Как найти вторую космическую скорость солнца

Содержание

  1. Первая космическая скорость
  2. Вторая космическая скорость
  3. Третья космическая скорость
  4. Четвёртая и пятая космическая скорости

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?

На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.

Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.

Траектория полета космических кораблей

Таким образом мы вплотную приблизились к понятию «космическая скорость». Простыми словами — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела и их системы.  Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.

Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

  • v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
  • v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
  • v3 — покинуть при запуске планету, преодолев притяжение Звезды;
  • v4 — при запуске из планетной системы объект покинул Галактику.

Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.

Первая космическая скорость

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

где   G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —

Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .

Третья космическая скорость

Третья космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.

Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.

Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует).  Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.

При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.

Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.

Видео



Источники

    https://ru.wikipedia.org/wiki/Космическая_скорость

    https://mirznanii.com/a/9233/kosmicheskie-skorosti

    http://www.astronet.ru/db/msg/1162252

    https://fb.ru/article/54389/kosmicheskaya-skorost

Из школьного курса физики мы помним, что первая космическая скорость Земли – это показатель, которого необходимо достичь, чтобы объект мог выйти на эллиптическую орбиту вращения вокруг планеты. Это же, собственно, касается и любого массивного космического тела. В свою очередь, вторая космическая скорость – это предел, необходимый для того, чтобы полностью покинуть гравитационное поле планеты.

Вторая космическая скорость зависит от ряда параметров и для каждого космического объекта – отличается. Давайте рассмотрим, по какому принципу она вычисляется, и разберем примеры для крупных планет Солнечной Системы, Солнца и Луны. 

Как рассчитать вторую космическую скорость

Вторая космическая скорость зависит от массы и радиуса небесного тела. Условно можно себе представить, что для ее расчета можно пойти от обратного решения задачи. То есть, вычислить скорость с какой объект будет падать на планету из космоса. По модулю это и будет вторая космическая скорость.

Итак, учитывая закон сохранение кинетической и потенциальной энергий при движении тел, можно вывести такую формулу в падающем объекте на небесное тело:

Где m – масса стартующего объекта, М – масса небесного тела, R – сумма радиуса планеты и высоты расположение объекта над поверхностью, G – гравитационная постоянная, V – искомая вторая космическая скорость. Таким образом, из формулы можно вычислить V:

 Это и будет решение нашей задачи со знанием всего двух параметров – радиуса небесного тела и его массы.

Вторая скорость для разных небесных тел

Итак, попробуем на основании выведенной формулы рассчитать вторую космическую скорость для разных небесных тел Солнечной Системы, учитывая что их радиус и массу мы знаем.

Начнем с самого простого – Земли. Радиус нашей планеты равен 6,37 тысяч километров, а масса – 5,97 х 10²³ кг. Подставляем в нашу формулу и получаем – вторая космическая скорость Земли равна 11,2 километра в секунду. Именно до таких цифр нужно разогнать гипотетический объект, чтобы он покинул зону гравитационного притяжения нашей планеты.

Теперь можно перейти к нашей звезде и посчитать вторую космическую скорость для Солнца. Радиус его равен 696 тысяч километров, а масса 1,989 х 10³⁰ кг. Расчеты по формуле дают результат в 617,7 километров в секунду! До такой скорости нужно разогнать предмет, чтобы он смог покинуть нашу Солнечную Систему и попасть в межзвездное пространство.

Теперь попробуем вычислить показатель для остальных планет системы. Итак, радиус и масса Меркурия составляют соответственно 2,438 тысяч километров и 330 х 10²¹ кг. Подставив в формулу цифры, получаем вторую космическую скорость Меркурия 4,3 км/с. 

Идем далее и получаем такие цифры – вторая космическая скорость Венеры – 11,2 километров в секунду, Марса – 5,0 км/с, Юпитера – 61 км/с, Сатурна – 36 км/с, Нептуна – 24 км/с, Урана – 22 км/с, Луна – 2,4 км/с.

Таким образом, мы видим, что преимущественно чем массивнее планета (а вернее, чем плотнее, потому что радиус тоже важен) – тем больше нужна скорость, чтобы объект мог вырваться за пределы гравитационного влияния.

Показательными и интересными также являются примеры третей и четвертой космических скоростей. Что это за параметры? Если говорить грубо – то третья космическая скорость, это вторая космическая для Солнца, но высчитываемая вблизи Земли. Простыми словами – какую скорость нужно развить с Земли, чтобы покинуть Солнечную Систему? Посчитав по формуле, получим 16,65 километров в секунду.

Четвертая космическая скорость показывает, до какой цифры нужно разогнаться чтобы покинуть галактику из заданной точки. Для Млечного пути этот показатель будет разным в зависимости от выбранной координаты. Ближе к центральной сверхмассивной черной дыре он будет гигантским, ближе к периферии галактики – меньше. Примерно в области нашей Солнечной Системы четвертая космическая скорость равна 550 километрам в секунду!

Первую
космическую скорость можно определить
через ускорение
свободного падения
 —
так как g = GM/R²,
то

.

Космические
скорости могут быть вычислены и для
поверхности других космических тел.
Например на Луне v1 =
1,68 км/с, v2 =
2,375 км/с

Вторая космическая скорость

[править]

Материал
из Википедии — свободной энциклопедии

Анализ
первой и второй космической скорости
по Исааку Ньютону. Снаряды A и B падают
на Землю. Снаряд C выходит на круговую
орбиту, D — на эллиптическую. Снаряд
E улетает в открытый космос.

Втора́я
косми́ческая ско́рость (параболи́ческая
ско́рость, ско́рость освобожде́ния,
ско́рость убега́ния)
 —
наименьшаяскорость,
которую необходимо придать объекту
(например, космическому
аппарату
),
масса которого пренебрежимо мала по
сравнению с массой небесного
тела
 (например,
планеты), для преодоления гравитационного
притяжения
 этого
небесного тела. Предполагается, что
после приобретения телом этой скорости
оно не получает негравитационного
ускорения (двигатель выключен, атмосфера
отсутствует).

Вторая
космическая скорость определяется
радиусом и массой небесного тела, поэтому
она своя для каждого небесного тела
(для каждой планеты) и является его
характеристикой. Для Земли вторая
космическая скорость равна 11,2 км/с.
Тело, имеющее около Земли такую скорость,
покидает окрестности Земли и
становится спутником Солнца.
Для Солнца вторая космическая скорость
составляет 617,7 км/с.

Параболической
вторая космическая скорость называется
потому, что тела, имеющие при старте
скорость, в точности равную второй
космической, движутся по
дуге параболы относительно
небесного тела. Однако, если энергии
телу придано чуть больше, его траектория
перестает быть параболой и становится
гиперболой; если чуть меньше, то она
превращается в эллипс. В общем случае
все они являются коническими
сечениями
.

Содержание

  [убрать

  • 1 Вычисление

  • 2 Вторая
    космическая скорость для различных
    объектов

  • 3 См.
    также

  • 4 Примечания

  • 5 Ссылки

[Править]Вычисление

Для
получения формулы второй космической
скорости удобно обратить задачу —
спросить, какую скорость получит тело
на поверхности планеты,
если будет падать на неё из бесконечности.
Очевидно, что это именно та скорость,
которую надо придать телу на поверхности
планеты, чтобы вывести его за пределы
её гравитационного влияния.

Запишем закон
сохранения энергии

где
слева стоят кинетическая и потенциальная энергии
на поверхности планеты (потенциальная
энергия отрицательна, так как точка
отсчета взята на бесконечности), справа
то же, но на бесконечности (покоящееся
тело на границе гравитационного влияния —
энергия равна нулю). Здесь m —
масса пробного тела, M —
масса планеты,R —
радиус планеты, G — гравитационная
постоянная
v2 —
вторая космическая скорость.

Решая
это уравнение относительно v2,
получим

Между первой и
второй космическими скоростями существует
простое соотношение:

Квадрат
скорости убегания равен удвоенному ньютоновскому
потенциалу
 в
данной точке (например, на поверхности
планеты):

Тре́тья
косми́ческая ско́рость
 —
минимальная скорость, которую необходимо
сообщить находящемуся вблизи
поверхности Земли телу,
чтобы оно могло преодолеть гравитационное
притяжение Земли и Солнца и
покинуть пределы Солнечной
системы
[1][2].

При
старте с Земли, наилучшим образом
используя осевое вращение и орбитальное
движение планеты, космический
аппарат
 может
достичь третьей космической скорости
уже при 16,6 км/с[2] относительно
Земли. Для исключения влияния атмосферного
сопротивления предполагается, что
космический аппарат приобретает эту
скорость за пределами атмосферы Земли.
Наиболее энергетически выгодный старт
для достижения третьей космической
скорости должен осуществляться вблизи
экватора, движение объекта должно быть
сонаправлено осевому вращению Земли и
орбитальному движению Земли вокруг
Солнца.

Траектория
аппарата, достигшего третьей космической
скорости, будет частью дуги параболы
(скорость убывает к нулю асимптотически).

Содержание

  [убрать

  • 1 Вычисление

  • 2 Примечания

  • 3 См.
    также

  • 4 Примечания

  • 5 Ссылки

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Если мы подбросим камень в воздух – он упадет на Землю. Если у самолета на высоте 10 километром отключаться двигатели – он тоже упадет на Землю. Но спутники и космические корабли, что мы запускаем в космос, не падают. Почему?

Все дело в том, с какой скоростью тот или иной объект удаляется от планеты. Хватит ли этому объекту энергии преодолеть притяжение планеты.

Оглавление

  • 1 Первая космическая скорость
    • 1.1 Расчет
  • 2 Вторая космическая скорость
    • 2.1 Расчет
  • 3
  • 4 Третья космическая скорость
    • 4.1 Расчет
  • 5 Четвертая космическая скорость
  • 6 Пятая космическая скорость
  • 7 Почему спутники не падают на Землю

Первая космическая скорость

Это та самая минимальная скорость для выхода корабля или спутника на круговую орбиту, равную радиуса планеты, без учета вращения планеты и сопротивления ее атмосферы.

Если скорость будет превышать первую, но не достигнет второй космической скорости, то траектория тела из круговой начнет переходить в эллиптическую.

Впервые такую скорость смог достичь первый искусственный спутник Земли «Спутник-1» СССР 4 октября 1957 года.

Расчет

Расчет первой космической скорости

Расчет первой космической скорости

Расчет первой космической скорости

Первая космичсекая скорость

Вторая космическая скорость

Это минимальная скорость, которую следует придать телу для того, чтобы оно покинуло замкнутую орбиту и смогло улететь от небесного тела за пределы его гравитационного поля.

Иными словами, для Земли, это та скорость, с которой должны двигаться космические аппараты (КА) для полетов к другим объектам Солнечной системы: Луны, Марса и т.д.

Движение тела на второй космической скорости происходит по параболической траектории.

Впервые такую скорость развил Советский космический аппарат Луна-1 2 января 1959 года, чтобы преодолеть расстояние от Земли до Луны и изучить наш естественный спутник.

Расчет

Расчет второй космической скорости

Расчет второй космической скорости

Вторая космическая скорость

Третья космическая скорость

Такую скорость необходимо придать телу, чтобы оно смогло покинуть Солнечную систему. Так как 99,8% массы Солнечной системы приходится на Солнце, то можно сказать, что КА надо преодолеть гравитационное притяжение Солнца.

Расчет

Расчет третьей космической скорости

Расчет третьей космической скоростиРасчет третьей космической скорости

Для Солнечной системы это величина равна 16,650 км/с.

Самое выгодное расположение космодрома для подобного запуска – максимально близко к экватору, так как на экваторе самая большая скорость собственного вращения Земли вокруг своей оси и направление движения в сторону вращения Земли и в сторону орбитального движения Земли по орбите.

КА «Новые горизонты» покинул атмосферу Земли со скоростью близкой к третьей космической – 16,26 км /с. Относительно Солнца он имел скорость 45 км/с. Такой скорости недостаточно, чтобы покинуть Солнечную систему. Но благодаря гравитационному маневру у Юпитера, «Новые горизонты» добавил еще 4 км/с, что позволило ему покинуть Солнечную системы, предварительно показав нам карликовую планету Плутон.

Четвертая космическая скорость

Комические скорости

Эта та скорость, которая позволит покинуть галактику в данной точке.

Четвертая космическая в основном не зависит от месторасположения Земли в Млечном пути. Она зависит от расположения и плотности звездного вещества в окрестностях Солнечной системы. А эти данные пока мало изучены.
Для нашей части галактики четвертая космическая скорость примерно равна 550 км/с.

Пятая космическая скорость

Эта скорость редко применима и является больше «фантазией», так как такую скорость необходимо развить для путешествия на другую планету в другую звездную систему, независимо от их взаимного расположения, с траекторией перпендикулярно плоскости эклиптики.

Для Земли эта скорость будет равна 43,6 км/с.

Почему спутники не падают на Землю

Спутник на орбите

Этот вопрос поднимался в самом начале статьи. Теперь давайте на него ответим.

На спутник на орбите действует сила тяжести со стороны Земли. И под действием этой силы спутнику логичнее упасть.
Но, он летит вокруг Земли с первой космической скоростью – 7,9 км/с. Вспомните, чем больше скорость – тем сложнее затормозить. Вот и здесь, спутник и хотел бы упасть, но он не может затормозить и просто пролетает мимо Земли по инерции, тем самым продолжая бесконечное падение.

То есть, спутники падают, но промахиваются и не попадают в Землю.

Еще больше космоса и интересных фактов в телеграмм-канале.

Физика 10 — 11 классы Gadwyn Gadwyn
10.22.18

Решено

Какова вторая космическая скорость на уровне фотосферы Солнца

Формулу смотреть в фотографии
V=sqrt(2*G*M/R)    M=2*10^30 кг R=6,96*10^8 м V=sqrt(2*6,67*10^-11*2*10^30/6,96*10^8)=6,18*10^5 м/с=618 км/с

168

ОТВЕТЫ

Формулу смотреть в фотографии

V=sqrt(2*G*M/R)    M=2*10^30 кг R=6,96*10^8 м
V=sqrt(2*6,67*10^-11*2*10^30/6,96*10^8)=6,18*10^5 м/с=618 км/с

24

Отв. дан
2018-10-23 04:36:14
Bamand

Понравилась статья? Поделить с друзьями:
  • Как найти угол отклонения математического маятника
  • Как найти последовательность в списке питон
  • Как найти tele2 меню
  • Мастер диагностики приостановлена как исправить
  • Как найти удаленный контакт в гугл