Как найти все решения слу

Содержание:

  • СЛАУ: основные понятия, виды
  • Критерий совместности системы
  • Квадратные СЛАУ. Матричный метод решения
  • Метод / Теорема Крамера
  • Метод Гаусса. Метод последовательного исключения неизвестных
  • Однородные СЛАУ. Фундаментальная система решений

Методы решения систем линейных уравнений широко используются в задачах математики, экономики, физики, химии и других науках.
На практике, они позволяют не делать лишних действий, а записать систему уравнений в более компактной форме и сократить время
выполнения задач. Поэтому, будущим специалистам очень важно понять основные методы решения и научиться выбирать оптимальный.

Перед изучением примеров решения задач советуем изучить теоретический материал по СЛАУ, прочитать все теоремы и методы
решения. Список тем находится в правом меню.

Примеры по темам:

  • СЛАУ: основные понятия, виды
  • Критерий совместности системы. Теорема Кронекера-Капелли
  • Квадратные СЛАУ. Матричный метод решения
  • Решение методом Крамера
  • Решение методом Гаусса
  • Однородные СЛАУ. Фундаментальная система решений

СЛАУ: основные понятия, виды

Теоретический материал по теме — СЛАУ: основные понятия, виды.

Пример

Задание. Проверить, является ли набор ${0,3}$
решением системы $left{begin{array}{l}
3 x-2 y=-6 \
5 x+y=3
end{array}right.$

Решение. Подставляем в каждое из уравнений системы
$x=0$ и
$y=3$ :

$$3 x-2 y=-6 Rightarrow 3 cdot 0-2 cdot 3=-6 Rightarrow-6=-6$$
$$5 x+y=3 Rightarrow 5 cdot 0+3=3 Rightarrow 3=3$$

Так как в результате подстановки получили верные равенства, то делаем вывод, что заданный набор является
решением указанной СЛАУ.

Ответ. Набор ${0,3}$ является решением
системы $left{begin{array}{l}
3 x-2 y=-6 \
5 x+y=3
end{array}right.$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Систему $left{begin{array}{l}
x-y+z-4 t=0 \
5 x+y+t=-11
end{array}right.$
записать в матричной форме и выписать все матрицы, которые ей соответствуют.

Решение. Заданную СЛАУ записываем в матричной форме
$A cdot X=B$ , где матрица системы:

$$A=left(begin{array}{rrrr}
1 & -1 & 1 & -4 \
5 & 1 & 0 & 1
end{array}right)$$

вектор-столбец неизвестных:

$$A=left(begin{array}{rrrr}
1 & -1 & 1 & -4 \
5 & 1 & 0 & 1
end{array}right)$$

вектор-столбец свободных коэффициентов:

$$B=left(begin{array}{c}
0 \
-11
end{array}right)$$

то есть, запись СЛАУ в матричной форме:

$$left(begin{array}{rrrr}
1 & -1 & 1 & -4 \
5 & 1 & 0 & 1
end{array}right)left(begin{array}{l}
x \
y \
z \
t
end{array}right)=left(begin{array}{r}
0 \
-11
end{array}right)$$

Пример

Задание. Записать матрицу и расширенную матрицу системы
$left{begin{array}{l}
2 x_{1}+x_{2}-x_{3}=4 \
x_{1}-x_{2}=5
end{array}right.$

Решение. Матрица системы $A=left(begin{array}{rrr}
2 & 1 & -1 \
1 & -1 & 0
end{array}right)$ ,
тогда расширенная матрица $tilde{A}=(A mid B)=left(begin{array}{rrr|r}
2 & 1 & -1 & 4 \
1 & -1 & 0 & 5
end{array}right)$

Критерий совместности системы

Теоретический материал по теме — критерий совместности системы, теорема Кронекера-Капелли.

Пример

Задание. При каких значениях $lambda$
система $left{begin{array}{l}
2 x_{1}-x_{2}+x_{3}+x_{4}=1 \
x_{1}+2 x_{2}-x_{3}+x_{4}=2 \
x_{1}+7 x_{2}-4 x_{3}+2 x_{4}=lambda
end{array}right.$ будет совместной?

Решение. Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к
ступенчатому виду. Поэтому записываем расширенную матрицу системы
$tilde{A}$ (слева от вертикальной черты находится
матрица системы $A$ ):

$$tilde{A}=left(begin{array}{rrrr|r}
2 & -1 & 1 & 1 & 1 \
1 & 2 & -1 & 1 & 2 \
1 & 7 & -4 & 2 & lambda
end{array}right)$$

и с помощью элементарных преобразований приводим ее к ступенчатому виду. Для этого вначале от второй строки
отнимаем две вторых строки, а от третьей вторую, в результате получаем:

$$tilde{A} simleft(begin{array}{rrrr|r}
0 & -5 & 3 & -1 & -3 \
1 & 2 & -1 & 1 & 2 \
0 & 5 & -3 & 1 & lambda-2
end{array}right)_{+I} sim$$

Третью строку складываем с первой:

$$tilde{A} simleft(begin{array}{rrrr|r}
0 & -5 & 3 & -1 & -3 \
1 & 2 & -1 & 1 & 2 \
0 & 0 & 0 & 0 & lambda-5
end{array}right)$$

и меняем первую и вторую строки матрицы местами

$$tilde{A} simleft(begin{array}{rrrr|r}
1 & 2 & -1 & 1 & 2 \
0 & -5 & 3 & -1 & -3 \
0 & 0 & 0 & 0 & lambda-5
end{array}right)$$

Матрица приведена к ступенчатому виду. Получаем, что $rangA=2$
, $operatorname{rang} tilde{A}=left{begin{array}{l}
2, lambda=5 \
3, lambda neq 5
end{array}right.$ . Таким образом,
при $lambda=5$ система совместна, а при
$lambda neq 5$ — несовместна.

Квадратные СЛАУ. Матричный метод решения

Теоретический материал по теме — матричный метод решения.

Пример

Задание. Найти решение СЛАУ $left{begin{array}{l}5 x_{1}+2 x_{2}=7 \ 2 x_{1}+x_{2}=9end{array}right.$
матричным методом.

Решение. Выпишем матрицу системы $left{begin{array}{l}
5 x_{1}+2 x_{2}=7 \
2 x_{1}+x_{2}=9
end{array}right.$ и
матрицу правых частей $B=left(begin{array}{l}
7 \
9
end{array}right)$ . Найдем обратную
матрицу для матрицы системы. Для матрицы второго порядка обратную можно находить по следующему алгоритму: 1)
матрица должна быть невырождена, то есть ее определитель не должен равняться нулю: $|A|=1$ ; 2) элементы, стоящие на главной диагонали меняем местами,
а у элементов побочной диагонали меняем знак на противоположный и делим полученные элементы на определитель
матрицы. Итак, получаем, что

$$A^{-1}=left(begin{array}{rr}
1 & -2 \
-2 & 5
end{array}right)$$

Тогда

$$X=left(begin{array}{l}
x_{1} \
x_{2}
end{array}right)=A^{-1} B=left(begin{array}{rr}
1 & -2 \
-2 & 5
end{array}right) cdotleft(begin{array}{l}
7 \
9
end{array}right)=$$
$$=left(begin{array}{r}
-11 \
31
end{array}right) Rightarrowleft(begin{array}{l}
x_{1} \
x_{2}
end{array}right)=left(begin{array}{r}
-11 \
31
end{array}right)$$

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что
$x_{1}=-11$, $x_{2}=31$

Ответ. $x_{1}=-11$, $x_{2}=31$

Пример

Задание. Решить с помощью обратной матрицы систему $left{begin{array}{l}
2 x_{1}+x_{2}+x_{3}=2 \
x_{1}-x_{2}=-2 \
3 x_{1}-x_{2}+2 x_{3}=2
end{array}right.$

Решение. Запишем данную систему в матричной форме:

$AX=B$,

где $A=left(begin{array}{rrr}
2 & 1 & 1 \
1 & -1 & 0 \
3 & -1 & 2
end{array}right)$ — матрица системы,
$X=left(begin{array}{l}
x_{1} \
x_{2} \
x_{3}
end{array}right)$ — столбец неизвестных,
$B=left(begin{array}{r}
2 \
-2 \
2
end{array}right)$ — столбец правых частей. Тогда

$$X=A^-1B$$

Найдем обратную матрицу $A^-1$ к матрице $A$ с помощью союзной матрицы:

$$A^{-1}=frac{1}{Delta} cdot widetilde{A}^{T}$$

Здесь $Delta=|A|$ — определитель матрицы $A$ ;
матрица $tilde{A}$ — союзная матрица, она получена из исходной матрицы
$A$ заменой ее элементов их алгебраическими дополнениями. Найдем
$tilde{A}$ , для этого вычислим алгебраические дополнения к элементам матрицы $A$ :

$A_{11}=(-1)^{1+1}left|begin{array}{rr}-1 & 0 \ -1 & 2end{array}right|=-2$   $A_{12}=(-1)^{1+2}left|begin{array}{cc}
1 & 0 \
3 & 2
end{array}right|=-2$

$A_{13}=(-1)^{1+3}left|begin{array}{cc}
1 & -1 \
3 & -1
end{array}right|=2$    $A_{21}=(-1)^{2+1}left|begin{array}{rr}
1 & 1 \
-1 & 2
end{array}right|=-3$

$A_{22}=(-1)^{2+2}left|begin{array}{cc}
2 & 1 \
3 & 2
end{array}right|=1$    $A_{23}=(-1)^{2+3}left|begin{array}{rr}
2 & 1 \
3 & -1
end{array}right|=5$

$A_{31}=(-1)^{3+1}left|begin{array}{rr}
1 & 1 \
-1 & 0
end{array}right|=1$    $A_{32}=(-1)^{3+2}left|begin{array}{cc}
2 & 1 \
1 & 0
end{array}right|=1$

$A_{33}=(-1)^{3+3}left|begin{array}{rr}
2 & 1 \
1 & -1
end{array}right|=-3$

Таким образом,

$tilde{A}=left(begin{array}{rrr}
-2 & -2 & 2 \
-3 & 1 & 5 \
1 & 1 & -3
end{array}right)$

Определитель матрицы $A$

$$Delta=left|begin{array}{rrr}
2 & 1 & 1 \
1 & -1 & 0 \
3 & -1 & 2
end{array}right|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 1+1 cdot 0 cdot 3-$$
$$-3 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-1 cdot 1 cdot 2=-4 neq 0$$

А тогда

$$tilde{A}=-frac{1}{4}left(begin{array}{rrr}
-2 & -3 & 1 \
-2 & 1 & 1 \
2 & 5 & -3
end{array}right)$$

Отсюда искомая матрица

$$X=left(begin{array}{c}
x_{1} \
x_{2} \
x_{3}
end{array}right)=-frac{1}{4}left(begin{array}{rrr}
-2 & -3 & 1 \
-2 & 1 & 1 \
2 & 5 & -3
end{array}right)left(begin{array}{r}
2 \
-2 \
2
end{array}right)=$$
$$=left(begin{array}{r}
-1 \
1 \
3
end{array}right) Rightarrowleft{begin{array}{l}
x_{1}=-1 \
x_{2}=1 \
x_{3}=3
end{array}right.$$
$$left{begin{array}{l}
x_{1}=-1 \
x_{2}=1 \
x_{3}=3
end{array}right.$$

Метод / Теорема Крамера

Теоретический материал по теме — метод Крамера.

Пример

Задание. Найти решение СЛАУ
$left{begin{array}{l}
5 x_{1}+2 x_{2}=7 \
2 x_{1}+x_{2}=9
end{array}right.$ при помощи метода Крамера.

Решение. Вычисляем определитель матрицы системы:

$$Delta=left|begin{array}{ll}
5 & 2 \
2 & 1
end{array}right|=5 cdot 1-2 cdot 2=1 neq 0$$

Так как $Delta neq 0$ , то по теореме Крамера система
совместна и имеет единственное решение. вычислим вспомогательные определители. Определитель $Delta_{1}$ получим из определителя $Delta$ заменой его первого столбца столбцом
свободных коэффициентов. Будем иметь:

$$Delta_{1}=left|begin{array}{ll}
7 & 2 \
9 & 1
end{array}right|=7-18=-11$$

Аналогично, определитель $Delta_{2}$ получается
из определителя матрицы системы $Delta$ заменой второго столбца столбцом свободных коэффициентов:

$$Delta_{2}=left|begin{array}{ll}
5 & 7 \
2 & 9
end{array}right|=45-14=31$$

Тогда получаем, что

$$x_{1}=frac{Delta_{1}}{Delta}=frac{-11}{1}=-11, x_{2}=frac{Delta_{2}}{Delta}=frac{31}{1}=31$$

Ответ. $x_{-1}=-11$, $x_{2} = 31$

Пример

Задание. При помощи формул Крамера найти решение системы
$left{begin{array}{l}
2 x_{1}+x_{2}+x_{3}=2 \
x_{1}-x_{2}=-2 \
3 x_{1}-x_{2}+2 x_{3}=2
end{array}right.$

Решение. Вычисляем определитель матрицы системы:

$$Delta=left|begin{array}{rrr}
2 & 1 & 1 \
1 & -1 & 0 \
3 & -1 & 2
end{array}right|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 1+1 cdot 0 cdot 3-$$
$$-3 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-1 cdot 1 cdot 2=-4 neq 0$$

Так как определитель матрицы системы неравен нулю, то по теореме Крамера система
совместна и имеет единственное решение. Для его нахождения вычислим следующие определители:

$$Delta_{1}=left|begin{array}{rrr}
2 & 1 & 1 \
-2 & -1 & 0 \
2 & -1 & 2
end{array}right|=2 cdot(-1) cdot 2+(-2) cdot(-1) cdot 1+$$
$$+1 cdot 0 cdot 2-2 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-(-2) cdot 1 cdot 2=4$$
$$Delta_{2}=left|begin{array}{rrr}
2 & 2 & 1 \
1 & -2 & 0 \
3 & 2 & 2
end{array}right|=2 cdot(-2) cdot 2+1 cdot 2 cdot 1+2 cdot 0 cdot 3-$$
$$-3 cdot(-2) cdot 1-2 cdot 0 cdot 2-1 cdot 2 cdot 2=-4$$
$$Delta_{3}=left|begin{array}{rrr}
2 & 1 & 2 \
1 & -1 & -2 \
3 & -1 & 2
end{array}right|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 2+$$
$$+1 cdot(-2) cdot 3-3 cdot(-1) cdot 2-(-1) cdot(-2) cdot 2-1 cdot 1 cdot 2=-12$$

Таким образом,

$x_{1}=frac{Delta_{1}}{Delta}=frac{4}{-4}=-1$
   $x_{2}=frac{Delta_{2}}{Delta}=frac{-4}{-4}=1$
   $x_{3}=frac{Delta_{3}}{Delta}=frac{-12}{-4}=3$

Ответ. $left{begin{array}{l}x_{1}=-1 \ x_{2}=1 \ x_{3}=3end{array}right.$

Метод Гаусса. Метод последовательного исключения неизвестных

Теоретический материал по теме — метод Гаусса.

Пример

Задание. Решить СЛАУ
$left{begin{array}{l}
2 x_{1}+x_{2}+x_{3}=2 \
x_{1}-x_{2}=-2 \
3 x_{1}-x_{2}+2 x_{3}=2
end{array}right.$ методом Гаусса.

Решение. Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее
строками приведем эту матрицу к ступенчатому виду (прямой ход) и далее выполним обратный ход метода Гаусса
(сделаем нули выше главной диагонали). Вначале поменяем первую и вторую строку, чтобы элемент $a_{1}$ равнялся 1 (это мы делаем для упрощения
вычислений):

$$tilde{A}=A mid B=left(begin{array}{rrr|r}
2 & 1 & 1 & 2 \
1 & -1 & 0 & -2 \
3 & -1 & 2 & 2
end{array}right) simleft(begin{array}{rrr|r}
1 & -1 & 0 & -2 \
2 & 1 & 1 & 2 \
3 & -1 & 2 & 2
end{array}right)$$

Далее делаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых,
от третьей — три первых:

$$tilde{A} simleft(begin{array}{ccc|c}
1 & -1 & 0 & -2 \
0 & 3 & 1 & 6 \
0 & 2 & 2 & 8
end{array}right)$$

Все элементы третьей строки делим на два (или, что тоже самое, умножаем на $frac{1}{2}$:

$$tilde{A} simleft(begin{array}{rrr|r}
1 & -1 & 0 & -2 \
0 & 3 & 1 & 6 \
0 & 1 & 1 & 4
end{array}right)$$

Далее делаем нули во втором столбце под главной диагональю, для удобства вычислений
поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:

$$tilde{A} simleft(begin{array}{rrr|r}
1 & -1 & 0 & -2 \
0 & 1 & 1 & 4 \
0 & 3 & 1 & 6
end{array}right)$$

От третьей строки отнимаем вторую, умноженную на 3:

$$tilde{A} simleft(begin{array}{rrr|r}
1 & -1 & 0 & -2 \
0 & 1 & 1 & 4 \
0 & 0 & -2 & -6
end{array}right)$$

Умножив третью строку на $left(-frac{1}{2}right)$ , получаем:

$$tilde{A} simleft(begin{array}{rrr|r}
1 & -1 & 0 & -2 \
0 & 1 & 1 & 4 \
0 & 0 & 1 & 3
end{array}right)$$

Проведем теперь обратный ход метода Гаусса (метод Гассу-Жордана), то есть сделаем нули над главной диагональю.
Начнем с элементов третьего столбца. Надо обнулить элемент
$$tilde{A} simleft(begin{array}{rrr|r}
1 & -1 & 0 & -2 \
0 & 1 & 0 & 1 \
0 & 0 & 1 & 3
end{array}right)$$

Далее обнуляем недиагональные элементы второго столбца, к первой строке прибавляем вторую:

$$tilde{A} simleft(begin{array}{ccc|c}
1 & 0 & 0 & -1 \
0 & 1 & 0 & 1 \
0 & 0 & 1 & 3
end{array}right)$$

Полученной матрице соответствует система

$left{begin{array}{l}
x_{1}+0 cdot x_{2}+0 cdot x_{3}=-1 \
0 cdot x_{1}+x_{2}+0 cdot x_{3}=1 \
0 cdot x_{1}+0 cdot x_{2}+x_{3}=3
end{array}right.$
   или    $left{begin{array}{l}
x_{1}=-1 \
x_{2}=1 \
x_{3}=3
end{array}right.$

Ответ. $left{begin{array}{l}
x_{1}=-1 \
x_{2}=1 \
x_{3}=3
end{array}right.$

Однородные СЛАУ. Фундаментальная система решений

Теоретический материал по теме — однородные СЛАУ.

Пример

Задание. Выяснить, имеет ли однородная СЛАУ
$left{begin{array}{l}
3 x-2 y=-1 \
x+3 y=7
end{array}right.$ ненулевые решения.

Решение. Вычислим определитель матрицы системы:

$$Delta=left|begin{array}{rr}
3 & -2 \
1 & 3
end{array}right|=9-(-2)=9+2=11 neq 0$$

Так как определитель не равен нулю, то система имеет только нулевое решение $x=y=0$

Ответ. Система имеет только нулевое решение.

Пример

Задание. Найти общее решение и ФСР однородной системы
$Delta=left|begin{array}{rr}
3 & -2 \
1 & 3
end{array}right|=9-(-2)=9+2=11 neq 0$

Решение. Приведем систему к ступенчатому виду с помощью метода Гаусса. Для этого записываем
матрицу системы (в данном случае, так как система однородная, то ее правые части равны нулю, в этом случае столбец
свободных коэффициентов можно не выписывать, так как при любых элементарных преобразованиях в правых частях будут
получаться нули):

$$A=left(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
1 & -2 & 2 & -1 & 0 \
4 & -2 & 6 & 3 & -4 \
2 & 4 & -2 & 4 & -7
end{array}right)$$

с помощью элементарных преобразований приводим данную матрицу к ступенчатому виду. От второй строки отнимаем
первую, от третьей — четыре первых, от четвертой — две первых:

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & -6 & 6 & 15 & 0 \
0 & 2 & -2 & 10 & -5
end{array}right)$$

Обнуляем элементы второго столбца, стоящие под главной диагональю, для этого от третьей строки отнимаем три
вторых, к четвертой прибавляем вторую:

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & 0 & 0 & 9 & -3 \
0 & 0 & 0 & 12 & -4
end{array}right)$$

От четвертой строки отнимем $$frac{4}{3}$$ третьей и третью
строку умножим на $$frac{1}{3}$$ :

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & 0 & 0 & 3 & -1 \
0 & 0 & 0 & 0 & 0
end{array}right)$$

Нулевые строки можно далее не рассматривать, тогда получаем, что

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & 0 & 0 & 3 & -1
end{array}right)$$

Далее делаем нули над главной диагональю, для этого от первой строки отнимаем третью, а
ко второй строке прибавляем третью:

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -6 & 0 \
0 & -2 & 2 & 5 & 0 \
0 & 0 & 0 & 3 & -1
end{array}right)$$

то есть получаем систему, соответствующую данной матрице:

$$left{begin{array}{l}
x_{1}+x_{2}-6 x_{4}=0 \
-2 x_{2}+2 x_{3}+5 x_{4}=0 \
3 x_{4}-x_{5}=0
end{array}right.$$

Или, выразив одни переменные через другие, будем иметь:

$$left{begin{array}{l}
x_{1}=-x_{2}+6 x_{4} \
x_{2}=x_{2} \
x_{3}=x_{2}-frac{5}{2} x_{4} \
x_{4}=x_{4} \
x_{5}=3 x_{4}
end{array}right.$$

Здесь $x_{2}, x_{4}$ — независимые (или свободные)
переменные (это те переменные, через которые мы выражаем остальные переменные), $x_{1},x_{3},x_{5}$ — зависимые (связанные) переменные
(то есть те, которые выражаются через свободные). Количество свободных переменных равно разности общего количества
переменных $n$ (в рассматриваемом примере $n=5$ , так как система зависит от пяти переменных) и ранга матрицы $r$ (в этом
случае получили, что $r=3$ — количество
ненулевых строк после приведения матрицы к ступенчатому виду): $n-r=5-3=2$

Так как ранг матрицы $r=3$ , а количество неизвестных
системы $n=5$ , то тогда количество решений в ФСР $n-r=5-3-2$ (для проверки, это число должно равняться количеству свободных переменных).

Для нахождения ФСР составляем таблицу, количество столбцов которой соответствует количеству неизвестных (то есть
для рассматриваемого примера равно 5), а количество строк равно количеству решений ФСР (то есть имеем две строки).
В заголовке таблицы выписываются переменные, свободные переменные отмечаются стрелкой. Далее свободным переменным
придаются любые, одновременно не равные нулю значений и из зависимости между свободными и связанными переменными
находятся значения остальных переменных. Для рассматриваемой задачи эта зависимость имеет вид:

$$left{begin{array}{l}
x_{1}=-x_{2}+6 x_{4} \
x_{3}=x_{2}-frac{5}{2} x_{4} \
x_{5}=3 x_{4}
end{array}right.$$

Тогда придавая в первом случае, например, независимым переменным значения
$x_{2}=1$ , $x_{4}=0$ получаем, что
$left{begin{array}{l}
x_{1}=-1+6 cdot 0=-1 \
x_{3}=1-frac{5}{2} cdot 0=1 \
x_{5}=3 cdot 0=0
end{array}right.$ . Полученные значения записываем в первую
строку таблицы. Аналогично, беря $x_{2}=0$ , $x_{4}=2$, будем иметь, что
$x_{1}=12,x_{3}=-5,x_{5}=6$ , что и определяет второе решение ФСР.
В итоге получаем следующую таблицу:

Эти две строчки и есть фундаментальным решением заданной однородной СЛАУ. Частное решение системы:

$$left{begin{array}{l}
x_{1}=-1+6 cdot 0=-1 \
x_{3}=1-frac{5}{2} cdot 0=1 \
x_{5}=3 cdot 0=0
end{array}right.$$

Общее решение является линейной комбинацией частных решений:

$$X=C_{1} X_{1}+C_{2} X_{2}=C_{1}left(begin{array}{r}
-1 \
1 \
1 \
0 \
0
end{array}right)+C_{2}left(begin{array}{r}
12 \
0 \
-5 \
2 \
6
end{array}right)$$

где коэффициенты $C_{1}, C_{2}$ не равны нулю одновременно. Или запишем общее решение в таком виде:

$left{begin{array}{l}
x_{1}=-C_{1}+12 C_{2} \
x_{2}=C_{1} \
x_{3}=C_{1}-5 C_{2} \
x_{4}=2 C_{2} \
x_{5}=6 C_{2}
end{array}right.$
   $C_{1}, C_{2} neq 0$

Придавая константам $C_{1}, C_{2}$ определенные значения
и подставляя их в общее решение, можно будет находить частные решения однородной СЛАУ.

Читать первую тему — СЛАУ: основные понятия, виды,
раздела системы линейных алгебраических уравнений.

Содержание:

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами для этого умножим все элементы первого столбца на эту неизвестную: Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Второй столбец умножим на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами третий столбец — на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами-ый столбец — на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами и все эти произведения прибавим к первому столбцу, при этом произведение Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерамине изменится:

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е. Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Определение: Определитель Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами называется первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ: Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Проанализируем полученные формулы:

Пример:

Решить СЛАУ методом Крамера Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Найдем главный определитель СЛАУ (раскрываем по первой строке) Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Воспользуемся формулами Крамера

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Отсюда видно, что СЛАУ решена верно.

  • Заказать решение задач по высшей математике

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами матpицы-столбцы неизвестных Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами и свободных коэффициентов Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Тогда СЛАУ можно записать в матричном виде Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами к матрице А, получим Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами в силу того, что произведение Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами найдем Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Введем в рассмотрение следующие матрицы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Найдем матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами (см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Найдем алгебраические дополнения всех элементов Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Запишем обратную матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид: Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Разделим все элементы второй строки на (-5), получим эквивалентную матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Разделим все элементы третьей строки на (-3), получим Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами называется наивысший порядок отличного от нуля минора этой матрицы.

Если Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами для определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

Однородные системы линейных алгебраических уравнений. Фундаментальная система решений. Первая часть.

Для чтения этой темы желательно, хоть и не обязательно, ознакомиться с темой «Система линейных алгебраических уравнений. Основные термины. Матричная форма записи», а также с темой «Базисные и свободные переменные. Общее и базисное решения системы линейных алгебраических уравнений».

Однородные системы линейных алгебраических уравнений. Нулевое (тривиальное) решение.

Для начала стоит вспомнить, что такое однородные системы линейных алгебраических уравнений. В теме «Система линейных алгебраических уравнений. Основные термины. Матричная форма записи» вопрос классификации систем осуществлялся подробно, здесь же лишь вкратце напомню основные термины. Итак, система линейных алгебраических уравнений (СЛАУ) называется однородной, если все свободные члены этой системы равны нулю. Например, система $left { begin{aligned}
& 2x_1-3x_2-x_3-x_4=0;\
& -4x_1+5x_2+3x_4=0.
end{aligned} right.$ является однородной, так как все свободные члены этой системы (т.е. числа, стоящие в правых частях равенств) – нули.

Любая однородная СЛАУ имеет хотя бы одно решение – нулевое (его ещё называют тривиальное), в котором все переменные равны нулю. Подставим, например, $x_1=0$, $x_2=0$, $x_3=0$ и $x_4=0$ в записанную выше систему. Получим два верных равенства:

$$
left { begin{aligned}
& 2cdot 0-3cdot 0-0-0=0;\
& -4cdot 0+5cdot 0+3cdot 0=0.
end{aligned} right.
$$

Однако следствие из теоремы Кронекера-Капелли однозначно указывает на то, что если СЛАУ имеет решение, то есть только два варианта. Либо это решение единственно (и тогда СЛАУ называют определённой), либо этих решений бесконечно много (такую СЛАУ именуют неопределённой). Возникает первый вопрос: как выяснить, сколько решений имеет заданная нам однородная СЛАУ? Одно (нулевое) или бесконечность?

Та однородная СЛАУ, которая рассмотрена выше, имеет не только нулевое решение. Подставим, например, $x_1=1$, $x_2=-1$, $x_3=2$ и $x_4=3$:

$$
left { begin{aligned}
& 2cdot 1-3cdot (-1)-2-3=0;\
& -4cdot 1+5cdot (-1)+3cdot 3=0.
end{aligned} right.
$$

Мы получили два верных равенства, поэтому $x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$ – тоже является решением данной СЛАУ. Отсюда, кстати, следует вывод: так как наша СЛАУ имеет более чем одно решение, то эта СЛАУ является неопределенной, т.е. она имеет бесконечное количество решений.

Кстати сказать, чтобы не писать каждый раз выражения вроде «$x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$», пишут все значения переменных в матрицу-столбец: $left(begin{array} {c}
1 \
-1 \
2 \
3 end{array} right)$. Эту матрицу тоже называют решением СЛАУ.

Теорема Кронекера-Капелли гласит, что любая СЛАУ имеет решение (совместна) тогда и только тогда, когда ранг матрицы системы ($A$) равен рангу расширенной матрицы системы ($widetilde{A}$), т.е. $rang A=rangwidetilde{A}$. Так как мы уже выяснили, что любая однородная СЛАУ имеет решение (хотя бы одно), то для всех однородных СЛАУ $rang A=rangwidetilde{A}$. Так как ранги равны между собой, то можно обозначить их какой-то одной буквой, например, $r$. Итак, для любой однородной СЛАУ имеем: $rang A=rangwidetilde{A}=r$.

Теперь можно вернуться к вопросу о количестве решений однородной СЛАУ. Согласно следствию из теоремы Кронекера-Капелли, если $r=n$ ($n$ – количество переменных), то СЛАУ имеет единственное решение. Если же $r < n$, то СЛАУ имеет бесконечное количество решений.

Случай $r=n$ не интересен. Для однородных СЛАУ он означает, что система имеет только нулевое решение. А вот случай $r < n$ представляет особый интерес.

Этот случай уже был рассмотрен в теме «Базисные и свободные переменные. Общее и базисное решения СЛАУ». По сути, однородные СЛАУ – это всего лишь частный случай системы линейных уравнений, поэтому вся терминология (базисные, свободные переменные и т.д.) остаётся в силе.

Что такое базисные и свободные переменные? показатьскрыть

Фундаментальная система решений однородной СЛАУ.

С однородными СЛАУ связано дополнительное понятие – фундаментальная система решений. Дело в том, что если ранг матрицы системы однородной СЛАУ равен $r$, то такая СЛАУ имеет $n-r$ линейно независимых решений: $varphi_1$, $varphi_2$,…, $varphi_{n-r}$.

Любая совокупность $n-r$ линейно независимых решений однородной СЛАУ называется фундаментальной системой (или совокупностью) решений данной СЛАУ.

Часто вместо словосочетания «фундаментальная система решений» используют аббревиатуру «ФСР». Если решения $varphi_1$, $varphi_2$,…, $varphi_{n-r}$ образуют ФСР, и $X$ – матрица переменных данной СЛАУ, то общее решение СЛАУ можно представить в таком виде:

$$
X=C_1cdot varphi_1+C_2cdot varphi_2+ldots+C_{n-r}cdot varphi_{n-r},
$$

где $C_1$, $C_2$,…, $C_{n-r}$ – произвольные постоянные.

Что значит «линейно независимые решения»? показатьскрыть

Пример №1

Решить СЛАУ

$$left { begin{aligned}
& 3x_1-6x_2+9x_3+13x_4=0\
& -x_1+2x_2+x_3+x_4=0;\
& x_1-2x_2+2x_3+3x_4=0.
end{aligned} right.$$

Если система является неопределённой, указать фундаментальную систему решений.

Решение

Итак, мы имеем однородную СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая однородная система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$
left( begin{array} {cccc|c}
3 & -6 & 9 & 13 & 0 \
-1 & 2 & 1 & 1 & 0 \
1 & -2 & 2 & 3 & 0 end{array} right) rightarrow
left|begin{aligned}
& text{поменяем местами первую и третью}\
& text{строки, чтобы первым элементом}\
& text{первой строки стала единица.}
end{aligned}right| rightarrow \

rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
-1 & 2 & 1 & 1 & 0 \
3 & -6 & 9 & 13 & 0
end{array} right)
begin{array} {l} phantom{0} \ r_2+r_1\ r_3-3r_1end{array} rightarrow

left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0 \
0 & 0 & 3 & 4 & 0
end{array}right)
begin{array} {l} phantom{0} \ phantom{0}\ r_3-r_2end{array} rightarrow \

rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0 \
0 & 0 & 0 & 0 & 0
end{array}right).
$$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

Матрицы

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde{A} = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

Матрицы

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Примечание. показатьскрыть

Базисные переменные выбраны: это $x_1$ и $x_3$. Количество свободных переменных, как и количество решений в ФСР, равно $n-r=2$. Свободными переменными будут $x_2$ и $x_4$. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0 \
0 & 0 & 0 & 0 & 0
end{array}right)$ от нулевой строки:

$$
left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0
end{array}right)
$$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Матрицы

Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$
left( begin{array} {cc|cc}
1 & 2 & 2 & -3\
0 & 3 & 0 & -4
end{array}right)
begin{array} {l} phantom{0} \ 1/3cdot{r_2} end{array} rightarrow
left( begin{array} {cc|cc}
1 & 2 & 2 & -3\
0 & 1 & 0 & -4/3
end{array}right)
begin{array} {l} r_1-2r_2 \ phantom{0} end{array} rightarrow \

rightarrow left(begin{array} {cc|cc}
1 & 0 & 2 & -1/3\
0 & 1 & 0 & -4/3
end{array}right).
$$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Вспоминая, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, получим:

$$
left{begin{aligned}
& x_1=2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.
$$

Нами найдено общее решение заданной однородной СЛАУ. Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=2x_2-frac{1}{3}x_4$ и $x_3=-frac{4}{3}x_4$ в левую часть первого уравнения, получим:

$$
3x_1-6x_2+9x_3+13x_4=3cdot left(2x_2-frac{1}{3}x_4right)-6x_2+9cdot left(-frac{4}{3}x_4right)+13x_4=0.
$$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Теперь найдем фундаментальную систему решений. ФСР будет содержать $n-r=2$ решения. Для нахождения ФСР составим таблицу. В первой строке таблицы будут перечислены переменные: сначала базисные $x_1$, $x_3$, а затем свободные $x_2$ и $x_4$. Всего в таблице будут три строки. Так как у нас 2 свободные переменные, то под свободными переменными запишем единичную матрицу второго порядка, т.е. $left(begin{array} {cc} 1 & 0 \0 & 1end{array}right)$. Таблица будет выглядеть так:

Матрицы

Теперь будем заполнять свободные ячейки. Начнём со второй строки. Мы знаем, что $x_1=2x_2-frac{1}{3}x_4$ и $x_3=-frac{4}{3}x_4$. Если $x_2=1$, $x_4=0$, то:

$$
begin{aligned}
& x_1=2cdot 1-frac{1}{3}cdot 0=2;\
& x_3=-frac{4}{3}cdot 0=0.
end{aligned}
$$

Найденные значения $x_1=2$ и $x_3=0$ запишем в соответствующие пустые ячейки второй строки:

$$
begin{array} {c|c|c|c}
x_1 & x_3 & x_2 & x_4 \
hline 2 & 0 & 1 & 0 \
hline & & 0 & 1
end{array}
$$

Заполним и третью строку. Если $x_2=0$, $x_4=1$, то:

$$
begin{aligned}
& x_1=2cdot 0-frac{1}{3}cdot 1=-frac{1}{3};\
& x_3=-frac{4}{3}cdot 1=-frac{4}{3}.
end{aligned}
$$

Найденные значения $x_1=-frac{1}{3}$ и $x_3=-frac{4}{3}$ запишем в соответствующие пустые ячейки третьей строки. Таким образом таблица будет заполнена полностью:

$$
begin{array} {c|c|c|c}
x_1 & x_3 & x_2 & x_4 \
hline 2 & 0 & 1 & 0 \
hline -frac{1}{3} & -frac{4}{3} & 0 & 1
end{array}
$$

Из второй и третьей строки таблицы мы и запишем ФСР. Матрица неизвестных для нашей системы такова: $X=left(begin{array} {c} x_1 \x_2 \x_3 \x_4 end{array}right)$. В том же порядке, в котором в матрице $X$ перечислены переменные, записываем значения переменных из таблицы в две матрицы:

$$
varphi_1=left(begin{array} {c} 2 \1 \0 \0 end{array}right);;
varphi_2=left(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right).
$$

Совокупность $varphi_1=left(begin{array} {c} 2 \1 \0 \0 end{array}right)$, $varphi_2=left(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1cdot varphi_1+C_2cdot varphi_2$. Или в развёрнутом виде:

$$
X=C_1cdotleft(begin{array} {c} 2 \1 \0 \0 end{array}right)+C_2cdotleft(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right),
$$

где $C_1$ и $C_2$ – произвольные постоянные.

Ответ: Общее решение: $left{begin{aligned}
& x_1=2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.$. Или так: $X=C_1cdotleft(begin{array} {c} 2 \1 \0 \0 end{array}right)+C_2cdotleft(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right)$, где $C_1$ и $C_2$ – произвольные константы. Фундаментальная система решений: $varphi_1=left(begin{array} {c} 2 \1 \0 \0 end{array}right)$, $varphi_2=left(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right)$.

Пример №2

Записать ФСР однородной СЛАУ

$$
left{begin{aligned}
& x_1-5x_2-x_3-2x_4+3x_5=0;\
& 2x_1-6x_2+x_3-4x_4-2x_5=0; \
& -x_1+4x_2+5x_3-3x_4=0.
end{aligned} right.,
$$

зная общее решение. Записать общее решение с помощью ФСР.

Решение

Общее решение уже было получено в теме «метод Крамера» (пример №4). Это решение таково:

$$
left{begin{aligned}
& x_1=frac{-17x_4+144x_5}{19};\
& x_2=frac{-15x_4+41x_5}{19};\
& x_3=frac{20x_4-4x_5}{19}; \
& x_4in R; ; x_5in R.
end{aligned} right.
$$

Опираясь на предыдущий пример №1, попробуйте составить ФСР самостоятельно, а потом сверить с ответом.

Ранг матрицы системы $r=3$ (поэтому у нас три базисных переменных), количество переменных $n=5$. Количество свободных переменных и количество решений ФСР равно $n-r=2$.

Так же, как и в предыдущем примере, составим ФСР. При составлении учтём, что $x_1$, $x_2$, $x_3$ – базисные переменные, а $x_4$, $x_5$ – свободные переменные.

$$
begin{array} {c|c|c|c|c}
x_1 & x_2 & x_3 & x_4 & x_5\
hline -frac{17}{19} & -frac{15}{19} & frac{20}{19} & 1 & 0 \
hline frac{144}{19} & frac{41}{19} & -frac{4}{19} & 0 & 1
end{array}
$$

Совокупность $varphi_1=left(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)$, $varphi_2=left(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1cdot varphi_1+C_2cdot varphi_2$. Или в развёрнутом виде:

$$
X=C_1cdotleft(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)+C_2cdotleft(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right),
$$

где $C_1$ и $C_2$ – произвольные постоянные.

Ответ: Фундаментальная система решений: $varphi_1=left(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)$, $varphi_2=left(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right)$. Общее решение: $X=C_1cdotleft(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)+C_2cdotleft(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right)$, где $C_1$ и $C_2$ – произвольные константы.

Продолжение этой темы рассмотрим во второй части, где разберём ещё один пример с нахождением общего решения и ФСР.

Понравилась статья? Поделить с друзьями:
  • После высыхания обоев видны стыки как исправить
  • Как найти наибольшее произведение дробей
  • Как убили президента найти
  • Как в убунте найти установленные программы
  • Как в эксель найти данные одного столбца