Как найти все корни принадлежащие отрезку тригонометрия

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x = cosx

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

cosx = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

cosx = 1/sqrt(2)

cosx = sqrt(2)/2

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Просмотры: 158965 |
Статью добавил: slava191 |
Категория: математика

Пример:

а) реши уравнение  

sinx=cos2x

.

б) Найди все корни этого уравнения, принадлежащие отрезку

2π;7π2

.

a) Уравнение прежде всего иррациональное, поэтому решается возведением обеих частей в квадрат. С учётом области определения получаем:

sinx=cos2x;sinx≥0,cos2x≥0.

Стоит заметить, что рассматривать оба неравенства в системе нам не нужно, так как мы будем решать уравнение. Поэтому можно оставить только одно — более простое неравенство:

sinx=cos2x;(1)sinx≥0.

Решим уравнение системы ((1)). Прежде всего избавимся от двойного угла в уравнении:

sinx=cos2x;sinx−cos2x=0;sinx−(cos2x−sin2x)=0;sinx−(1−sin2x−sin2x)=0;sinx−(1−2sin2x)=0;2sin2x+sinx−1=0;sinx=−1,sinx=12.

(sin x= -1) исключаем, так как это значение не входит в область определения, а решения второго уравнения обозначим на тригонометрической окружности.

4.png

Рис. (1). Решения уравнения на единичной окружности

Эти решения можно записать в виде:

x=π6+2πn,n∈ℤ,x=5π6+2πm,m∈ℤ.

б) Рассмотрим три способа отбора корней, попадающих в отрезок

2π;7π2

.

(1) способ:

вернёмся к единичной окружности. Отметим на ней дугу, соответствующую указанному промежутку, подпишем начало и конец, отметим точки окружности, представляющие серии решений и принадлежащие дуге, укажем их значения, принадлежащие промежутку.

2π+π6=13π6,2π+5π6=17π6.

окр3.png

Рис.  (2). Отбор корней с помощью единичной окружности

Обрати внимание!

Нельзя отмечать и подписывать посторонние точки на окружности!

(2) способ:

указанный отрезок соответствует неравенству

2π≤x≤7π2

. Подставим в него полученные корни:

2π≤π6+2πn≤7π2,n∈ℤ:π;2≤16+2n≤72,n∈ℤ−16;2−16≤2n≤72−16,n∈ℤ;116≤2n≤206,n∈ℤ:2;1112≤n≤2012,n∈ℤ;1112≤n≤1812,n∈ℤ;n=1;π6+2π⋅1=13π6 2π≤5π6+2πm≤7π2,m∈ℤ:π;2≤56+2m≤72,m∈ℤ−56;2−56≤2m≤72−56,m∈ℤ;76≤2m≤166,m∈ℤ:2;712≤m≤1612,m∈ℤ;712≤m≤1412,m∈ℤ;m=1;5π6+2π⋅1=17π6

Обрати внимание!

Обязательно выдели целые части дробей для оценки значений (n) и (m)!

(3) способ:

разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо (n) и (m) (0), а потом добавим к каждому корню периоды. На числовой прямой должен быть выделен заданный отрезок, обозначены его концы, отмечены все последовательные значения серий корней, начиная с точек, расположенных левее промежутка, и заканчивая точками, расположенными правее промежутка.

j2.png

Рис.  (3). Отбор корней с помощью координатной прямой

Нам останется только выбрать корни, которые попали в нужный нам отрезок.

Ответ: а)

π6+2πn,n∈ℤ;5π6+2πm,m∈ℤ

; б)

13π6,17π6.

Рекомендуем при решении тригонометрических уравнений использовать несколько разных способов отбора. Это поможет тебе убедиться в правильности отбора корней и выработать навык выбора наиболее удобного способа.

Источники:

Рис. 1. Решения уравнения на единичной окружности. © ЯКласс.

Рис. 2. Отбор корней с помощью единичной окружности. © ЯКласс.

Рис. 3. Отбор корней с помощью координатной прямой. © ЯКласс.

Тригонометрические уравнения

  • Замена переменной и сведение к квадратному уравнению

  • Разложение на множители

  • Однородные уравнения

  • Введение дополнительного угла

  • Универсальная подстановка

  • Учет ОДЗ уравнения

  • Метод оценки

  • Тригонометрические уравнения повышенной сложности.
    Приемы решения

В данной статье мы расскажем об основных типах тригонометрических уравнений и методах их решения. Тригонометрические уравнения чаще всего встречаются в задаче 12 ЕГЭ.

В вариантах ЕГЭ задача, где нужно решить уравнение, состоит из двух пунктов. Первый пункт – решение самого уравнения. Второй – нахождение его корней на некотором отрезке.

Некоторые из методов (например, замена переменной или разложение на множители) являются универсальными, то есть применяются и в других разделах математики. Другие являются специфическими именно для тригонометрии.

Необходимых формул по тригонометрии не так уж и много. Учите наизусть!
Тригонометрические формулы.

Любой метод решения тригонометрических уравнений состоит в том, чтобы привести их к простейшим, то есть к уравнениям вида sin x = a, cos x = a, tg x = a, ctg x = a.

Если вы не помните, как решать простейшие тригонометрические уравнения, — читайте материал на нашем сайте: Простейшие тригонометрические уравнения, часть 1.

О том, что такое арксинус, арккосинус, арктангенс и арккотангенс, — еще одна статья на нашем сайте: Простейшие тригонометрические уравнения,часть 2.

Теперь — сами методы. Теория и примеры решения задач.

к оглавлению ▴

Замена переменной и сведение к квадратному уравнению

Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических,  логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.

1. а) Решите уравнение: 2cos^{2}x+5sinx=5.
б) Найдите корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Решение:

а) Рассмотрим уравнение 2cos^{2}x+5sinx=5.

Преобразуем его, применив основное тригонометрическое тождество:

2left ( 1-sin^{2} xright )+5sinx=5;

2sin^{2}x-5sinx+3=0.

Заменяя sin x на t, приходим к квадратному уравнению:

2t^{2}-5t+3=0.

Решая его, получим:

displaystyle t_{1}=frac{3}{2}, t_{2}=1.

Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению displaystyle sinx=frac{3}{2}.
Оно не имеет решений, поскольку -1leq sinxleq 1.

Второй корень даёт простейшее уравнение sinx=1.

Решаем его: displaystyle x=frac{pi }{2}+2pi n, nin Z.

б) Найдем корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; 2pi right ] с помощью двойного неравенства.

displaystyle -frac{pi }{2}leq frac{pi }{2}+2pi nleq 2pi .

Разделим обе части неравенства на pi :

displaystyle -frac{1}{2}leq frac{1}{2}+2nleq 2.

Вычтем displaystyle frac{1}{2} из обеих частей неравенства:

-1leq 2nleq 1,5.

Разделим на 2 обе части неравенства:

-0,5leq nleq 0,75.

Единственное целое решение – это n=0. Тогда displaystyle x=frac{pi }{2} — это единственный корень, который принадлежит отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Ответ: displaystyle frac{pi }{2}.

2. а) Решите уравнение: cos2x-5sqrt{2}cosx-5=0.
б) Укажите корни этого уравнения, принадлежащие отрезку displaystyle left [ -3pi ; -frac{3pi }{2} right ].

Решение:

а) cos2x-5sqrt{2}cosx-5=0.

Выразим косинус двойного угла по формуле cos2x=2cos^{2}x-1.

Получим:

2cos^{2}x-1-5sqrt{2}cosx-5=0;

2cos^{2}x-5sqrt{2}cosx-6 =0.

Заменяя cos⁡x на t, приходим к квадратному уравнению:

2t^{2}-5sqrt{2}t-6=0;

D=50+48=98.

displaystyle t_{1}=-frac{sqrt{2}}{2}; t_{2}=3sqrt{2}.

1) displaystyle cosx=-frac{sqrt{2}}{2}; x=pm frac{3pi }{4}+2pi n, nin Z;

2) cosx=3sqrt{2}; нет решений, т. к. 3sqrt{2}textgreater 1.

Получим: displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.

б) Отметим отрезок displaystyle left [ -3pi ; -frac{3pi }{2} right ] и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежит только точка displaystyle x=-2pi -frac{3pi }{4}=-frac{11pi }{4}.

Ответ: а) displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.
б) displaystyle -frac{11pi }{4}.

3. а) Решите уравнение: displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0.
б) Найдите все корни этого уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ].

Решение:

а)  Чтобы упростить уравнение displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0, применяем формулу приведения.

Так как displaystyle cosleft ( frac{pi }{2}-x right )=sinx, получим:

displaystyle 8sin^{2}x-2sqrt{3}sinx-9=0.

Сделаем замену:  sinx=t.  Получим квадратное уравнение:

8t^{2}-2sqrt{3}t-9=0;

displaystyle frac{D}{4}=3+72=75.

displaystyle t_1={frac{3sqrt{3}}{4}}; t_{2}=-frac{sqrt{3}}{2}.

Сделаем обратную замену.

1) displaystyle sinx={frac{3sqrt{3}}{4}} — нет решений, т. к.  displaystyle {frac{3sqrt{3}}{4}}textgreater 1.

2) displaystyle sinx=-frac{sqrt{3}}{2}Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{3}+2pi k, kin Z\displaystyle x=-frac{2pi }{3}+2pi k\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ], с помощью двойного неравенства.

Для серии решений displaystyle x=-frac{pi }{3}+2pi k, kin Z получим:

displaystyle -frac{5pi }{2}leq -frac{pi }{3}+2pi kleq -pi;

displaystyle -frac{13}{12}leq kleq -frac{2}{6}.

Так как kin Z, то displaystyle k=-1; x=-frac{7pi }{3}.

Для серии решений displaystyle x=-frac{2pi }{3}+2pi k получим:

displaystyle -frac{5pi }{2}leq -frac{2pi }{3}+2pi kleq -pi; отсюда

displaystyle -frac{11}{12}leq kleq -frac{1}{6}.

У этого неравенства нет целых решенией, и значит, из второй серии ни одна точка в указанный отрезок не входит.

Ответ: а) displaystyle -frac{pi }{3}+2pi k; -frac{2pi }{3}+2pi k, kin Z.
б) displaystyle -frac{7pi }{3}.

к оглавлению ▴

Разложение на множители

Во многих случаях уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.

4. а) Решите уравнение: sin2x=cosx.
б) Найдите все корни уравнения на отрезке [-pi; pi ].

Решение:

а) Применяем формулу синуса двойного угла:

2sinxcosx=cosx.

Ни в коем случае не сокращайте на косинус! Ведь может случиться, что cos x обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель выносим за скобки:

2sinxcosx-cosx=0;

cosxleft ( 2sinx-1 right )=0.

Полученное уравнение равносильно совокупности двух уравнений: cosx = 0 и 2sinx — 1 = 0.

Получим:

left[begin{array}{c}cosx=0\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi n, nin Z\\displaystyle x=frac{pi }{6}+2pi n\\displaystyle x=frac{5pi }{6}+2pi n\end{array}right. .

Все эти три серии решений являются ответом в части (а).

б) Отметим отрезок [-pi; pi ]. и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежат точки displaystyle x_{1}=frac{pi }{6}; x_{2}=frac{5pi }{6}.

Ответ: а) displaystyle frac{pi }{6}+2pi n; frac{pi }{2}+2pi n; frac{5pi }{6}+2pi n, nin Z.
б) displaystyle frac{pi }{6}; frac{5pi }{6}.

5. а) Решите уравнение: sin3x+sin7x=2sin5x.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; pi right ].

Решение:

Применим формулу суммы синусов:

2sin5xcos2x=2sin5x.

Дальше действуем так же, как и в предыдущей задаче:

2sin5xcos2x-2sin5x=0;

2sin5xleft (cos2x-1 right )=0.

Решаем уравнение sin5x=0:

displaystyle x=frac{pi n}{5}, nin Z. (1)

Решаем уравнение cos2x-1=0:

x=pi n, nin Z (2)

Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).

Поэтому ответ в пункте (а): displaystyle x=frac{pi n}{5}, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; pi right ], с помощью двойного неравенства:

displaystyle -frac{pi }{2}leq frac{pi n}{5}leq pi;

displaystyle -frac{5}{2}leq {n}leq 5.

Этот промежуток содержит 8 целых чисел: -2; -1; 0; 1; 2; 3; 4; 5.

Для каждого из этих n найдем x. Получим 8 решений на данном промежутке:

displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

Ответ: а) displaystyle frac{pi n}{5}, nin Z.
б) displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

6. В следующей задаче также применяется метод разложения на множители. Но это заметно не сразу.

а) Решите уравнение:sin^{2}2x+sin^{2}3x=1.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Решение:

Используем формулу понижения степени: displaystyle sin^{2}alpha =frac{1-cos2alpha }{2}.

Получаем:

displaystyle frac{1-cos4x}{2}+frac{1-cos6x}{2}=1;

cos4x+cos6x=0.

Применяем формулу суммы косинусов: displaystyle cosalpha +cosbeta =2cosfrac{alpha +beta }{2}cdot cosfrac{alpha -beta }{2}.

Получаем: 2cos5xcdot cosx=0.

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}cos5x=0\cosx=0\end{array}right.Leftrightarrow left[begin{array}{c}displaystyle 5x=frac{pi }{2}+pi n, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{10}+frac{pi n}{5}, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью двойного неравенства:

1) displaystyle 0leq frac{pi }{10}+frac{pi n}{5}leq frac{pi }{2}.

Решив неравенство, получим: -0,5leq nleq 2,5.

Так как n ∈ Z, получим для n целые значения: 0, 1, 2.

Им соответствуют решения: displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

2) Из серии решений displaystyle frac{pi }{2}+pi k, kin Z на указанном отрезке лежит только корень displaystyle x=frac{pi }{2}. Но он уже входит в первую серию решений.

Можно также заметить, что вся вторая серия решений является подмножеством первой.

Ответ: а) displaystyle frac{pi }{10}+frac{pi n}{5}, nin Z.
б) displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

к оглавлению ▴

Однородные уравнения

7. а) Решите уравнение: sin^{2}x+2sinxcosx-3cos^{2}x=0.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ].

Решение:

Такое уравнение называется однородным.

Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене a^{2}+2ab-3b^{2}, степень каждого слагаемого равна двум. Мы помним, что степень одночлена — это сумма степеней входящих в него сомножителей.

Для однородных уравнений существует стандартный приём решения — деление обеих его частей на cos^{2}x.

Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?

Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.

Предположим, что cosx = 0. Тогда в силу уравнения и sinx = 0, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию cosx neq 0, и мы можем поделить обе его части на cos^{2}x.

В результате деления приходим к равносильному квадратному уравнению относительно тангенса: tg^{2}x+2tgx-3=0.

Сделаем замену: tgx=t, получим:

left[begin{array}{c}tgx=-3 \tgx=1\end{array}right. Leftrightarrow left[begin{array}{c}x=-arctg3+pi k, kin Z \displaystyle x=frac{pi }{4}+pi k, kin Z\end{array}right..

б) Отметим отрезок displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ] и найденные серии решений на единичной окружности.

О том, как отметить на единичной окружности точки из первой серии решений, то есть арктангенс минус трех, читайте здесь: Простейшие тригонометрические уравнения, часть 2.

Видим, что данному отрезку принадлежат  точки:

x_{1}=-pi -arctg3;

displaystyle x_{2}=-pi +frac{pi }{4}=-frac{3pi }{4};

x_{3}= -arctg3;

displaystyle x_{4}=frac{pi }{4}.

Ответ: а) displaystyle -arctg3+pi k; frac{pi }{4}+pi k, kin Z.
б) -pi -arctg3; displaystyle -frac{3pi }{4}; -arctg3; frac{pi }{4}.

8. а) Решите уравнение: 10sin^{2}x+5sinxcosx+cos^{2}x=3.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение 3(sin^{2}x+cos^{2}x):

10sin^{2}x+5sinxcosx+cos^{2}x=3(sin^{2}x+cos^{2}x);

7sin^{2}x+5sinxcosx-2cos^{2}x=0.

Получили однородное уравнение второй степени.

Так как не существует такой точки на единичной окружности, в которой одновременно синус и косинус равнялись бы нулю, мы разделим обе части уравнения на cos^{2}xneq 0.

Получим: 7tg^{2}x+5tgx-2=0.

Выполним замену: tgx = y, получим:

7y^{2}x+5y-2=0.

D=25+56=81;

displaystyle y_{1,2}=frac{-5pm 9}{14};left[begin{array}{c}y=-1\displaystyle y=frac{2}{7}\end{array}right. .

Обратная замена: left[begin{array}{c}tgx=-1\displaystyle tgx=frac{2}{7}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{4}+pi k, kin Z\displaystyle x=arctgfrac{2}{7}+pi k, kin Z\end{array}right. .

Ответом в пункте (а) являются  две серии решений.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью единичной окружности. Для этого отметим на ней данный отрезок и  найденные серии решений.

Видим, что данному отрезку принадлежит только точка displaystyle x_1=arctgfrac{2}{7}.

Ответ: а) displaystyle  -frac{pi }{4}+pi k; arctgfrac{2}{7}+pi k, kin Z.
б) displaystyle arctgfrac{2}{7}.

к оглавлению ▴

Введение дополнительного угла

Этот метод применяется для уравнений вида acosx + bsinx=c. Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.

9. а) Решим уравнение: sqrt{3}sinx+cosx=2.
б) Найдите все корни уравнения на отрезке [0; 3pi ].

Решение:

Делим обе части на 2:

displaystyle frac{sqrt{3}}{2}sinx+frac{1}{2}cosx=1.

Замечаем, что displaystyle frac{sqrt{3}}{2}=cosfrac{pi }{6}; frac{1}{2}=sinfrac{pi }{6}:

displaystyle cosfrac{pi }{6}sinx+sinfrac{pi }{6}cosx=1.

В левой части получили синус суммы:

displaystyle sinleft ( x+frac{pi }{6} right )=1, отсюда displaystyle x+frac{pi }{6}=frac{pi }{2}; x=frac{pi }{3}+2pi n, nin Z.

б) Отметим на единичной окружности отрезок [0; 3pi ]. и найденные серии решений.

Обратите внимание, что в этой задаче отрезок больше, чем полный круг. Как нам поступить? Один из способов – нарисовать рядом две окружности.


Видим, что данному отрезку принадлежат точки: displaystyle x_{1}=frac{pi }{3}; x_{2}=2pi +frac{pi }{3}=frac{7pi }{3}.

Ответ: а) displaystyle frac{pi }{3}+2pi n, nin Z.
б) displaystyle frac{pi }{3}; frac{7pi }{3}.

Другой пример.

10. а) Решите уравнение: cosx+sinx=1.
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Делим обе части на sqrt{2}:

displaystyle frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=frac{1}{sqrt{2}}.

Сделаем теперь для разнообразия в левой части косинус разности:

displaystyle cosfrac{pi }{4}cosx+sinfrac{pi }{4}sinx=frac{1}{sqrt{2}};

displaystyle cosleft ( x-frac{pi }{4} right )=frac{1}{sqrt{2}};

displaystyle x-frac{pi }{4}=pm frac{pi }{4}+2pi n;

displaystyle x_{1}=frac{pi }{2}+2pi n; x_{2}=2pi n, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ] с помощью единичной окружности. Отметим на ней данный отрезок и найденные серии решений.

Видим, что данному отрезку принадлежат  точки 0 и displaystyle frac{pi }{2}.

Ответ: а) displaystyle frac{pi }{2}+2pi n; 2pi n, nin Z.
б) 0; displaystyle frac{pi }{2}.

Покажем, как применяется метод введения дополнительного угла в общем случае.

Рассмотрим  уравнение acosx+bsinx=c.

Делим обе части на sqrt{a^{2}+b^{2}}:

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}cosx+frac{b}{sqrt{a^{2}+b^{2}}}sinx=frac{c}{sqrt{a^{2}+b^{2}}}. (4)

Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе. Легко видеть, что сумма их квадратов равна единице:

displaystyle left ( frac{a}{sqrt{a^{2}+b^{2}}} right )^{2}+left ( frac{b}{sqrt{a^{2}+b^{2}}} right )^{2}=1.

Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}=cosalpha , frac{b}{sqrt{a^{2}+b^{2}}}=sinalpha.

Соотношение (4) тогда приобретает вид:

displaystyle cosalpha cosx+sinalpha sinx=frac{c}{sqrt{a^{2}+b^{2}}}

или

displaystyle cos(x-alpha )=frac{c}{sqrt{a^{2}+b^{2}}}.

Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол alpha .

к оглавлению ▴

Универсальная подстановка

Запомним две важные формулы:

Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной тригонометрической подстановки. 

Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.

11. а) Решите уравнение: 
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Выражаем , используя универсальную тригонометрическую подстановку:

Делаем замену  :

Получаем кубическое уравнение:

Оно имеет единственный корень .

Стало быть, , откуда .

Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ],   с помощью двойного неравенства:

displaystyle 0leq frac{pi }{4}+pi nleq pi , nin Z;

displaystyle -frac{1}{4}leq nleq frac{3}{4}.

Получим, что displaystyle n=0; x=frac{pi }{4}.

Ответ: а) displaystyle frac{pi }{4}+pi n, nin Z.
б) displaystyle frac{pi }{4}.

Универсальная тригонометрическая подстановка может также пригодиться при решении задач по планиметрии из второй части ЕГЭ. Поэтому формулы лучше выучить.

к оглавлению ▴

Учет ОДЗ уравнения

12. а) Рассмотрим уравнение: 
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ].

Решение:

Перепишем уравнение в виде, пригодном для возведения в квадрат:

Тогда наше уравнение равносильно системе:

Решаем уравнение системы:

,

,

Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:

Теперь нужно произвести отбор решений в соответствии с неравенством . Серия  не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .

Ответ в пункте (а):  .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ], с помощью двойного неравенства:

displaystyle frac{-pi }{2}leq -frac{pi }{3}+2pi nleq frac{3pi }{2};

displaystyle -frac{1}{12}leq nleq frac{11}{12}.

Неравенство имеет единственное целое решение n=0.

Тогда displaystyle x=-frac{pi }{3}.

Ответ: а) displaystyle -frac{pi }{3}+2pi n, nin Z.
б) displaystyle -frac{pi }{3}.

Мы рассмотрели основные методы решения тригонометрических уравнений, которые применяются в задаче 12 ЕГЭ.

Где же еще нам могут встретиться тригонометрические уравнения? Конечно, в задачах с параметрами. Или на олимпиадах по математике. Сейчас мы увидим еще несколько полезных приемов решения.

к оглавлению ▴

Метод оценки

В некоторых уравнениях на помощь приходят оценки .

13. Рассмотрим уравнение: 

Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в том случае, когда они равны единице одновременно:

Таким образом, должны одновременно выполняться следующие равенства:

Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:

Умножаем обе части на 90 и сокращаем на π:

;

;

Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.

Искать k, в принципе, уже не нужно. Сразу находим x:

Ответ:

14. Рассмотрим уравнение: 

Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.

Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:

;

Тем самым мы сокращаем работу вдвое, получая лишь одну систему:

Имеем:

Ищем пересечение:

Умножаем на 21 и сокращаем на π:

Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.

Ответ: решений нет.

Это был тренировочный пример. А в задачах ЕГЭ решения есть всегда.

Посмотрите, как применяется метод оценки в задачах с параметрами.

15. Страшное с виду уравнение  также решается методом оценок.

В самом деле, из неравенства  следует, что .

Следовательно, , причём равенство возможно в том и только в том случае, когда

left{begin{matrix}sin^{5}x=sin^{2}x\cos^{8}x=cos^{2}x\end{matrix}right. .

Остаётся решить полученную систему. Это не сложно.

Перенесем в левую часть и вынесем общий множитель за скобки ,  получим:

left{begin{matrix}sin^{2}x(sin^{3}x-1)=0 \cos^{2}x(cos^{6}x-1)=0 \end{matrix}right. .

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл.

Каждое уравнение равносильно совокупности:

left{begin{matrix}left[begin{array}{c}sinx=0\sinx=1\end{array}right. \left[begin{array}{c}cosx=0\cosx=1\cosx=-1\end{array}right. \end{matrix}right. .

Это значит, что синус угла х равен нулю, а его косинус равен 0, 1 или -1.

Или синус угла х равен 1, а косинус этого угла равен 0, 1 или -1.

Такие углы легко найти на тригонометрическом круге. Найденные серии решений запишем в ответ.

Ответ: displaystyle 2pi n; frac{pi }{2}+2pi n; pi +2pi n, nin Z.

к оглавлению ▴

Тригонометрические уравнения повышенной сложности.
Приемы решения

16. Рассмотрим такое уравнение: 

Сделаем замену .

Как выразить  через t? Имеем:

,

откуда . Получаем:

t^{2}-1=t+1;

t^{2}-t-2=0;

t_{1}=-1; t_{2}=2.

left[begin{array}{c}cosx+sinx=-1\cosx+sinx=2\end{array}right. .

Начнем со второго уравнения.

Так как -1leq sinxleq 1 и  -1leq cosxleq 1, то их сумма может быть равна 2, только оба слагаемых равны 1. Но на единичной окружности не существует точки, в которой одновременно синус и косинус равен единице. Значит, второе уравнение корней не имеет.

Решим первое уравнение методом введения дополнительного угла.

Для этого разделим обе части уравнения на sqrt{2} и получим:

displaystyle cosx+sinx=-1Leftrightarrow frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow cosxcdot cosfrac{pi }{4}+sinxcdot sinfrac{pi }{4}=-frac{1}{sqrt{2}}Leftrightarrow cosleft ( x+frac{pi }{4} right )=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow x+frac{pi }{4}=pm frac{3pi }{4}+2pi k, kin Z;

left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi k, kin Z\x=-pi +2pi k, kin Z\end{array}right. .

Ответ: displaystyle frac{pi }{2}+2pi k; -pi +2pi k, kin Z.

17. Помним формулы косинуса и синуса тройного угла:

,

Вот, например, уравнение:

Оно сводится к уравнению относительно :

,

,

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}sinx=0\4sin^{2}x+4sinx-3=0\end{array}right. .

Решим второе уравнение с помощью замены sinx = t.

Получим: displaystyle 4t^{2}+4t-3=0; D=16+48=64; t=-frac{3}{2} или  displaystyle t=frac{1}{2}.

Обратная замена:

left[begin{array}{c}displaystyle sinx=-frac{3}{2}\\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}xin O \\displaystyle x=frac{pi }{6}+2pi n, nin Z\\displaystyle x=frac{5pi }{6}+2pi n, nin Z\end{array}right. .

А решением первого уравнения sinx = 0 являются числа вида x=pi k, kin Z.

Ответ: displaystyle pi k, kin Z; frac{pi }{6}+2pi n; frac{5pi }{6}+2pi n, nin Z.

Интересно, что формулы синуса и косинуса тройного угла также могут пригодиться вам в решении задач по планиметрии из второй части ЕГЭ.

18. Как бороться с суммой четвёртых степеней синуса и косинуса?

Рассмотрим уравнение: 

Выделяем полный квадрат!

;

;

;

;

;

;

19. А как быть с суммой шестых степеней?

Рассмотрим такое уравнение: 

Раскладываем левую часть на множители как сумму кубов: .

Получим:

;

С суммой четвёртых степеней вы уже умеете обращаться.

Мы рассмотрели основные методы решения тригонометрических уравнений. Знать их нужно обязательно, это — необходимая база.

В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом. Именно этому мы и учим на наших занятиях.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Тригонометрические уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Одно из заданий второй части ЕГЭ по математике — решение тригонометрических уравнений с корнем. Основная его сложность в том, что нужно уметь не только упрощать выражения и находить ответ, но и проводить отбор корней. Как это сделать, мы разберем в статье. 

Что такое тригонометрическое уравнение

Тригонометрическое уравнение содержит в себе функцию синуса, косинуса, тангенса или котангенса. Решение без отбора корней происходит по следующим формулам: 

  • sinx = a при |a| ≤ 1 → x = (-1)narcsina + πn;

  • cosx = a при |a| ≤ 1 → x = ± arccosa + 2πn;

  • tgx = b при b — любое число → x = arctgb + πn;

  • сtgx = b при b — любое число → x = arcсtgb + πn.

Многие корни тригонометрических уравнений имеют конечные значения. Например, при sinx = -1 ответ следующий: x = π/2 + 2πn. Полная таблица достаточно большая, поэтому ее мы приводить тут не будем. 

Отбор 

Прежде чем изучить методы отбора корней, решим один несложный пример. 

Задание. 

а) Решите cos2x — 3cosx + 2 = 0

б) Найдите все ответы, принадлежащие отрезку -4; —52

Решение. 

Первое слагаемое распишем по формуле косинуса двойного угла: 

2cos2x — 1 — 3cosx + 2 = 0

Приведем однородные слагаемые: 

2cos2x — 3cosx + 1 = 0

Произведем замену: 

Пусть cosx = t, где |t| ≤ 1

Получаем: 

2t2 — 3t + 1 = 0

Находим дискриминант: 

D = (-3)2 — 4 • 2 • 1 = 9 — 8 = 1

Решаем:

x1=3+122=44=1

x2=3-122=24=12

Возвращаемся к исходной переменной и получаем: 

cosx = 1 → x = 2πn, n ∈ Z

cosx = ½ → x = ± π/3 + 2πk, k ∈ Z

Области допустимых значений нет, поэтому оба значения используем при решении пункта «б».

Теперь проведем отбор корней разными способами.

Арифметический

Для решения нужно перебирать все значения целочисленного параметра и считать корни. Разберем на примере cosx = 1.

Решение. x = 2πn

При n = -1 получаем x = 2 • (-1)π = -2π = -4π/2. Это больше, чем -5π/2, следовательно, ответ: не принадлежит отрезку.

При n = -2 получаем x = 2 • (-2)π = -4π. Число принадлежит отрезку.

При n = -3 получаем x = 2 • (-3)π = -6π. Это меньше, чем -4π, следовательно, значение не принадлежит отрезку. 

Далее то же самое нужно сделать с остальными корнями. Тогда вы получите ответ. 

Алгебраический

Чтобы отобрать корни, нужно решить неравенства относительно известного целочисленного параметра. Рассмотрим на примере первого значения. 

Решение. -4π ≤ 2πn ≤ -5π/2

Делим все части неравенства на «2π»: 

-2 ≤ n ≤ -5/4

Согласно условию, n ∈ Z. Рассматриваем только ответ n = -2. Получаем x = -4π.

Геометрический

Рисуем единичную окружность, наносим на нее числа из области и корни. После определяем, попадают ли они в промежуток. Отсчет промежутка происходит против часовой стрелки!

По рисунку видно, что в указанный промежуток попадает два корня. Первый: -4π. Второй нужно посчитать. Для этого к «-4π» мы прибавляем «π/3». Получаем: -11π/3. 

Функционально-графический

Для решения нарисуем функцию косинуса на области от y = -1 до y = 0,5. Зная значения промежутка, найдем абсциссы точек пересечения на заданном отрезке. 

Как видно по рисунку, у нас получаются те же корни, что и в предыдущем методе. 

Теперь вы знаете основные способы отбора корней в тригонометрических уравнениях. Это поможет вам правильно решать задания из второй части. Дома вам сложно практиковаться, не хватает помощи учителя? Тогда записывайтесь на курсы подготовки к ЕГЭ в центре «Уникум» при Российском университете дружбы народов. Центр предлагает не только полезные уроки с экспертами ЕГЭ, но и доступ к учебному порталу. На нем вы сможете делать домашние задания, решать пробные варианты экзамена и изучать полезные материалы. Форматы курсов разные  — очный и дистанционный. 

Содержание данной статьи носит ознакомительный характер. Для подготовки к сдаче ЕГЭ пользуйтесь дополнительными источниками информации!

Всероссийский конкурс для школьных педагогов на лучшую образовательную статью «Просто о сложном»

Автор Лисицына Елена Федоровна.

учитель математики

МБОУ «Гимназия№11»

г. Бийска Алтайского кр.

Методы отбора корней в тригонометрических уравнениях

или

Ох уж эта тригонометрия!

Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен в течение уже более 10лет. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Необходимо также знать тригонометрические формулы, табличные значения тригонометрических функций для решения еще целого ряда заданий Единого Государственного Экзамена по математике. Постоянно работая в 10-11 классах, я регулярно сталкивалась с определенными проблемами при работе с вышеуказанным разделом тригонометрии: долго не могла установить баланс между доступностью изложения материала и достаточностью обоснований развернутого решения этой категории заданий. В моей практике были случаи, когда вполне успевающие по математике учащиеся начинали испытывать неуверенность и просто страх при решении тригонометрических уравнений с отбором корней, будь то принадлежность корней области допустимых значений переменной или указанному в задании промежутку. В результате целенаправленной многолетней работы в этом направлении у меня сложилась определенная методика работы с данным разделом, которая оказалась довольно успешной, что подтверждает следующая таблица результатов выполнения учащимися задания №13 профильного ЕГЭ по математике с 2015 по 2021 г.г. ( в % от общего количества учеников 11-х классов гимназии, сдающих профильный ЕГЭ по математике)

Баллы за задание №13(С-1)

2015

2016

2017

2018

2019

2020

2021

1 балл

52,5%

55,1%

59,0%

68,8%

76,4%

85.8%

92,2%

2 балла

43,6%

47.2№

51,1%

57,2%

63,3%

77,0%

83,5%

В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.

Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.

Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.

Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрического круга или числовой прямой. Тригонометрический круг более удобен, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого превосходит полный оборот или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.

Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.

Моя практика показала, что чаще всего можно обойтись применением тригонометрического круга при отборе корней , а в случае, если промежуток превышает по длине полный оборот- алгебраическим способом. При этом, безусловно, следует познакомить учащихся и с остальными способами. Таким образом, работа над данным разделом разделилась у меня на следующие этапы:

1)Знакомство с устройством тригонометрического круга и отработка умений находить числа и промежутки на нем в ходе выполнения следующих упражнений:

t1652890172aa.png

t1652890172ab.png

t1652890172ac.png

t1652890172ad.png

t1652890172ae.png

t1652890172af.png

t1652890172ag.png

t1652890172ah.png

t1652890172ai.png

t1652890172aj.png

2)Отработка навыков работы с тригонометрическим кругом при решении простейших тригонометрических уравнений с отбором корней , которая предполагает выполнение большого количества упражнений по типу приведенных ниже:

t1652890172ak.png

t1652890172al.png

t1652890172am.png

t1652890172an.png

3)Отбор корней в одном и том же уравнении разными способами, чтобы учащиеся имели возможность выбора в соответствии со своими предпочтениями, например

Например,
а) Решить уравнение t1652890172ao.gifcos2x=sin(π/2+x).
б) Найдите все корни этого уравнения, принадлежащие промежутку [–7π/2; –2π].

Решим пункт а)Воспользуемся формулой приведения для синуса sin(π/2+x) = cos(x);t1652890172ao.gifcos2x = cosx ;
t1652890172ao.gifcos2x cosx = 0; cosx(t1652890172ao.gifcosx – 1) = 0, т.е.

cosx = 0

t1652890172ao.gifcosx – 1 = 0

cosx = 1/t1652890172ao.gif ; cosx = t1652890172ao.gif/2

= arccos(t1652890172ao.gif/2) + 2πk, k Z

= –arccos(t1652890172ao.gif/2) + 2πm, m Z

= π/4 + 2πk, k Z

x = —π/4 + 2πm, m Z

Решим пункт б).

I . Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [–7π/2; –2π], находим целые значения для n.
–7π/2 ≤ π/2 + πn ≤ –2π;

Сразу делим все на π или умножаем на 1/ π
–7/2 ≤ 1/2 + n ≤ –2;
–7/2 – 1/2 ≤ n ≤ –2 – 1/2 ;
–4 ≤ n ≤ –5/2.
Целые n в этом промежутке это: n=–4 n= –3.

Значит, корни, принадлежащие этому промежутку, будут следующие:

х= π/2 + π(–4) = –7π/2; х=π/2 + π(–3) = –5π/2.
Аналогично решаем еще два неравенства:
–7π/2 ≤ π/4 + 2πk ≤ –2π;
–15/8 ≤ k ≤ –9/8.
Получили, что целых k в этом промежутке нет.
–7π/2 ≤ –π/4 + 2πm ≤ –2π;
–13/8 ≤ m ≤ –7/8.
Получили одно целое n в этом промежутке, m =–1. Значит, отобранный корень на этом промежутке имеет вид: х= –π/4 + 2π·(–1) = –9π/4.
Ответ: –7π/2, –5π/2, –9π/4.

II. Отбор корней с помощью тригонометрической окружности.

Чтобы использовать этот способ надо понимать, как работать с окружностью. Так как функции синус, косинус, тангенс и котангенс периодичны, то окружность, можно обходить бесконечное число раз.

«Обойдем» окружность один раз против часовой стрелки (положительное направление, т.е. значения будут положительные)

t1652890172ap.png

«Обойдем» окружность два раза против часовой стрелки (положительное направление т.е. значения будут положительные)

t1652890172aq.png

«Обойдем» 1 раз по часовой стрелки (отрицательное направление, т.е. значения будут отрицательные)

t1652890172ar.png

Вернемся к вопросу об отборе корней на промежутке

[–7π/2; –2π].
Чтобы попасть к числам –7π/2 и –2π надо «обойти» окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

t1652890172as.png
Рассмотри x = π/2 + πn. Какой приблизительно должен быть n, чтобы значение x было где–то в этом промежутке? Предположим n= –2, получаем х=π/2 – 2π = –3π/2, очевидно, это не входит в наш промежуток. Значит, берем меньше n=–3, то х= π/2 – 3π = –5π/2, это подходит. Попробуем еще n=–4, то х=π/2 – 4π = –7π/2, также подходит.
Рассуждая аналогично для х=π/4 + 2πk, k Z и х=–π/4 + 2πm, m Z находим еще один корень x=–9π/4.

После того, как отбор корней произвели разными способами, прошу проанализировать преимущества каждого из них, получились, в частности такие итоги: первый способ (с помощью неравенств) гораздо надежнее и намного проще для понимания, но нужно уметь решать простейшие неравенства. Если действительно серьезно разобраться с тригонометрической окружностью, то отбор корней по второму методу будет гораздо быстрее. Плюс экономия времени на экзамене.

4)Проведение смотра знаний по данной теме в форме математической игры «Своя игра»

(идея заимствована здесь https://kopilkaurokov.ru/matematika/uroki/okh-uzh-eta-trighonomietriia )

5)Рассмотрение реальных работ участников ЕГЭ прошлых лет, оцененных экспертами, с целью нахождения ошибок при выполнении отбора корней в тригонометрических уравнениях, например оценка эксперта-1 балл. Почему не засчитано решение п.б)?

t1652890172at.png

Вывод: отбор корней нельзя назвать обоснованным, так как перебор остановлен на корне принадлежащем отрезку.

t1652890172au.png

Вывод: при отборе корней отсутствует решение и ошибочно указано число, которое не является корнем тригонометрического уравнения.

В заключение отмечу, что поскольку задание № 13 (или №12 в модели профильного ЕГЭ 2022 года) является самым простым из заданий с развернутым решением, то целенаправленная работа над ним дает возможность большему числу выпускников успешно справиться с ним и получить высокий результат на экзамене.

Список используемых ресурсов:

1. Виленкин Н. Я. Алгебра и математический анализ 10 класс. Учебник для углубленного изучения математики в общеобразовательных учреждениях, Издательство Мнемозина, 13-е изд. стереотипное, 2006. — 336с.

2. Гельфанд И.М., Львовский С.М., Тоом А.Л. Тригонометрия, М. : МЦНМО, 2003.-7-16 с.

3. Захарова, И. Г. Информационные технологии в образовании: учебное пособие для студ. пед. учеб. заведений/ И. Г. Захарова,– М.: Издательский центр «Академия», 2003. – 192 с.

4. Звавич В.И., Пигарев Б.П. Тригонометрические уравнения (решение уравнений + варианты самостоятельных работ)//Математика в школе.№3, С.18-27.

5. А.Н. Колмагорова Алгебра и начала анализа. Учебник для 10-11 классов общеобразовательных учреждений, 17-е изд. – М. : Просвещение, 2008. — 384 с.

6. Королев С.В. Тригонометрия на экзамене по математике, изд. Экзамен, 2006. – 254 с.

7. Марасанов А.Н. О методологическом подходе в обучении тригонометрии/ Н.И. Попов, А.Н. Марасанов// Знание и понимание. Умение. -2008. — №4. — 139-141 с.

8. Марасанов А.Н. Тригонометрия: учебное пособие, 2-е изд., испр и доп. (Н.И. Попов, А.Н. Марасанов.-Йошкар-Ола; Мар. гос. Ун-т, 2009.-114с.)

9. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Тригонометрия. 10 класс, М. : Просвещение, 2008. – 61 с.

10. Мордкович А.Г. Алгебра и начала анализа.10-11 классы. Часть 1.Учебник для учащихся общеобразовательных учреждений(базовый уровень). – 10-е изд., стер. – М. : Мнемозина, 2009. – 399 с.:ил.

11. Мордкович А.Г. Алгебра и начала анализа.10-11 классы. Часть 2. Задачник для учащихся общеобразовательных учреждений(базовый уровень), – 10-е изд., стер. – М. : Мнемозина, 2009. – 399 с.:ил. 69

12. Мирошин В. Отбор корней в тригонометрических уравнениях.//Математика. Приложение к газете «Первое сентября» №17, 2006г.

13. Просветов Г.И. Тригонометрия. Задачи и решения, Альфа-Пресс, 2010. – 72 с.

14. Решетников Н.Н. Тригонометрия в школе: М. Педагогический университет «Первое сентября», 2006, лк 1.

15. Смоляков А.Н., Севрюков П.Ф. Приемы решения тригонометрических уравнений//Математика в школе. 2004. №1. С.24-26.

16. Шабашова О.В. Приемы отбора корней в тригонометрических уравнениях//Математика в школе. 2004. №1. С.20-24.

17. https://ppt-online.org/491236

18. Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2022 года. МАТЕМАТИКА. Федеральный институт педагогических измерений, 2022

19. https://kopilkaurokov.ru/matematika/uroki/okh-uzh-eta-trighonomietriia

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку на андроид когда синтаксическая ошибка
  • Как найти человека зная его айпи
  • Как грамотно составить жалобу на управляющую компанию в жилищную инспекцию
  • Как составить пояснительную записку в налоговую по требованию образец
  • Как найти массу одного атома элемента