получили, что мгновенная скорость — это производная от координаты по времени.
Это физический смысл производной.
Но не только скорость в физике является производной от другой физической величины, координаты.
Ускорение — это производная от скорости по времени. Сила тока — производная от заряда по времени.
Изучая курс физики в школе и в вузе, вы увидите множество уравнений, связывающих одни физические величины с производными других физических величин. Такие уравнения называются дифференциальными. А само действие взятия производной называется дифференцированием.
Вот задача из вариантов ЕГЭ по математике, где используется физический смысл производной.
Задача 11. Материальная точка M начинает движение из точки A и движется по прямой на протяжении 12 секунд. График показывает, как менялось расстояние от точки A до точки M со временем. На оси абсцисс откладывается время t в секундах, на оси ординат — расстояние s.
Определите, сколько раз за время движения скорость точки M обращалась в ноль (начало и конец движения не учитывайте).
Решение:
Производная — это скорость изменения функции. Мгновенная скорость движущегося тела (материальной точки) является производной от его координаты по времени. Это физический смысл производной.
Найдем на графике s(t) точки, в которых производная функции s(t) равна нулю. Таких точек 6. Это точки максимума и минимума функции s(t).
Ответ: 6.
Изучая высшую математику в вузе, вы узнаете еще одно определение производной.
Производной функции f(x) в точке называется предел отношения приращения функции к приращению аргумента при приращении аргумента, стремящемся к нулю.
Это определение есть в вашем школьном учебнике алгебры. Но намного важнее не механически его запомнить, а понять его смысл. Первые шаги к этому мы сделали, определив производную как скорость изменения функции. Мы также узнали, что такое геометрический смысл производной и физический смысл производной.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Производная функции. Геометрический смысл производной» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Производная положительна только тогда, когда функция возрастает. То есть, нам необходимо найти точки, в которых функция растет. Смотрим на график нашей функции: функция растет на промежутках: от (x=-7) до (x=0) и от (x = 6) до (x=12).
Так как по условию нам нужны только ЦЕЛЫЕ точки, в которых производная положительна, то это будут: (x=—6); (x=-5), (x=-4), (x=-3), (x=-2), (x=-1), (x=7), (x=8), (x=9), (x=10), (x=11). Всего точек получилось (11). Я отметил их зеленым цветом.
Обратите внимание, что точки (x=-7), (x=0), (x=6), (x=12) мы не считаем, так как в этих точках у нас будут минимумы и максимумы функции, а в них производная равна нулю, то есть не положительна.
Ответ: (11.)
Пример 2
На рисунке 6 изображен график функции, определенной на промежутке ((-10;12)). Найдите количество точек, в которых производная функции равна нулю.
На этой странице вы узнаете
- Кто всегда протянет руку помощи в определении производной?
- Что такое сложная функция и зачем тут матрешка?
- Как никогда не ошибаться при решении задач с производными?
Теория теорией, а дифференцировать хочется всегда. Эта статья посвящена практике нахождения производных.
Производные основных функций
Должно быть, вы уже слышали о производной и даже пробовали взять её мозговым штурмом. При отрицательном ответе вам обязательно нужно прокатиться на американских горках в нашей статье «Производная». В ней рассмотрели основные понятия производной.
Главный вопрос этой статьи: как ее находить? Для этого существуют свои формулы и правила, которых необходимо придерживаться для правильного решения заданий.
Ниже приведена таблица с формулами для нахождения производных основных функций. Применяя эти формулы, можно найти производную почти любой функции.
Не пугайтесь, если вам покажется, что их много: это основные формулы, с помощью которых можно решить большинство задач.
1 | C’ = 0, C = const |
2 | ((x^n)’ = n * x^{n — 1}, x > 0) |
3 | ((a^x)’ = a^x * ln(a), a > 0, a neq 1) |
4 | ((e^x)’ = e^x) |
5 | ((log_{a}x)’ = frac{1}{x * ln(a)}, x > 0, a > 0, a neq 1) |
6 | ((ln(x))’ = frac{1}{x}, x > 0) |
7 | ((sqrt{x})’ = frac{1}{2sqrt{x}}, x > 0) |
8 | (sin(x))’ = cos(x) |
9 | (cos(x))’ = -sin(x) |
10 | ((tg(x))’ = frac{1}{cos^{2}x}, x neq frac{pi}{2} + pi n, n in Z) |
11 | ((ctg(x))’ = -frac{1}{sin^{2}x}, x neq pi n, n in Z) |
Смотреть на формулы и учить их — это круто, прямо ощущаем себя великими учеными. Что может быть круче этого? Только применять их на практике. Рассмотрим несколько примеров нахождения производной.
Пример 1. Найдите производную функции f(x) = 5.
Решение: 5 — это число, то есть константа. Тогда, пользуясь первой формулой в таблице, получаем:
f'(x) = 5′ = 0.
Ответ: 0
Пример 2. Найдите производную функции (f(x) = x^4)
Решение: В этом случае необходимо воспользоваться второй формулой из таблицы.
(f'(x) = (x^4)’ = 4 * x^{4-1} = 4 * x^3)
Ответ: (4x^3)
Пример 3. Найдите производную функции (f(x) = e^x)
Решение: В этом случае необходимо воспользоваться четвертой формулой из таблицы.
(f'(x) = (e^x)’ = e^x)
Ответ: (e^x)
Правила дифференцирования
С полной уверенностью можем сказать, что вам встречались сложные функции. Даже намного сложнее, чем те, которые приведены в таблицах. Там и сумма, и произведение, и формула в формуле. Одним словом: ужас! Как брать производную, если перед функцией стоит коэффициент, или в функцию включено несколько разных выражений? На этот случай существуют правила дифференцирования.
В сложных функциях невозможно пользоваться только формулами для нахождения производной.
Если функция
— усложнена коэффициентом,
— представлена в виде суммы, произведения или частного
— или является сложной функцией,
то для выбора правильной производной необходимо воспользоваться правилами дифференцирования. Они играют роль супергероев от мира производных. Рассмотрим их внимательнее.
1. Коэффициент можно вынести за знак производной.
(k * f(x))’ = k * (f(x))’
Например, необходимо взять производную у функции f(x) = 6sin(x). Тогда, пользуясь правилом дифференцирования и таблицей, получаем ответ 6cos(x).
2. Производная суммы (разности) равняется сумме (разности) производных.
((f(x) pm g(x))’ = f'(x) pm g'(x))
Найдем производную (f(x) = 4x^5 — sqrt{x} + cos(x)).
(f'(x) = (4x^5 — sqrt{x} + cos(x))’ = (4x^5)’ — (sqrt{x})’ + (cos(x))’ = 4 * 5 * x^{5 — 1} — frac{1}{2sqrt{x}} — sin(x))
(f'(x) = 20x^4 — frac{1}{2sqrt{x}} — sin(x). )
3. Производная произведения.
(f(x) * g(x))’ = f'(x) * g(x) + f(x) * g'(x)
Для примера возьмем производную функции f(x) = x2 * ln(x)
f'(x) = (x2 * ln(x))’ = (x2)’ * ln(x) + x2 * (ln(x))’
(f'(x) = 2x * ln(x) + x^2 * frac{1}{x} = 2x * ln(x) + x)
4. Производная частного.
((frac{f(x)}{g(x)})’ = frac{f'(x) * g(x) — f(x) * g'(x)}{g^{2}(x)})
Возьмем производную функции (f(x) = frac{e^x}{3x})
(f'(x) = frac{(e^x)’ * 3x — ex * (3x)’}{(3x)^2} = frac{e^x * 3x — e^x * 3}{9x^2} = frac{3e^x * (x-1)}{9x^2} = frac{e^x * (x-1)}{3x^2})
5. Производная сложной функции.
Сложная функция — это функция, внутри которой есть другая функция.
Давайте представим матрешку: в одну большую куклу складывается куколка поменьше, а в нее еще меньше и так далее. Точно так же и с функцией: “внутри” одной функции может лежать другая функция.
Например, у нас есть две функции: (sqrt{x}) и cos(x). А теперь попробуем поместить корень в функцию с косинусом, и получим (cos(sqrt{x})). Это и будет сложная функция.
Чтобы найти производную сложной функции, необходимо найти производную “внутренней” функции и умножить ее на производную “внешней” функции.
(f(g(x))’ = g'(x) * f'(g(x))
Найдем производную уже рассмотренной функции (f(x) = cos(sqrt{x})).
(f'(x) = (cos(sqrt{x}))’ = (sqrt{x})’ * (cos(sqrt{x}))’ = frac{1}{2sqrt{x}} * (-sin(sqrt{x})) = -frac{sin(sqrt{x})}{2sqrt{x}})
Исследование функции с помощью производной
В задании нам может быть дана только функция без ее графика. Что делать в таком случае, если нам нужно найти, например, отрезки возрастания, точки экстремума, наибольшее или наименьшее значение функции? Не во всех случаях получится построить график, да и это займет достаточно большое количество времени, которое и без того ограничено на экзамене.
В этом случае мы можем проанализировать поведение функции с помощью производной.
Исследуем функцию f(x) = (x — 4)2(x + 11) + 4.
Cначала возьмем производную от этой функции:
f'(x) = ((x — 4)2(x + 11))‘ + 4′ = ((x — 4)2(x + 11))’ = ((x — 4)2)'(x + 11) + (x — 4)2(x + 11)’
f'(x) = 2(x — 4)(x + 11) + (x — 4)2 * 1 = (x — 4)(2(x + 11) + (x — 4)) = (x — 4)(3x + 18)
Любое исследование функции с помощью производной начинается именно с дифференцирования функции.
Теперь рассмотрим алгоритм нахождения точек минимума и максимума:
2 шаг. Найденную производную необходимо приравнять к 0 и решить полученное уравнение.
3 шаг. Расставить корни полученного уравнения на числовой прямой.
4 шаг. Определяем знаки производной на промежутках. Для этого необходимо подставить любое значение с выбранного промежутка в производную функции.
5 шаг. Определить, какие точки будут точками минимума (в них знак меняется с минуса на плюс), а какие — точками максимума (знак меняется с плюса на минус).
Найдем точки минимума и максимума в нашей функции. Поскольку производную мы уже взяли, можно сразу перейти ко второму шагу:
(x — 4)(3x + 18) = 0
x = 4, x = -6.
Полученные значения х расставляем на числовой прямой:
Теперь определим знаки на промежутках слева направо.
1. Возьмем точку -10 и подставим ее в производную функции:
(-10 — 4)(3 * (-10) + 18) = (-14) * (-12) = 168. Производная на этом промежутке будет положительной.
2. Возьмем точку 0 и подставим ее в производную функции:
(0 — 4)(3 * 0 + 18) = (-4) * 18 = -72. Производная на этом промежутке будет отрицательной.
3. Возьмем точку 5 и подставим ее в производную функции:
(5 — 4)(3 * 5 + 18) = 33. Производная на этом промежутке будет положительной.
Расставим полученные знаки на прямой:
Остался последний пятый шаг. В точке -6 производная меняет знак с плюса на минус, значит, это точка максимума. В точке 4 производная меняет знак с минуса на плюс, значит, это точка минимума.
Важно!
Если в задании встречается формулировка “Найдите точку минимума (максимума) функции”, то необходимо пользоваться именно этим алгоритмом.
Но это не все выводы, которые уже можно сделать о функции. Вспомним, что функция возрастает, когда производная положительна, а убывает, когда производная отрицательна. Поскольку мы уже определили знаки производной, то смело можем сделать вывод, что на промежутках до -6 и после 4 функция будет возрастать, а на промежутке от -6 до 4 — убывать.
Однако могут встретиться задания, в которых необходимо найти наибольшее или наименьшее значение функции на определенном интервале.
Для выполнения таких заданий существует следующий алгоритм нахождения наибольшего и наименьшего значения функции.
Шаг 2. Найти точки минимума и максимума функции.
Шаг 3. Определить, какие из точек минимума и максимума принадлежат заданному интервалу.
Шаг 4. Найти значение функции в отобранных в предыдущем шаге точках, а также в точках, которые являются границами заданного интервала. Для этого необходимо подставить точки в функцию (не в производную от функции).
Для примера найдем наибольшее значение функции f(x) = (x — 4)2(x + 11) + 4 на отрезке [-10; 0].
Первые два шага мы уже выполнили, когда рассматривали алгоритм нахождения точек минимума и максимума. Из них отрезку [-10; 0] принадлежит х = -6 — точка максимума.
Теперь определим значение функции в трех точках:
f(-10) = (-10 — 4)2(-10 + 11) + 4 = 196 + 4 = 200
f(-6) = (-6 — 4)2(-6 + 11) + 4 = 500 + 4 = 504
f(0) = (0 — 4)2(0 + 11) + 4 = 176 + 4 = 180
Наибольшее из полученных значений — это 504. Это и будет ответ.
Может возникнуть вопрос, почему важно проверять значение функции и на границах отрезка? В заданиях ЕГЭ очень часто встречаются случаи, когда нужно найти наибольшее значение, и в интервале лежит точка максимума, или когда нужно найти наименьшее значение функции и в интервале лежит точка минимума. Логично будет проверить только экстремумы, поскольку в них, скорее всего, достигается наибольшее или наименьшее значение.
Однако стоит вспомнить, что мы не видим график функции и не можем с точностью определить, что в экстремуме достигается нужное нам значение. С помощью экстремумов мы можем описать поведение функции: где она возрастает, а где убывает. Но можно столкнуться с графиком, на котором граничная точка будет лежать выше или ниже точки экстремума. Тогда наибольшее или наименьшее значение будет достигаться именно в ней. Пример на картинке (красными линиями обозначены границы отрезка).
Подведем итог.
Как можно исследовать функцию с помощью производной?
С помощью производной можно с точностью сказать, на каких участках функция будет возрастать и убывать, сколько точек максимума и минимума у нее есть, какое наибольшее или наименьшее значение принимает функция на заданном участке.
Фактчек
- Для нахождения производной необходимо пользоваться специальными формулами для производной. С их помощью можно найти производную любой из основных функций.
- Если функция усложнена коэффициентом, является сложной или представлена в виде суммы, произведения или частного, то необходимо пользоваться правилами дифференцирования. Они помогут правильно найти производную.
- Сложная функция — это функция, внутри которой есть другая функция.
- С помощью производной можно исследовать функцию, а именно найти точки минимума и максимума, определить, на каких участках функция возрастает и убывает, найти наибольшее и наименьшее значение функции на заданном отрезке.
Проверь себя
Задание 1.
Чему будет равна производная f(x) = 3?
- 3;
- 1;
- 0;
- Производную этой функции невозможно найти.
Задание 2.
Чему будет равна производная f(x) = 5x2?
- 10x;
- 10x2;
- 5x2;
- 2x.
Задание 3.
Чему будет равна производная f(x) = 13x + 5 + x3?
- 18 + 3x2;
- 13 + 3x2;
- 18;
- 3x2.
Задание 4.
Чему будет равна производная f(x) = ln(x)?
- x
- (frac{1}{x})
- (frac{1}{2sqrt{x}})
- ex
Задание 5.
Чему будет равна производная f(x) = tg(x)?
- (frac{1}{cos^{2}(x)})
- (-frac{1}{sin^{2}(x)})
- (-frac{1}{cos^{2}(x)})
- (frac{1}{sin^{2}(x)})
Ответы: 1. — 3 2. — 1 3. — 2 4. — 2 5. — 1
Исследовать функцию — это значит установить её свойства: указать её область определения и область значений; промежутки возрастания и убывания; промежутки, на которых функция приобретает положительные значения, на которых — отрицательные; выяснить, не является ли данная функция чётной или нечётной и т. д.
Содержание:
Что такое исследование функции
Одна из важных задач исследования функции — определение промежутков её возрастания и убывания. Как отмечалось, в тех точках, в которых функция возрастает, её производная (угловой коэффициент касательной) положительная, а в точках убывания функции её производная отрицательная {рис. 70).
Правильными будут следующие утверждения.
- Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
- Если производная в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
- Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.
Строгое доказательство этого утверждения достаточно громоздкое, поэтому мы его не приводим. Заметим только, что в нём выражается достаточный признак возрастания или убывания функции, но не необходимый. Поэтому функция может возрастать и на промежутке, в некоторых точках которого она не имеет производной. Например, функция
Из сказанного следует, что два соседних промежутка, на одном из которых функция возрастает, а на другом — убывает, могут разделяться только такой точкой, в которой производная функции равна нулю или не существует.
Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.
Следовательно, чтобы определить промежутки возрастания и убывания функции нужно решить неравенства
или найти все критические точки функции,разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких — убывает.
Пример:
Найдите промежутки возрастания и убывания функции
Решение:
Уравнение имеет корни
Это — критические точки. Область определения данной функции — множество
— они разбивают на три промежутка:
(рис. 72). Производная функции на этих промежутках имеет соответственно такие знаки:
Следовательно, данная функция на промежутках
возрастает, а на
убывает.
Замечание: Если функция непрерывна в каком-нибудь конце промежутка возрастания или убывания, то эту точку можно присоединить к рассматриваемому промежутку. Поскольку функция в точках 0 и 2 непрерывна, то можно утверждать, что она возрастает на промежутках
на
— убывает.
Пример:
Найдите промежутки убывания функции
Решение:
Критические точки: Они всю область определения функции разбивают на интервалы:
(рис. 73). Производная
на этих промежутках имеет соответственно такие знаки:
Следовательно, функция убывает на промежутках
Поскольку в точках
данная функция непрерывна, то ответ можно записать и так:
Пример:
Найдите критические точки функции
Решение:
Найдем произвольную функции:
Найдём точки, в которых производная равна нулю или не существует: — не существует, если знаменатель равен нулю, отсюда
и
Точка
не входит в область определения функции. Следовательно, функция имеет две критические точки:
Ответ. 0 и 4.
Пример:
Докажите, что функция возрастает на
Решение:
При любом значении
выражение
имеет положительное значение. Следовательно, данная функция возрастает на всей области определения, т.е. на множестве
Пример:
Установите, на каком промежутке функция возрастает, а на каком убывает.
Решение:
Способ 1. Найдём производную функции:
Найдём критические точки функции:
Эта точка разбивает область определения функции на два промежутка (рис. 74). Определим знак производной на каждом из них.
Следовательно, функция возрастает на промежутке
а убывает на
Способ 2. Решим неравенство и
Ответ. Возрастает, если убывает если
Применение второй производной к исследованию функций и построению их графиков
При помощи первой производной можно исследовать функцию на монотонность и экстремумы и схематично построить график. Оказывается, что поведение некоторых функций не всегда можно охарактеризовать, используя первую производную. Более детальное исследование проводится при помощи второй производной. Вспомним, что такое вторая производная.
Пусть функция является дифференцируемой,
её производная
— функция, которая также дифференцируема. Тогда можно найти производную
Это производная второго порядка, или вторая производная функции
Например, найти производную 2-го порядка функции означает найти производную этой функции
и полученную функцию продифференцировать:
Кривая называется выпуклой на интервале
если все её точки, кроме точки касания, лежат ниже произвольной её касательной на этом интервале (на рис. 86 — 1).
Кривая называется вогнутой на интервале
если все её точки, кроме точки касания, лежат выше произвольной её касательной на этом интервале (на рис. 86 — 2).
Точкой перегиба называется такая точка кривой, которая отделяет её выпуклую часть от вогнутой.
Интервалы выпуклости и вогнутости находят при помощи такой теоремы.
Теорема. Если вторая производная дважды дифференцируемой функции отрицательна
на интервале
то кривая
выпуклая на данном интервале; если вторая производная функции
положительная
то кривая вогнутая на
Из теоремы следует, что точками перегиба кривой могут быть только точки, в которых вторая производная
равна нулю или не существует. Такие точки называют критическими точками второго рода.
Установим до статочное условие существования точки перегиба.
Теорема. Пусть — критическая точка второго рода функции
Если при переходе через точку
производная
меняет знак, то точка
является точкой перегиба кривой
Для нахождения промежутков выпуклости и точек перегиба графика функции целесообразно пользоваться следующей схемой:
- найти область определения функции;
- найти критические точки второго рода;
- определить знак второй производной на образованных интервалах. Если
то кривая выпуклая; если
— кривая вогнутая;
- если производная
меняет знак при переходе через точку
то точка
является точкой перегиба кривой
Пример №1
Найдите интервалы выпуклости, вогнутости и точки перегиба кривой
Решение:
1) Область определения функции:
2) Найдём вторую производную:
Критические точки второго рода:
Других критических точек нет.
3) Разбиваем область определения на интервалы и определяем знак второй производной на каждом из них.
Если поэтому кривая вогнутая.
Если поэтому кривая выпуклая.
Если — кривая вогнутая.
Следовательно, точки — точки перегиба кривой. Рассмотрим ещё один компонент в исследовании функций, благодаря которому упрощается построение некоторых графиков. Это асимптоты. В предыдущих параграфах рассматривались горизонтальные и вертикальные асимптоты. Повторим, расширим и обобщим это понятие. Асимптоты бывают вертикальные, наклонные и горизонтальные (рис. 87).
Напомним, что прямая будет вертикальной асимптотой кривой
если при
(справа или слева) значение функции
стремится к бесконечности, т.е. выполняется одно из условий:
Уравнение наклонной асимптоты:
Если записанные пределы существуют, то существует наклонная асимптота; если хотя бы один из них не существует или равен то кривая наклонной асимптоты не имеет.
Если поэтому
— уравнение горизонтальной асимптоты.
Замечание: Рассмотренные пределы могут быть односторонними, а под символом следует понимать и
При этом указанные пределы могут быть разными при
Пример №2
Найдите асимптоты кривых:
Решение:
а) Найдём вертикальные асимптоты. Поскольку функция не определена в точках
и
то прямые
— вертикальные асимптоты.
Найдём наклонную асимптоту: Кривая имеет горизонтальную асимптоту, её уравнение:
Следовательно, заданная кривая имеет три асимптоты:
Найдем вертикальные асимптоты.
Поскольку функция не определена в точках и
то прямые
— вергикальные асимптоты.
Для наклонной асимптоты
Значит прямая — наклонная асимптота. Горизонтальной асимптоты нет.
Итак, асимптоты кривой:
Будем искать наклонные асимптоты:
Следовательно, — наклонная асимптота, если
2) если (проверьте самостоятельно), отсюда
— наклонная асимптота, если
Следовательно, заданная кривая имеет две асимптоты:
Определение точек перегиба, интервалов выпуклости и асимптот существенно помогает в построении графиков различных функций.
Нахождение промежутков возрастания и убывания функции
Интервалы возрастания и убывания функции
возрастающая функция
Если для любых и
из некоторого промежутка области определения при
выполняется условие
то на этом промежутке функция возрастающая.
убывающая
Если для любых и
из некоторого промежутка области определения при
выполняется условие
на этом промежутке функция убывающая.
Связь промежутков возрастания и убывания функции с угловым коэффициентом секущей можно выразить следующим образом.
Если на заданном промежутке угловой коэффициент любой секущей положителен, то на этом промежутке функция возрастает.
Если на заданном промежутке угловой коэффициент любой секущей отрицателен, то на этом промежутке функция убывает.
Промежутки возрастания и убывания функции
Пусть на определенном промежутке производная функции положительна, т. е.
Так как
то угловой коэффициент касательной будет положительным. А это значит, что касательная с положительным направлением оси абсцисс образует острый угол и на заданном промежутке график «поднимается «, т. е. функция возрастает. Если
тогда касательная с положительным направлением оси абсцисс образует тупой угол, график «спускается», т. е. функция убывает.
Теорема. Если функция дифференцируема в каждой точке заданного промежутка, то:
Примечание: если функция непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.
По графику функции исследуйте промежутки возрастания и убывания функции.
На интервалах и
угловой коэффициент касательной положительный, поэтому на каждом из промежутков
и
функция
возрастает.
На интервале угловой коэффициент касательной отрицателен, поэтому на промежутке
функция
убывает.
Пример №3
При помощи производной определите промежутки возрастания и убывания функции
Решение: 1. Алгебраический метод.
Найдем производную функции
Функция на промежутке удовлетворяющем неравенству
т. е.
возрастает.
Для решения неравенства сначала надо решить соответствующее уравнение
Значит, при и
Точки
разбивают область определения функции на три интервала:
и
В каждом из интервалов выберем контрольную точку для проверки и установим знак производной.
Из таблицы и непрерывности функции видно, что данная функция возрастает на промежутках
и
и убывает на промежутке
Из графика так же видно, что задания решение верно.
2. Промежутки возрастания и убывания функции можно определить но графику производной. На рисунке изображен график производной
График производной при
и
расположен выше оси
значит,
При
график производной расположен ниже оси
значит
Так как функция
в точках
и
непрерывна, то на промежутках
и
она возрастает, а на промежутке
убывает.
Пример №4
Изобразите схематично график непрерывной функции согласно еле дующим условиям:
a) при при
b) при или
при
Решение:
а) при знак производной положительный:
значит,
функция возрастает. При знак производной отрицательный:
значит, функция убывает, при
значение функции равно 5.
b) При и
знак производной положительный:
значит, функция возрастает. При
знак производной отрицательный:
значит, функция убывает, при
значение функции равно 0.
Критические точки и экстремумы функции
В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.
1. Для значений равных
угловой коэффициент касательной к графику равен 0. Т. e.
Эти точки являются критическими точками функции.
2. В точках функция не имеет производной. Эти тоже критические точки функции.
3. Для рассматриваемой нами функции критические точки делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки
— критические точки, которые не изменяют возрастание и убывание (или наоборот).
По графику видно, что в точках внутреннего экстремума( и
) производная функции равна нулю, а в точке
производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.
Теорема Ферма (Необходимое условие существовании экстремумов)
Во внутренних точках экстремума производная либо равна нулю, либо не существует.
Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке производная функции
равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.
На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т. е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.
Достаточное условие существования экстремума
Пусть функция непрерывна на промежутке
и
Если
является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:
слева от точки
положительна, а справа — отрицательна, то точка
является точкой максимума.
слева от
отрицательна, а справа — положительна, то точка
является точкой минимума
с каждой стороны от точки
имеет одинаковые знаки, то точка
не является точкой экстремума.
Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.
Соответствующие наибольшее и наименьшее значения функции на отрезке
записываются как
и
Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.
Пример №5
Для функции определите максимумы и минимумы и схематично изобразите график.
Решение: Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.
1. Производная функции:
2. Критические точки функции:
3. Точки и
разбивают область определения функции на три промежутка.
Проверим знак на интервалах, выбрав пробные точки:
для интервала
для интервала
для интервала
При
имеем
максимум
При имеем
минимум
4. Используя полученные для функции данные и найдя координаты нескольких дополнительных точек, построим график функции.
Пример №6
Найдите наибольшее и наименьшее значение функции на отрезке
Решение: Сначала найдем критические точки.
Так как то критические точки можно найти из уравнения
и
Критическая точка
не принадлежит данному отрезку
и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке
и на концах отрезка.
Из этих значений наименьшее — 4, наибольшее 12. Таким образом:
Пример №7
Найдите экстремумы функции
Решение: 1. Производная функции:
2. Критические точки:
и
3. Интервалы, на которые критические точки делят область определения функции:
и
Проверим знак на интервалах, выбрав пробные точки.
Для промежутка возьмем
Для промежутка возьмем
Для промежутка возьмем
Используя полученную для функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами
и
касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.
Пример №8
Найдите экстремумы функции
Решение: 1. Производная
2. Критические точки: для этого надо решить уравнение или найти точки, в которых производная не существует. В точке
функция не имеет конечной производной. Однако точка
принадлежит области определения. Значит, точка
является критической точкой функции.
3. Промежутки, на которые критическая точка делит область определения функции: и
Определим знак выбрав пробные точки для каждого промежутка:
Для возьмем
Для возьмем
Пример №9
По графику функции производной схематично изобразите график самой функции.
Решение:
Производная в точке
равна нулю, а при
отрицательна, значит, на интервале
функция убывающая. При
производная положительна, а это говорит о том, что функция/на промежутке
возрастает. Точкой перехода от возрастания к убыванию функции является точка
Соответствующий график представлен на рисунке.
- Заказать решение задач по высшей математике
Построение графиков функции с помощью производной
Функция — многочлен определена и непрерывна на всей числовой оси.
Чтобы построить график функции- многочлен надо выполнить следующие шаги.
- Определите точки пересечения с осями координат.
- Найдите критические точки.
- Найдите промежутки возрастания и убывания функции.
- Найдите максимумы и минимумы.
- Постройте график.
Пример:
Постройте график функции
1) Точки пересечения с осями координат :
2) Критические точки ( точки, в которых производная равна нулю):
значит, точки и
расположены на графике.
3) Промежутки возрастания и убывания. Экстремумы.
Критические точки деляг область определения функции на четыре промежутка. Проверим знаки производной
4) Используя полученную информацию, построим график функции.
Чтобы построить график рациональной функции надо выполнить следующие шаги.
- Найдите область определения.
- Найдите асимптоты (если они есть).
- Определите точки пересечения с осями координат.
- Найдите критические точки.
- Найдите промежутки возрастания и убывания и экстремумы.
- Постройте график.
Пример:
Постройте график функции
1) Область определения функции:
2) Асимптоты:
Прямая вертикальная асимптота функции.
Так как степень многочлена в числителе больше степени многочлена в знаменателе, рациональная функция не имеет горизонтальной асимптоты. Однако, записав следующее:
условии имеем
т. е. график функции
бесконечно приближается к прямой
В этом случае прямая
является наклонной асимптотой функции
Вообще, если степень многочлена
на 1 единицу больше степени многочлена
то рациональная функция
имеет наклонную асимптоту.
3) Точки пересечения с осями координат:
4) Критические точки:
5) Промежутки возрастания и убывания: в точке функция не определена, точки
и
являются критическими точками функции. Определим знаки производной в каждом полученном интервале.
6) Построим график. Отметим на координатной плоскости точки относящиеся к графику. Проведем вертикальную асимптоту
и наклонную асимптоту
Используя полученные результаты, изобразим график функции.
Обратите внимание! В области, близкой к точке график функции ведет себя как парабола
Задачи на экстремумы. Оптимизации
В реальной жизненной ситуации возникает необходимость выбора оптимального варианта и нахождения экстремумов определенной функции. Ежедневно, при решении проблем в различных областях, мы сталкиваемся с терминами наибольшая прибыль, наименьшие затраты, наибольшее напряжение, наибольший объем, наибольшая площадь и т.д. Большое экономическое значение в промышленности, при определении дизайна упаковки, имеет вопрос, как подобрать размеры упаковки с наименьшими затратами. Такого рода задания связаны с нахождением максимального или минимального значения величины. Задачи на нахождение максимального и минимального значения величины называются задачами на оптимизацию. Для решения данных задач применяется производная.
Замечание 1: На интервале должны учитываться предельные значения функции на концах.
Замечание 2: В рассматриваемом интервале может быть одна стационарная точка: или точка максимума, или точка минимума. В этом случае, в точке максимума функция принимает наибольшее значение, а в точке минимума — наименьшее значение.
Пример 1. Максимальный объем. Фирма планирует выпуск коробки без крышки, с квадратным основанием и площадью поверхности Найдите размеры коробки, при которых она будет иметь наибольший объем?
Решение:
Так как основанием коробки является квадрат, то ее объем можно вычислить по формуле Используя другие данные задачи, выразим объем только через одну переменную
Вычислим площадь поверхности коробки. Она равна
и состоит из 4 площадей боковых граней + площадь основания.
Тогда выразим подставим в формулу
Зависимость объема коробки от переменной
можно выразить следующим образом:
Теперь найдем область определения функции согласно условию задачи.
Понятно, что длина не может быть отрицательной, т. е. Площадь квадрата в основании коробки должна быть меньше 192, т. е.
или Значит,
Найдем максимальное значение функции на интервале
Для этого используем производную первого порядка:
При и
имеем, что
Однако. Значит, в рассматриваемом интервале критической точкой является
При имеем
при
имеем
функция
в точке
принимает максимальное значение.
Если длина основания коробки будет 8 см, то высота будет равна
Значит, максимальный объем будет иметь коробка с размерами
Построив при помощи графкалькулятора график функции также можно увидеть, что при
объем имеет максимальное значение. Постройте график функции при помощи производной и убедитесь в правильности решения.
Пример 2. Минимальное потребление. Два столба высотой 4 м и 12 м находятся на расстоянии 12 м друг от друга. Самые высокие точки столбов соединены с металлической проволокой, каждая из которых, в свою очередь крепится на земле в одной точке. Выберите такую точку на земле, чтобы для крепления использовалось наименьшее количество проволоки.
Решение: 1) Изобразим рисунок, соответствующий условию задачи, и обозначим соответствующие данные на рисунке.
2) Аналитически выразим зависимость между переменными.
По теореме Пифагора:
зависимость функции от переменной
будет
Производная функции
Найдем критические точки функции
Сравнивая значения функции в точках
(это проверьте самостоятельно), получим, что наименьшее количество проволоки используется при
(метр)
При решении задач на экстремумы обратите внимание на следующее!
1. Внимательно читайте условие. Сделайте соответствующий рисунок.
2. Задайте список соответствующих переменных и констант, которые менялись и оставались неизменными и какие единицы использовались. Если на рисунке есть размеры, обозначьте их.
3. Выберите соответствующий параметр и выразите искомую величину функцией
Найдите экстремумы данной функции.
4. Полученные значения объясните экспериментально.
Пример: Минимальное потребление материала. Для мясных консервов планируется использовать банку в форме цилиндра объемом 250
a) Каких размеров должна быть банка, чтобы для ее изготовления использовалось как можно меньше материала?
b) Для круглого основания используется материал, цена 1 которого равна 0,05 гяпик, а для боковой поверхности используется материал цена 1
которого равна 0,12 гяпик. Какие размеры должна иметь банка, чтобы затраты на ее изготовление были минимальными?
Решение: а) По условию задачи объем равен 250 Эти данные дают нам возможность найти зависимость между
и
Для функции, выражающей площадь поверхности, область определения представляет собой незамкнутый интервал, и мы должны найти, при каком значении где
функция имеет наименьшее значение. Найдем производную функции
Критическая точка функции:
При
имеем
при
Значит,
Подставим значение в формулу для высоты
получим
Итак, минимальные затраты на материал будет иметь банка цилиндрической формы с размерами и
Размеры, при которых затраты на материал будут минимальными
- Приложения производной
- Производные высших порядков
- Дифференциал функции
- Дифференцируемые функции
- Касательная к графику функции и производная
- Предел и непрерывность функции
- Свойства функций, непрерывных в точке и на промежутке
- Предел функции на бесконечности