Как найти все взаимно простые числа

Какие числа называют взаимно простыми

Содержание:

  • Что значит взаимно простые числа
  • Свойства и признаки
  • Как доказать, что числа взаимно простые
  • Таблица взаимно простых чисел
  • Задачи

Что значит взаимно простые числа

В окружающем нас мире и на уроках в школе люди постоянно оперируют различными числами. С их помощью выражают значения физических параметров, соотносят какие-либо величины между собой, дают характеристику объектам и явлениям. К примеру, уровень знаний ученика определяют путем выставления балла по заранее заданной шкале. Подобные способы оценки применяют повсеместно.

Ярким примером применения числовой шкалы является проведение различных социальных или маркетинговых опросов. Без чисел сложно представить жизнь и науку. При этом используют не только ряд о единицы до десятки, но и различные виды значений. В зависимости от характера решаемых задач подбирают тот или иной формат представления характеристик, данных, информации.

В числе областей хозяйственной деятельности, которые не обходятся без исчислений, присутствует индустрия информационных технологий, в частности, написание программного кода. В математике существуют множества чисел. При решении задач можно встретить величины, которые имеют целые или дробные значения, или, к примеру, являются иррациональными.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Если в перечисленных понятиях необходимо разбираться, то с простыми числами вопросов, как правило, не возникает.  Однако термин не распространяется на все числа, с которыми человек сталкивается в повседневной жизни, ожидая трамвай нужного маршрута, проверяя таймер или баланс денежного счета. С целью исключить путаницу и подмену понятий лучше в первую очередь начать с терминологии.

Простое число представляет собой такое число, которое можно нацело поделить на единицу или на само себя.

В качестве типичного примера простого числа допустимо записать 13. Дело в том, что данное число является простым, а доказать это совершенно не сложно. Если проанализировать значение, то можно заметить возможность деления 13 на 1 или на 13. При поиске результата от частного 13 и других чисел получим результат с остатком. Из примера становится понятно, что простых чисел довольно мало, так как превалирующая часть числового множества делится на прочие числа нацело.

Важно помнить об отсутствии остатка в результате подобного деления. Когда со свойствами простого числа все стало понятнее, можно приступить к рассмотрению вопроса о взаимно простых числах. Данное определение распространяется не только на пары чисел, но и на большее количество подобных значений. Приведем ниже расшифровку термина.

Пара чисел а и b из множества целых являются взаимно простыми при равенстве их максимального общего делителя единице, то есть НОД (a, b) = 1.

Исходя из вышесказанного, стоит отметить, что взаимно простыми числами допустимо называть те, которые обладают единственным общим делителем со значением, равным единице. Подобная формулировка не менее важна, чем основная расшифровка термина, так как в распространенных случаях позволяет оперативно идентифицировать простейшие числовые значение в числовых последовательностях и совокупностях.

Свойства и признаки

Резюмируем, что при отсутствии каких-либо общих максимальных делителей у чисел, кроме единицы, такие числа допустимо считать взаимно простыми. Важно запомнить этот признак и уметь оперировать им в процессе решения задач. Однако задания на взаимно простые числа не всегда обладают очевидным способом поиска ответа.

Нередко встречаются примеры, где расчеты стоит начать со сложных математических преобразований для привидения чисел в нужных формат, который позволит выполнить сравнение или сделать вывод о том, что они взаимно простые. При этом можно упростить вычисления с помощью свойств, которыми обладают данные числа. Перечислим основные из них:

  1. Числа из множества натуральных, которые являются взаимно простыми с некоторым натуральным числом n, допустимо задать с помощью функции Эйлера (varphi (n).)
  2. Числа a и b идентифицированы как взаимно простые лишь при существовании целых х и у с условием, что ax+by=1 (соотношение Безу).
  3. При наличии взаимно простых чисел а и b допустимо говорить о том, что взаимно просты следующие числа (2^{a}-1 и 2^{b}-1). Данное утверждение верно и в обратную сторону.
  4. При наличии а в роли делителя умножения bc, являющегося взаимно простым числом для b, допустимо говорить о том, что а является делителем с.
  5. При условии, что d= НОД (a,b) числа (frac {a}{d} и frac {b}{d}) являются взаимно простыми.
  6. Дробь не представляется возможным сократить при наличии в числителе и знаменателе взаимно простых чисел.
  7. Когда имеется пара взаимно простых чисел а и m, сравнение (axequiv b{pmod {m}}) для любого b обладает лишь одним решением по модулю m.
  8. В том случае, когда пара целых чисел a и b определена как взаимно простые, справедливо следующее равенство: НОД (a⋅c, b)=НОД (c, b).

Как доказать, что числа взаимно простые

Когда в совокупности произвольная пара чисел является взаимно простой, подобные числа допустимо считать попарно взаимно простыми.

Стоит отметить, что применительно к большему количеству чисел важно помнить о взаимной простоте попарно простых чисел. Обратное утверждение уже будет неверным. В математике нередко встречаются задания на доказательство попарной и взаимной простоты каких-либо чисел. В процессе решения таких задач целесообразно использовать признаки и свойства, которые были изучены в теоретическом курсе ранее. Существуют еще важные условия, с помощью которых достаточно просто подтвердить или опровергнуть принадлежность заданных чисел к той или иной категории.

Когда числа (a_1, ldots), (a_n) являются попарно простыми, их минимальное общее кратное соответствует абсолютной величине произведения рассматриваемых чисел: (|a_{1}cdot ldots cdot a_{n}|;) 

Кроме того, для произвольного b из множества целых чисел справедливо следующее математическое соотношение:

(НОД (a_{1}cdot a_{2}ldots a_{n},b)= НОД (a_{1},b) НОД(a_{2},b) … НОД(a_{n},b),)

где НОД обозначает максимальный общий делитель для рассматриваемых чисел.

Таблица взаимно простых чисел

Упростить работу с взаимно простыми числами поможет табличная форма, изображенная ниже. Подобный инструмент полезен при решении задач, когда требуется выполнить разнообразные вычисления, сравнить простые числа, доказать их взаимную или попарную простоту. Пользоваться таблицей несложно. В любой из клеток расположен максимальный общий делитель ее координат, и соответствующие взаимно простым парам координат единицы выделены темным.

числа 

Источник: ru.wikipedia.org

Задачи

Полученные знания и ценную информацию можно применять на практике. Попробуем справиться с решением нескольких типичных примеров. В процессе необходимо руководствоваться стандартным алгоритмом действий. На первом шаге полезно внимательно прочитать условия задания. После того, как сформировано представление о том, какой ответ требуется получить, можно приступать к разработке плана действий. Как правило, первоначальный анализ на возможность применения признаков, свойств или табличных значений существенно упрощает дальнейшие расчеты. В связи с этим, озвученным пунктом нельзя пренебрегать. Рассмотрим основные приемы для работы с простыми числами.

Задача 1

Имеется пара чисел 84 и 275. Необходимо подтвердить тот факт, что указанные числа взаимно простые.

Решение

В данном случае целесообразно воспользоваться табличной формой. Заметим, что в таблице указанные в условии задачи числа отсутствуют. По этой причине нужно обратиться к следующему методу доказательства, а именно, вычисления максимального общего делителя. Рассчитать искомое значение несложно с применением правила Евклида. Выполним пошаговые действия:

(275 = 84 cdot 3 + 23)

(84 = 23 cdot 3 + 15)

(23 = 15 cdot 1 + 8)

(15 = 8 cdot 1 + 7)

(8 = 7 cdot 1 + 1)

(7 = 7 cdot 1)

В результате получим, что максимальный общий делитель для пары чисел, состоящей из 84 и 275, обладает значением, равным единице. Таким образом, выполнено условие, характерное для взаимной простоты пары чисел.

Ответ: подтверждено, что 84 и 275 представляют собой пару взаимно простых чисел.

Задача 2

Дано несколько чисел: 331, 463, 733. Необходимо выяснить, допустимо ли считать перечисленные числа взаимно простыми.

Решение

Согласно информации, предоставленной в таблице простых чисел, 331, 463 и 733 представляют собой простые числа. Это позволяет сделать вывод о наличии для рассматриваемой тройки чисел лишь одного общего делителя со знаком плюс. Таким делителем является 1. В результате при выполнении перечисленных условий допустимо говорить о взаимной простоте исследуемых чисел.

Ответ: 331, 463, 733 относятся к категории взаимно простых чисел.

Задача 3

Требуется подтвердить, что числа −14, 105, −2 107 и −91 не являются взаимно простыми.

Решение

Вычислим для рассматриваемых числовых пар максимальный общий делитель, значение которого не должно совпадать с 1. С помощью свойства делителей для отрицательных и положительных чисел сформулируем следующее равенство:

НОД (−14, 105, 2 107, −91) = НОД (14, 105, 2 107, 91)

Выполним дальнейшие вычисления:

НОД (14, 105, 2 107, 91) = 7

Ответ: представленные в условии задания числа не являются взаимно простыми, так как их общий делитель отличен от единицы.

Таким образом, путем несложных вычислений и действенных приемов удалось справиться с тремя задачами. Заметим, что решение типовых примеров достаточно компактны и не занимают много времени. Это связано с корректным составлением алгоритма действий и умением применять свойства и табличные значения, характерные для простейших чисел, в практических условиях.

Калькулятор взаимно простых чисел

Онлайн калькулятор определит являются ли число взаимно простыми, путем нахождения наибольшего общего делителя чисел.

Для определения взаимно простых чисел необходимо указать количество и ввести числа.

Нажмите кнопку рассчитать и калькулятор укажет как определить взаимно простые числа.

Определение взаимно простых чисел

Натуральные числа называют взаимно простыми, если их наибольший общий делитель равен 1.

Ниже описано как определить являются ли числа 35 и 40 взаимно простыми.

  • 1 Находим наибольший общий делитель чисел: НОД(35, 40)=5.
  • 2 Наибольший общий делитель ≠ 1 следовательно числа не взаимно простые.
Пример Определить являются ли 77 и 20 взаимно простыми числами

определяем что 77 и 20 взаимно простые числа.

Примеры взаимно простых чисел

Рассмотрим на примере как определить взаимно простые числа.

Пример Являются ли числа 42 и 55 взаимно простыми

42 и 55 взаимно простые числа, НОД(42,55)=1.

Определим что 3 числа 10, 30, 41 являются взаимно простыми.

Пример Проверить что числа 10, 30, 41 взаимно просты

найдем нод(10, 30, 41) и убедимся что числа взаимно просты.

Смотрите также

Другие страницы

Эта статья – экскурс в мир математики и взаимно простых чисел. Но не стоит их путать с «простыми». Далее вы узнаете почему взаимно простые числа являются простыми, чем они отличаются и для чего они нужны. Будут рассмотрены все характеристики и особенности взаимно простых чисел. Все свойства и особые случаи будут рассмотрены на наглядных примерах. Шаг за шагом мы подойдем к доказательствам и рассмотрим такую вещь, как попарно простые числа.

Что такое взаимно простые числа?

Определение

Взаимно простым числом называют целое число, которое имеет с другим числом наибольший общий делитель – 1 (единицу).

Возьмем 2 простых числа и определим их, как a и b. Взаимно простыми будут те числа, которые имеют 1, как наибольший общий делитель (НОД). (a, b) = 1

У двух взаимно простых чисел будет один положительный общий делитель. И делитель будет равен 1. Только два таких числа имеют два общих делителя 1 и -1.

Пример 1:

Простым примером взаимно простых будут числа 5 и 11. Почему? Давайте посмотрим на делители этих чисел: 5 делится на 5 и на 1, а число 11 можно разделить на 11 и на 1 (без остатка). Общим положительным делителем этих двух чисел будет единица. Единица – самый большой общий делитель двух чисел – значит, что они будут взаимно простые.

Но не только простые числа могут быть взаимно простыми по отношению друг к другу. Условие взаимной простоты образуется и между составными числами.

Определение

Составное число – число, делители которого отличаются от самого числа и единицы).

Ситуаций, где в паре чисел одно является простым, а второе составным, или оба являются составными – не редкость. И мы научимся с ними работать.

Пример 2:

Возьмем для примера два числа: -9 и 8. Мы утверждаем, что они образуют взаимно простую пару. Так ли это? Давайте проверим. Для того, чтобы это доказать (или опровергнуть) нужно найти их общий делитель. Распишем делители каждого из чисел в ряд:

Для числа 8 делителями будут: ±1, ±2, ±4, ±8;
Для числа 9 делителями будут: ±1, ±3, ±9.

Выбираем из рядов делителей общий и самый большой: ±1. Из этого следует, что, если наибольший общий делитель (НОД) чисел 8 и -9 это единица, то они взаимно простые друг к другу.

А вот числа 45 и 500 не будут таковыми. Почему? Помимо единицы, они имеют еще один общий делитель 5, и он больше единицы (вспоминаем правило про наибольший общий делитель). 5 больше 1, значит о взаимной простоте чисел не может быть и речи.

Аналогичная ситуация с числами 201 и 3. Если расписать все из общие делители, то там будет число 3. А 3 больше 1, значит и в этой ситуации нет взаимной простоты между числами.

Как показывает практика, решение задач на определение взаимной простоты встречаются часто и не только в школьных учебниках. Вся их суть сводится к одному: поиск наибольшего общего делителя этих чисел и сравнение его с единицей.  Расписывать все делители будет очень проблематично, в некоторых случаях. Например, число 234 567. Для упрощения задачи есть несколько вариантов:

  • Использование таблицы простых чисел. Если одно из чисел в ней есть, то оно простое и делится на себя и единицу;
  • Алгоритм Евклида.

Разберем решение таковой задачи на примере.

Нет времени решать самому?

Наши эксперты помогут!

Геометрический алгоритм Евклида

Данный алгоритм часто применяется для решения задач по нахождению наибольшего общего делителя двух чисел (целых). Алгоритм работает следующим образом:

Возьмем 2 целых числа и обозначим их как a и b. Представим числа в виде отрезков. Каждый из них имеет свое числовое значение.

  • Из большего отрезка нужно вычесть меньший;
  • Больший отрезок заменим полученной разностью величин;
  • Продолжаем вычитать из большего отрезка меньший, пока они не станут равны;
  • Процедуру вычитания проводим до тех пор, пока отрезки не станут равны.

Если в итоге получаем отрезки равной величины, то значит, что они соизмеримы. И последний полученный результат — это и есть показатель их наибольшей общей меры.

Если общей меры отрезков нет, то процесс будет продолжаться бесконечно.

Метод использования алгоритма Евклида. Найдем НОД двух чисел 1071 и 462. Представим и в виде буквенных обозначений. Пусть, a = 1071, b = 462.

Из 1071 вычтем 462 кратное число раз. Это можно сделать 2 раза. Количество раз, которое можно вычесть наименьшее число из большего обозначим буквой q.

1071 – 462 ⋅ 2 = 147

Из наименьшей величины (все, как в алгоритме Евклида) вычтем кратное число раз разность.

462 – 174 ⋅ 3 = 21

И снова проделываем аналогичное вычисление.

147 – 21 ⋅ 7 = 0

Последний остаток в данном примере = 21. Следовательно, НОД для чисел 1071 и 462 =21.  Делаем вывод, что 21 > 1, значит данные числа не будут взаимно простыми.

Теперь можно попробовать применить данную формулу на практике.

Пример

Условие: нужно выяснить, являются ли числа 275 и 84 взаимно простыми или нет.

И то, и то число, точно имеют больше 1 делителя. Сразу сказать, что они взаимно простые нельзя. Для вычисления НОД применим алгоритм Евклида:

275 = 84 ⋅ 3 + 23 , 84 = 23 ⋅ 3 + 15 , 23 = 15 ⋅ 1 + 8 , 15 = 8 ⋅ 1 + 7 , 8 = 7 ⋅ 1 + 1 , 7 = 7 ⋅ 1

Ответ: Так как, НОД чисел 84 и 275 равен 1, то взаимная простота чисел доказана.

Если есть числовой ряд с большим количеством чисел и у всех у них наибольшим делителем является единица, то они будут проявлять свойство взаимной простоты по отношению друг к другу.

Количество чисел не имеет значение. Их может быть сколько угодно много. Главное – наибольший общий делитель – единица. Для наглядности, возьмем ряд чисел: 2, 3, 11, 19, 667. Они все делятся только сами на себя и на 1. Из это следует, что их свойство взаимной простоты доказано.

Примеры

Условие: определить наличие взаимной простоты у чисел 331, 463, 733 или опровергнуть ее.

Решение:

Используем для решения таблицу простых чисел. Проверим данные числа и таблицу. Да, в таблице можно встретить
их все. Это значит, что общим делителем чисел будет 1.

Ответ: все числа находятся в таблице простых чисел. Их наибольший делить -1. Значит все они взаимно
простые друг к другу.


Докажите, что следующие числа не являются взаимно простыми (105, — 14, — 2007, — 91).

Решение:

  • Нужно найти общий наибольший делитель. Это можно сделать любым удобным способом;
  • Вспоминаем, что отрицательные числа имеют те же делители, что и положительные.
  • НОД для всех чисел будет = 7.

Ответ: 7 больше 1. Значит, что числа не будут являться взаимно простыми.

Свойства взаимно простых чисел и их доказательства

У таких чисел есть ряд свойств и особенностей. Давайте посмотрим на них, разберем на практике и докажем их правдивость.

Свойства

Свойство — 1

Если разделить числа a и b на их общий делитель, то полученные числа будут взаимно простыми.

a : НОД (a, b) и b: НОД (a, b) будут взаимно простыми.


Свойство — 2

Условие взаимной простоты чисел – существование целых чисел [mathrm{U}_{0}] и [mathrm{V}_{0}] при значениях которых, следующее равенство будет верно:

[a cdot u_{0}+b cdot v_{0}=1]. Эта формула называется – соотношение Безу.

Доказательство свойства 2:

Пусть данное равенство будет верно a · u0 + b · v0 = 1. Так как, НОД чисел (a, b) делит и одно и второе, то исходя из свойств делимости НОД может делить сумму чисел a · u0 + b · v0. Значит он может делить их и на 1. Такое условие будет возможно только в том случае, если НОД (a, b) будет равен 1. Из этого следует, что НОД = 1. Что и требовалось доказать.

Свойства

Свойство 3

Если число a и число b будут взаимно простыми, а их произведение обозначим, как c. В
такой ситуации, a · с будет делиться на b. Из этого следует, что и c будет делиться на
b.

Так, как числа a, b являются взаимно простыми, то исходя из Свойства 2, можно получить
следующее равенство: [a u_{0}+b v_{0}=1].

Если каждую часть уравнения перемножить на c, получим следующее:
[mathrm{acu}_{0}+mathrm{bcv}_{0}=mathrm{c}].

Слагаемое суммы [mathrm{acu}_{0}+mathrm{bc} mathrm{v}_{0}] можно разделить на число b. Так как,
число ac делится на b. Второе слагаемое тоже будет делиться на число b. Почему? Потому
что,
один из множителей будет равен числу b.

Вывод: вся сумма будет делиться на число b, так как,
[mathrm{acu}_{0}+mathrm{bcv}_{0}=mathrm{c}].

Следовательно, c будет делиться на b.


Свойство 4

Если числа a, b являются взаимно простыми, то и НОД (ac, b) будет равен НОД (c, b)

Наибольший общий делитель (ac, b) делит и ac и число b.

Следовательно, он будет делить и произведение чисел bc. Это значит, что НОД (ac, b) делит и ac
и bc. Исходя
их свойств НОД, он будет делить и НОД чисел (ac, bc), который по своим свойствам равен числу c.

Отсюда следует, что наибольший общий делитель чисел (ac, b) делит и b и c, а значит, что и
делит НОД (c, b).


Свойство 5

Возьмём числовую последовательность [a_{1}, a_{2}, ldots, a_{k}]. В ней все числа взаимно простые с каждым
из числовой последовательности [b_{1}, b_{2}, ldots, b_{m}] (Числа k и m – натуральные), то
произведения [a_{1} cdot a_{2} cdot ldots a_{k}] и [b_{1} cdot b_{2} cdot ldots b_{m}] будут взаимно простыми.

Если, [a_{1}=a_{2}=ldots=a_{k}=a] и [b_{1}=b_{2}=ldots=b_{m}=b], то [a_{k}] и [mathrm{b}_{mathrm{m}}] являются взаимно простыми числами.

Попарно простые числа

Так как, мы уже знаем, что такое взаимно простые числа, то понять, что значит взаимно простые числа попарны будет проще.

Определение

Попарно простые числа – последовательность целых чисел (a 1, a 2, … , a k a1, a2, …, ak), где каждое следующее число будет взаимно простым по отношению ко всем остальным.

Пример 1:

Возьмем числовой ряд 14, 9, 17, 25. Все пары, которые могут быть составлены из этих чисел будут взаимно простыми: 17 – 25, 9 – 25, 14 – 9, 14 – 17, 9 – 17, 14 – 25.

Главным условием для попарных чисел является условие взаимной простоты. При этом, взаимно простые числа не всегда будут попарно простыми.

Пример 2:

В числовой последовательности 8, 16, 5, 15 числа не будут попарными. Почему? Числа 16 и 8 – не являются взаимно простыми.

Возьмем совокупность и некоторое число простых чисел, особенность таковых в том, что они в любом случае будут, как попарно, так и взаимно простыми. Если рассматривать ситуацию с простыми числами, то свойства взаимной и попарной простоты совпадают.

Как доказать что числа не взаимно простые?

Целые числа a 1 , a 2 ,…, a k , где k > 2 называются взаимно простыми , если наибольший общий делитель этих чисел равен единице. То есть если у некоторого набора целых чисел есть положительный общий делитель, отличный от единицы, то эти целые числа не являются взаимно простыми.

Как найти все пары взаимно простых чисел?

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, то есть, НОД(a, b)=1. Из определения взаимно простых чисел следует, что два взаимно простых числа имеют лишь один положительный общий делитель, который равен единице.

Как довести до простого числа?

Определение: Простое число — это натуральное число (>0), которое имеет не более двух различных делителей: 1 и само число. Натуральные числа, кроме 1, не относящиеся к простым числам, называются составными. Единица не является ни простым числом ,ни составным.

Какие числа не являются взаимно простыми?

Взаимно простые числа — целые числа, не имеющие никаких общих делителей, кроме ±1. … Например, взаимно просты числа 14 и 25, так как у них нет общих делителей; но числа 15 и 25 не взаимно просты, так как у них имеется общий делитель 5.

Как найти простые числа?

Натуральное число, большее 1 , называется простым, если оно ни на что не делится, кроме себя и 1 . Другими словами, n > 1 – простое, если при его делении на любое число кроме 1 и n есть остаток. Например, 5 это простое число, оно не может быть разделено без остатка на 2 , 3 и 4 .

Как правильно разложить число на простые множители?

Чтобы разложить число на простые множители, используем признаки делимости. Слева от черты записываем делимое, а справа — делитель, результат деления записываем под делимым. Эти действия повторяем до получения 1 1 1 1 . Справа от черты будут записаны делители числа, они и будут простыми множителями числа.

Сколько простых чисел меньше 50?

Как простых, так и составных чисел бесконечно много. Последовательность простых чисел начинается так: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199…

Сколько существует простых чисел?

Первые 500 простых чисел

2 3 61
73 79 163
179 181 271
283 293 397
419 421 521

Какая пара состоит из взаимно простых чисел 21 14?

Какая пара состоит из взаимно простых чисел? Решение: Два числа называются взаимно простыми, если их общий делитель только единица. 21 и 14 не взаимно простые, т.

Как проверить числа взаимно простые?

Равносильное определение: целые числа взаимно просты, если их наибольший общий делитель (НОД) равен 1. Например, взаимно просты числа 14 и 25, так как у них нет общих делителей; но числа 15 и 25 не взаимно просты, так как у них имеется общий делитель 5.

Какая пара состоит из взаимно простых чисел 8 14?

8 и 14 не взаимно простые, т. к. имеют общий делитель 2.

Что такое простые?

Простое число — это натуральное число, единственными делителями которого являются только оно само и единица. Все остальные натуральные числа называются составными. Натуральное число 1 не является ни простым, ни составным.

Как найти НОК взаимно простых чисел?

НОК двух взаимно простых чисел равен произведению этих двух чисел….Вспомним алгоритм нахождения НОК.

  1. Разложить на простые множители каждое число;
  2. Выписать все множители из разложения одного любого числа;
  3. Добавить к ним недостающие множители из разложения другого числа;
  4. Найти произведение получившихся множителей.

Чему равен наибольший общий делитель взаимно простых чисел?

Взаимно простые числа , называются взаимно простыми, если их наибольший общий делитель равен единице. Следует различать понятия взаимной простоты, когда НОД набора чисел равен 1, и попарной взаимной простоты, когда НОД равен 1 для каждой пары чисел из набора.

Как определить составное число или нет?

Определение. Составными числами называют натуральные числа, имеющие более двух положительных делителей. Отметим, что каждое целое положительное число, большее единицы, есть либо простое, либо составное число. Иными словами, не существует ни одного такого целого числа, которое не являлось бы ни простым, ни составным.

Как быстро найти простые числа?

Натуральное число, большее 1 , называется простым, если оно ни на что не делится, кроме себя и 1 . Другими словами, n > 1 – простое, если при его делении на любое число кроме 1 и n есть остаток. Например, 5 это простое число, оно не может быть разделено без остатка на 2 , 3 и 4 .

Как быстро проверить число на простоту?

Проверка на простоту заключается в следующем: перебирая числа из диапазона от до , будем делить на с остатком. Если при каком-то обнаружится нулевой остаток, значит, делится на нацело, и число составное.

Взаимно простые числа


Взаимно простые числа

4.5

Средняя оценка: 4.5

Всего получено оценок: 186.

4.5

Средняя оценка: 4.5

Всего получено оценок: 186.

Взаимно простые числа тема достаточно сложная тема 6 класса математики. Как и простые числа, тема взаимно простых чисел используется для сложения и вычитания дробей. Чтобы не допускать ошибок в этой теме разберемся в вопросе подробнее.

Простые числа

Что такое простое число? Простое число делится только на единицу и на само себя. Например, число 13 является простым, так как нацело делится только на 1 и на 13. Секрет в том, что практически каждое число можно разделить на другое число. Но в простых числах важно именно деление нацело, дробные частные и деление с остатком не рассматривается.

Простые числа в знаменателях дробей означают, что для нахождения общего знаменателя нужно перемножить эти числа между собой. Разложить простые числа на множители невозможно. Поэтому НОД двух простых чисел это их произведение.

Числа, которые содержат в себе больше двух множителей, то есть делятся на несколько чисел, называются сложными. Сложные числа состоят из перемноженных простых.

Взаимно простые числа

Взаимно простыми числами называются числа, наибольший общий делитель которых равен единицы. Доказать факт того, что числа являются взаимно простыми можно только с помощью разложения чисел на простые множители. Если у чисел нет общих множителей, кроме 1, то они будут взаимно простыми.

При этом сами по себе взаимно простые числа могут быть сложными. Важен именно НОД двух чисел.

Нужно учитывать, что взаимно простыми могут быть не только два числа, но и 3, 4, 10 – любое множество чисел может быть взаимно простым.

Как определить взаимно простые числа?

Для того чтобы определить взаимно простые числа, можно воспользоваться двумя алгоритмами:

  • Разложить каждое из чисел на множители и искать общие простые множители. Если такие есть, то числа не являются взаимно простыми. Если общих множителей нет, числа можно считать взаимно простыми.
  • Делить каждое из чисел поочередно на простые множители. Этот способ проще в исполнении, так как не требует большой внимательности и сосредоточенности. Но такая проверка не подойдет для больших чисел, слишком долгой может получится проверка. Поэтому более надежным будет использовать первый вариант.

Относительно друг друга два простых числа всегда будут взаимно простыми. А если одно из чисел, делится на другое нацело, то эти числа точно не являются взаимно простыми.

Пример

Определим, являются ли взаимно простыми числа 1729 и 282

Определение начинается с разложения на множители:

1729=7*13*19

282=2*3*47

Обратите внимание, что для разложения таких чисел придется использовать метод перебора. Согласно таблице простых чисел каждый множитель проверяется, после чего деление продолжается. Подбирать множители нужно от маленьких чисел к большим, то есть от 2 и выше.

Как видно, общих множителей у двух чисел нет. Это значит, что числа можно считать взаимно простыми. Не нужно пугаться, если среди множителей попадаются достаточно большие числа. Среди учеников существует миф, что простые числа редко бывают больше 20, это не так. Просто такие числа проще использовать в задачах, чтобы набить руку. На экзамене или в контрольной сложность числа для разложения может быть абсолютно любой

Заключение

Что мы узнали?

Мы поговорили о простых числах. Выяснили, что такое взаимно простые числа и обговорили некоторые их свойства. Привели примеры взаимно простых чисел. Обговорили неправильные мнения по поводу простых и взаимно простых чисел.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Ольга Оль

    8/10

  • Валентина Дашинова

    8/10

  • Саша Романов

    7/10

  • Захар Забанов

    10/10

Оценка статьи

4.5

Средняя оценка: 4.5

Всего получено оценок: 186.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:
  • Как найти делимое если известно делитель частное
  • Для продолжения easybcd нужен доступ к дистрибутиву windows vista или выше как исправить
  • Как найти площадь фигуры внутри круга
  • Как найти последние записанные файлы
  • Как найти телефон потерянный в автобусе