Как найти все простые числа меньше 100

Калькулятор «Список простых чисел»

Какие простые числа между 1 и 100?

Ответ: Всего 25 простых чисел с 1 по 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Поделитесь текущим расчетом

https://calculat.io/ru/number/prime/1—100Копировать

<a href=»https://calculat.io/ru/number/prime/1—100″>Простые числа до 100 — Calculatio</a>Копировать

Простые числа до 100. Простые числа меньше чем 100.

О калькуляторе «Список простых чисел»

Данный калькулятор покажет список простых чисел между заданными числами. Например, он может помочь узнать какие простые числа между 1 и 100? Выберите начальное число (например ‘1’) и конечное число (например ‘100’). После чего нажмите кнопку ‘Посчитать’.

Простые числа - это положительные целые числа, имеющие только два делителя - 1 и само себя.

Калькулятор «Список простых чисел»

Алгоритмы поиска простых чисел

Время на прочтение
6 мин

Количество просмотров 134K

«Самое большое простое число 232582657-1. И я с гордостью утверждаю, что запомнил все его цифры… в двоичной форме».
Карл Померанс

Натуральное число называется простым, если оно имеет только два различных делителя: единицу и само себя. Задача поиска простых чисел не дает покоя математикам уже очень давно. Долгое время прямого практического применения эта проблема не имела, но все изменилось с появлением криптографии с открытым ключом. В этой заметке рассматривается несколько способов поиска простых чисел, как представляющих исключительно академический интерес, так и применяемых сегодня в криптографии.

Решето Эратосфена

Решето Эратосфена — алгоритм, предложенный древнегреческим математиком Эратосфеном. Этот метод позволяет найти все простые числа меньше заданного числа n. Суть метода заключается в следующем. Возьмем набор чисел от 2 до n. Вычеркнем из набора (отсеим) все числа делящиеся на 2, кроме 2. Перейдем к следующему «не отсеянному» числу — 3, снова вычеркиваем все что делится на 3. Переходим к следующему оставшемуся числу — 5 и так далее до тех пор пока мы не дойдем до n. После выполнения вышеописанных действий, в изначальном списке останутся только простые числа.

Алгоритм можно несколько оптимизировать. Так как один из делителей составного числа n обязательно

$leqslant sqrt{n}$, алгоритм можно останавливать, после вычеркивания чисел делящихся на

$sqrt{n}$.

Иллюстрация работы алгоритма из Википедии:

image

Сложность алгоритма составляет

$O(n loglog n)$, при этом, для хранения информации о том, какие числа были вычеркнуты требуется

$O(n)$ памяти.

Существует ряд оптимизаций, позволяющих снизить эти показатели. Прием под названием wheel factorization состоит в том, чтобы включать в изначальный список только числа взаимно простые с несколькими первыми простыми числами (например меньше 30). В теории предлагается брать первые простые примерно до

$sqrt{log n}$. Это позволяет снизить сложность алгоритма в

$loglog n$ раз. Помимо этого для уменьшения потребляемой памяти используется так называемое сегментирование. Изначальный набор чисел делится на сегменты размером

$leqslant sqrt{n}$ и для каждого сегмента решето Эратосфена применяется по отдельности. Потребление памяти снижается до

$O(sqrt{n})$.

Решето Аткина

Более совершенный алгоритм отсеивания составных чисел был предложен Аткином и Берштайном и получил название Решето Аткина. Этот способ основан на следующих трех свойствах простых чисел.

Свойство 1

Если n — положительное число, не кратное квадрату простого числа и такое, что

$n equiv 1(mod 4)$. То n — простое, тогда и только тогда, когда число корней уравнения

$4x^2+y^2=n$ нечетно.

Свойство 2

Если n — положительное число, не кратное квадрату простого числа и такое, что

$n equiv 1(mod 6)$. То n — простое, тогда и только тогда, когда число корней уравнения

$3x^2+y^2=n$ нечетно.

Свойство 3

Если n — положительное число, не кратное квадрату простого числа и такое, что

$n equiv 11(mod 12)$. То n — простое, тогда и только тогда, когда число корней уравнения

$3x^2-y^2=n$ нечетно.

Доказательства этих свойств приводятся в этой статье.

На начальном этапе алгоритма решето Аткина представляет собой массив A размером n, заполненный нулями. Для определения простых чисел перебираются все

$x, y < sqrt n$. Для каждой такой пары вычисляется

$4x^2+y^2$,

$3x^2+y^2$,

$3x^2-y^2$ и значение элементов массива

$A[4x^2+y^2]$,

$A[3x^2+y^2]$,

$A[3x^2-y^2]$ увеличивается на единицу. В конце работы алгоритма индексы всех элементов массива, которые имеют нечетные значения либо простые числа, либо квадраты простого числа. На последнем шаге алгоритма производится вычеркивание квадратов оставшихся в наборе чисел.

Из описания алгоритма следует, что вычислительная сложность решета Аткина и потребление памяти составляют

$O(n)$. При использовании wheel factorization и сегментирования оценка сложности алгоритма снижается до

$O(n / loglog n)$, а потребление памяти до

$O(sqrt{n})$.

Числа Мерсенна и тест Люка-Лемера

Конечно при таких показателях сложности, даже оптимизированное решето Аткина невозможно использовать для поиска по-настоящему больших простых чисел. К счастью, существуют быстрые тесты, позволяющие проверить является ли заданное число простым. В отличие от алгоритмов решета, такие тесты не предназначены для поиска всех простых чисел, они лишь способны сказать с некоторой вероятностью, является ли определенное число простым.

Один из таких методов проверки — тест Люка-Лемера. Это детерминированный и безусловный тест простоты. Это означает, что прохождение теста гарантирует простоту числа. К сожалению, тест предназначен только для чисел особого вида

$2^p-1$, где p — натуральное число. Такие числа называются числами Мерсенна.

Тест Люка-Лемера утверждает, что число Мерсенна

$M_p=2^p-1$ простое тогда и только тогда, когда p — простое и

$M_p$ делит нацело

$(p-1)$-й член последовательности

$S_k$ задаваемой рекуррентно:

$S_1=4, S_k=S_{k-1}^2-2$ для

$k > 1$.

Для числа

$M_p$ длиной p бит вычислительная сложность алгоритма составляет

${displaystyle O(p^{3})}$.

Благодаря простоте и детерминированности теста, самые большие известные простые числа — числа Мерсенна. Самое большое известное простое число на сегодня —

$2^{82,589,933}-1$, его десятичная запись состоит из 24,862,048 цифр. Полюбоваться на эту красоту можно здесь.

Теорема Ферма и тест Миллера-Рабина

Простых чисел Мерсенна известно не очень много, поэтому для криптографии с открытым ключом необходим другой способ поиска простых чисел. Одним из таким способов является тест простоты Ферма. Он основан на малой теореме Ферма, которая гласит, что если n — простое число, то для любого a, которое не делится на n, выполняется равенство

$a^{n-1}equiv 1{pmod {n}}$. Доказательство теоремы можно найти на Википедии.

Тест простоты Ферма — вероятностный тест, который заключается в переборе нескольких значений a, если хотя бы для одного из них выполняется неравенство

$a^{n-1} notequiv 1 pmod n$, то число n — составное. В противном случае, n — вероятно простое. Чем больше значений a использовано в тесте, тем выше вероятность того, что n — простое.

К сожалению, существуют такие составные числа n, для которых сравнение

$a^{n-1}equiv 1{pmod {n}}$ выполняется для всех a взаимно простых с n. Такие числа называются числам Кармайкла. Составные числа, которые успешно проходят тест Ферма, называются псевдопростыми Ферма. Количество псевдопростых Ферма бесконечно, поэтому тест Ферма — не самый надежный способ определения простых чисел.

Тест Миллера-Рабина

Более надежных результатов можно добиться комбинируя малую теорему Ферма и тот факт, что для простого числа p не существует других корней уравнения

$x^2 equiv 1 pmod p$, кроме 1 и -1. Тест Миллера-Рабина перебирает несколько значений a и проверяет выполнение следующих условий.

Пусть p — простое число и

$p-1=2^sd$, тогда для любого a справедливо хотя бы одно из условий:

  1. $a^{d}equiv pm1{pmod {p}}$
  2. Существует целое число r < s такое, что $a^{2^{r}d}equiv -1{pmod {p}}$

По теореме Ферма

$a^{p-1}equiv1pmod p$, а так как

$p-1=2^sd$ из свойства о корнях уравнения

$x^2 equiv 1 pmod p$ следует что если мы найдем такое a, для которого одно из условий не выполняется, значит p — составное число. Если одно из условий выполняется, число a называют свидетелем простоты числа n по Миллеру, а само число n — вероятно простым.

Чем больше свидетелей простоты найдено, тем выше вероятность того, что n — простое. Согласно теореме Рабина вероятность того, что случайно выбранное число a окажется свидетелем простоты составного числа составляет приблизительно

$1/4$.

Следовательно, если проверить k случайных чисел a, то вероятность принять составное число за простое

$approx(1/4)^k$.

Сложность работы алгоритма

$O(klog^3p)$, где k — количество проверок.

Благодаря быстроте и высокой точности тест Миллера-Рабина широко используется при поиске простых чисел. Многие современные криптографические библиотеки при проверке больших чисел на простоту используют только этот тест и, как показал Мартин Альбрехт в своей работе , этого не всегда оказывается достаточно.

Он смог сгенерировать такие составные числа, которые успершно прошли тест на простоту в библиотеках OpenSSL, CryptLib, JavaScript Big Number и многих других.

Тест Люка и Тест Baillie–PSW

Чтобы избежать уязвимости, связанные с ситуациями, когда сгенерированное злоумышленником составное число, выдается за простое, Мартин Альбрехт предлагает использовать тест Baillie–PSW. Несмотря на то, что тест Baillie–PSW является вероятностным, на сегодняшний день не найдено ни одно составное число, которое успешно проходит этот тест. За нахождение подобного числа в 1980 году авторы алгоритма пообещали вознаграждение в размере $30. Приз пока так и не был востребован.

Ряд исследователей проверили все числа до

$2^{64}$ и не обнаружили ни одного составного числа, прошедшего тест Baillie–PSW. Поэтому, для чисел меньше

$2^{64}$ тест считается детерминированным.

Суть теста сводится к последовательной проверке числа на простоу двумя различными методами. Один из этих методов уже описанный выше тест Миллера-Рабина. Второй — тест Люка на сильную псевдопростоту.

Тест Люка на сильную псевдопростоту

Последовательности Люка — пары рекуррентных последовательностей

${U_{n}(P,Q)}, {V_{n}(P,Q)}$, описываемые выражениями:

${displaystyle U_{0}(P,Q)=0,quad U_{1}(P,Q)=1,quad U_{n+2}(P,Q)=Pcdot U_{n+1}(P,Q)-Qcdot U_{n}(P,Q),,ngeq 0}$

${displaystyle V_{0}(P,Q)=2,quad V_{1}(P,Q)=P,quad V_{n+2}(P,Q)=Pcdot V_{n+1}(P,Q)-Qcdot V_{n}(P,Q),,ngeq 0}$

Пусть

$U_n(P,Q)$ и

$V_n(P,Q)$ — последовательности Люка, где целые числа P и Q удовлетворяют условию

${displaystyle D=P^{2}-4Qneq 0}$

Вычислим символ Якоби:

$left({frac {D}{p}}right)=varepsilon$.

Найдем такие r, s для которых выполняется равенство

$n-ε=2^rs$

Для простого числа n выполняется одно из следующих условий:

  1. n делит $U_s$
  2. n делит $V_{2^js}$ для некоторого j < r

В противном случае n — составное.

Вероятность того, что составное число n успешно пройдет тест Люка для заданной пары параметров P, Q не превышает 4/15. Следовательно, после применения теста k раз, эта вероятность составляет

$(4/15)^k$.

Тесты Миллера-Рабина и Люка производят не пересекающиеся множества псевдопростых чисел, соответственно если число p прошло оба теста, оно простое. Именно на этом свойстве основывается тест Baillie–PSW.

Заключение

В зависимости от поставленной задачи, могут использоваться различные методы поиска простых чисел. К примеру, при поиске больших простых чисел Мерсенна, сперва, при помощи решета Эратосфена или Аткина определяется список простых чисел до некоторой границы, предположим, до

$10^8$. Затем для каждого числа p из списка, с помощью теста Люка-Лемера, на простоту проверяется

$M_p=2^p-1$.

Чтобы сгенерировать большое простое число в криптографических целях, выбирается случайное число a и проверяется тестом Миллера-Рабина или более надежным Baillie–PSW. Согласно теореме о распределении простых чисел, у случайно выбранного числа от 1 до n шанс оказаться простым примерно равен

${frac {1}{ln n}}$. Следовательно, чтобы найти простое число размером 1024 бита, достаточно перебрать около тысячи вариантов.

P.S. Исходники

Реализацию всех описанных алгоритмов на Go можно посмотреть на GitHub.

Решето Эратосфена — очень эффективный алгоритм, который можно использовать в большинстве соревнований по кодированию с участием простых чисел в диапазоне заданного числа. n.

Решение должно возвращать все простые числа, меньшие или равные заданному числу. n. Например, простые числа меньше n = 100 находятся [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97].

Потренируйтесь в этой проблеме

Алгоритм начинается с предположения, что все числа в диапазоне 2 к n являются простыми. Он проходит по списку, начиная с 2 к √n, и для каждого встречающегося числа он вычеркивает все его кратные в списке. Этот процесс продолжается для всех чисел, которые не вычеркнуты. Следовательно, мы получаем окончательный список всех простых чисел в диапазоне 2 к n.

Обратите внимание, что мы идем только до тех пор, пока √n потому что каждое не простое число имеет корень меньше или равный √n. Это потому, что не простое число может быть выражено как a × b, куда a меньше или равно √n а также b Больше или равно √n.

 
Ниже приведена программа на C++, Java и Python, реализующая решето Эратосфена:

C++

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

#include <iostream>

#include <cmath>

using namespace std;

// Функция для вывода простых чисел в диапазоне заданного числа `n`

void sieveOfEratosthenes(int n)

{

    int a[n + 1];

    // инициализировать все числа как простые

    for (int i = 0; i <= n; i++) {

        a[i] = 1;

    }

    for (int i = 2; i <= sqrt(n); i++)

    {

        if (a[i] == 1)          // проверяет, является ли `i` простым числом

        {

            for (int j = 2; i * j <= n; j++) {

                a[i * j] = 0;   // числа, кратные `i`, не являются простыми

            }

        }

    }

    for (int i = 2; i <= n; i++)

    {

        if (a[i] == 1) {

            cout << i << » «;   // печатает простые числа

        }

    }

}

int main()

{

    // вывести простые числа меньше 100

    sieveOfEratosthenes(100);

    return 0;

}

Скачать  Выполнить код

результат:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

class Main

{

    // Функция для вывода простых чисел в диапазоне заданного числа `n`

    public static void sieveOfEratosthenes(int n)

    {

        int[] a = new int[n + 1];

        for (int i = 0; i <= n; i++) {      // инициализировать все числа как простые

            a[i] = 1;

        }

        for (int i = 2; i <= Math.sqrt(n); i++)

        {

            if (a[i] == 1)                  // проверяет, является ли `i` простым числом

            {

                for (int j = 2; i * j <= n; j++) {

                    a[i * j] = 0;           // числа, кратные `i`, не являются простыми

                }

            }

        }

        for (int i = 2; i <= n; i++)

        {

            if (a[i] == 1) {

                System.out.print(i + » «);  // печатает простые числа

            }

        }

    }

    public static void main(String[] args)

    {

        // вывести простые числа меньше 100

        sieveOfEratosthenes(100);

    }

}

Скачать  Выполнить код

результат:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

from math import sqrt

# Функция для печати простых чисел в диапазоне заданного числа `n`

def sieveOfEratosthenes(n):

    a = [0] * (n + 1)

    for i in range(n + 1):      # инициализирует все числа как простые

        a[i] = 1

    for i in range(2, int(sqrt(n)) + 1):

        if a[i] == 1:           # проверяет, является ли `i` простым

            j = 2

            while i * j <= n:

                a[i * j] = 0    # кратные `i` не являются простыми

                j = j + 1

    for i in range(2, n + 1):

        if a[i] == 1:

            print(i, end=‘ ‘)   # печатает простые числа

if __name__ == ‘__main__’:

    # печатает количество штрихов менее 100

    sieveOfEratosthenes(100)

Скачать  Выполнить код

результат:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Временная сложность этого алгоритма O(n.log(log(n))).

 
Автор: Хариш Анджанея

Найдите все простые числа , меньше 100.

Вы открыли страницу вопроса Найдите все простые числа , меньше 100?. Он относится к категории
Математика. Уровень сложности вопроса – для учащихся 10 — 11 классов.
Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие
ответы по интересующей теме. Чтобы получить наиболее развернутый ответ,
можно просмотреть другие, похожие вопросы в категории Математика,
воспользовавшись поисковой системой, или ознакомиться с ответами других
пользователей. Для расширения границ поиска создайте новый вопрос, используя
ключевые слова. Введите его в строку, нажав кнопку вверху.

Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23… Единица не является ни простым числом, ни составным.

Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).

Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).

Все натуральные числа считаются либо простыми, либо составными (кроме 1).

Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4… (нет ни дробей, ни 0, ни чисел ниже 0).

Зачастую множество простых чисел в математике обозначается буквой P.

2 3 5 7 11 13 17 19 23
29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97 101 103 107 109
113 127 131 137 139 149

151

157

163

167

173

179

181

191

193

197

199

211

223

227

229

233

239

241

251

257

263

269

271

277

281

283

293

307

311

313

317

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

547

557

563

569

571

577

587

593

599

601

607

613

617

619

631

641

643

647

653

659

661

673

677

683

691

701

709

719

727

733

739

743

751

757

761

769

773

787

797

809

811

821

823

827

829

839

853

857

859

863

877

881

883

887

907

911

919

929

937

941

947

953

967

971

977

983

991 997

Как определить, является ли число простым?

Очень простой способ понять, является ли число простым — нужно его разделить на простые числа и посмотреть, получится ли целое число. Сначала нужно попробовать его разделить на 2 и/или на 3. Если получилось целое число, то оно не является простым.

Если после первого деления не получилось целого числа, значит нужно попробовать разделить его на другие простые числа: 5, 7, 11 и т. д. (на 9 делить не нужно, т. к. это не простое число и оно делится на 3, а на него вы уже делили).

Более структурированный метод — это решето Эратосфена.

Решето Эратосфена

Это алгоритм поиска простых чисел. Для этого нужно:

  1. Записать все числа от 1 до n (например, записываются все числа от 1 до 100, если нужны все простые числа между ними);
  2. Вычеркнуть все числа, которые делятся на 2 (кроме 2);
  3. Вычеркнуть все числа, которые делятся на 3 (кроме 3);
  4. И так далее по порядку со всеми невычеркнутыми числами до числа n (после 3 это 5, 7, 11, 13, 17 и т. д.).

Те числа, которые не будут вычеркнуты в конце этого процесса, являются простыми.

Взаимно простые числа

Это натуральные числа, у которых 1 — это единственный общий делитель. Например:

  • 14 (это 2 х 7) и 15 (это 3 х 5), единственный общий делитель — 1; если числа следуют одно за другим (как 13 и 12 либо 10 и 11), то они всегда будут взаимно простыми;
  • 7 (это 7 х 1) и 11 (это 11 х 1) — это два простых числа, а значит единственный общий делитель всегда будет только единица, простые числа всегда являются взаимно простыми;
  • или 30 и 48 не являются взаимно простыми, т. к. 6 х 5 = 30 и 6 х 8 = 48 и 6 — это наибольший общий делитель, т. е.: НОД (30; 48) = 6.

Число Мерсенна

Простое число Мерсенна — это простое число вида:

число Мерсенна формула, 2 в степени p минус 1

До 1536 г. многие считали, что числа такого вида были все простыми, пока математик Ульрих Ригер не доказал, что 2 (^11) – 1 = 2047 было составным (23 x 89). Затем появились и другие составные числа (p = 23, 29, 31, 37 и др.).

Например, для p = 23 это 2 (^23) – 1 = 8 388 607; И 47 x 178481 = 8 388 607, значит оно составное.

Почему 1 не является простым числом?

Российские математики Боревич и Шафаревич в своей знаменитой работе «Теория чисел» (1964 г.) определяют простое число как p (элемент кольца D), не равен ни 0, ни 1. И p можно называть простым числом, если его невозможно разложить на множители ab (т.е. p = ab), притом ни один из них не является единицей в D. Так как 1 невозможно представить ни в одном, ни в другом виде, 1 не считается ни простым числом, ни составным.

Почему 4 не является простым числом?

Простое число — это натуральное число, больше единицы, которое делится без остатка на 1 и на само себя. Т. к. 4 можно разделить на 1, на 2 и на 4, из-за деления на 2 оно не является простым.

Самое большое простое число

21 декабря 2018 года Great Internet Mersenne Prime Search (проект, целью которого является открытие новых простых чисел Мерсенна) обнаружил новое самое большое известное простое число:

(2 в степени 82,589,933) минус 1

Новое простое число также именуется M82589933 и в нём более чем на полтора миллиона цифр больше, чем в предыдущем (найденном годом ранее).

Узнайте про Рациональные числа и Натуральные числа.

Понравилась статья? Поделить с друзьями:
  • Как вк найти друзей которые тебя удалили
  • Как найти безвести пропавших 1941 1945 годы
  • Адресная строка сайта как составить
  • Как найти мировой экспорт
  • Как найти метро парк победы