Вторая производная
Всё
очень просто. Вторая производная –
это производная
от первой производной:
Стандартные
обозначения второй производной:
,
или
(дробь
читается так: «дэ два игрек по дэ икс
квадрат»). Чаще всего вторую производную
обозначают первыми двумя вариантами.
Но третий вариант тоже встречается,
причем, его очень любят включать в
условия контрольных заданий, например:
«Найдите
функции…».
А студент сидит и битый час чешет репу,
что это вообще такое.
Рассмотрим
простейший пример. Найдем вторую
производную от функции
.
Для того чтобы
найти вторую производную, как многие
догадались, нужно сначала найти первую
производную:
Теперь находим
вторую производную:
Готово.
Рассмотрим более
содержательные примеры.
Пример 11
Найти
вторую производную функции
Найдем
первую производную:
На
каждом шаге всегда смотрим, нельзя ли
что-нибудь упростить? Сейчас нам предстоит
дифференцировать произведение двух
функций, и мы избавимся от этой
неприятности, применив
известную тригонометрическую
формулу
.
Точнее говоря, использовать формулу
будем в обратном направлении:
:
Находим
вторую производную:
Готово.
Можно
было пойти другим путём – понизить
степень функции еще перед дифференцированием,
используя формулу
:
Если интересно,
возьмите первую и вторую производные
снова. Результаты, естественно, совпадут.
Отмечу,
что понижение степени бывает очень
выгодно при нахождении частных
производных функции.
Здесь же оба способа решения будут
примерно одинаковой длины и сложности.
Как и
для первой производной, можно
рассмотреть задачу
нахождения второй производной в точке.
Например:
Вычислим значение найденной второй
производной в точке
:
Необходимость
находить вторую производную и вторую
производную в точке возникает при
исследовании графика функции на
выпуклость/вогнутость и перегибы.
Пример 12
Найти
вторую производную функции
.
Найти
Это пример для
самостоятельного решения.
Аналогично можно
найти третью производную, а также
производные более высоких порядков.
Такие задания встречаются, но встречаются
значительно реже.
Решения
и ответы:
Пример
2: Найдем производную:
Вычислим
значение функции в точке
:
Пример
4: Найдем производную:
Вычислим
производную в заданной точке:
Пример
6: Уравнение касательной составим по
формуле
1)
Вычислим значение функции в точке
:
2)
Найдем производную. Перед дифференцированием
функцию выгодно упростить:
3)
Вычислим значение производной в
точке
:
4)
Подставим значения
,
и
в
формулу
:
Пример
8: Преобразуем функцию:
Найдем
производную:
Запишем
дифференциал:
Пример
10: Найдем производную:
Запишем
дифференциал:
Вычислим
дифференциал в точке
:
Пример
12: Найдем первую производную:
Найдем
вторую производную:
Вычислим:
4. 2.Частные производные. Примеры решений
На
данном уроке мы познакомимся с понятием
функции двух переменных, а также подробно
рассмотрим наиболее распространенное
задание – нахождение частных
производныхпервого
и второго порядка, полного дифференциала
функции. Студенты-заочники, как правило,
сталкиваются с частными производными
на 1 курсе во 2 семестре. Причем, по моим
наблюдениям, задание на нахождение
частных производных практически всегда
встречается на экзамене.
Для
эффективного изучения нижеизложенного
материала Вам необходимо уметь
более или менее уверенно находить
«обычные» производные функции одной
переменной. Научиться правильно
обращаться с производными можно на
уроках Как
найти производную? иПроизводная
сложной функции.
Также нам потребуется таблица производных
элементарных функций и правил
дифференцирования, удобнее всего, если
она будет под рукой в распечатанном
виде. Раздобыть справочный материал
можно на страницеМатематические
формулы и таблицы.
Начнем
с самого понятия функции двух переменных,
я постараюсь ограничиться минимумом
теории, так как сайт имеет практическую
направленность. Функция двух переменных
обычно записывается как
,
при этом переменные
,
называются независимыми
переменными или аргументами.
Пример:
–
функция двух переменных.
Иногда
используют запись
.
Также встречаются задания, где вместо
буквы
используется
буква
.
Полезно
знать геометрический смысл функций.
Функции одной переменной
соответствует
определенная линия на плоскости,
например,
–
всем знакомая школьная парабола. Любая
функция двух переменных
с
геометрической точки зрения представляет
собой поверхность в трехмерном
пространстве (плоскости, цилиндры, шары,
параболоиды и т.д.). Но, собственно, это
уже аналитическая геометрия, а у нас на
повестке дня математический анализ.
Переходим
к вопросу нахождения частных производных
первого и второго порядков. Должен
сообщить хорошую новость для тех, кто
выпил несколько чашек кофе и настроился
на невообразимо трудный материал: частные
производные – это почти то же самое,
что и «обычные» производные функции
одной переменной.
Для
частных производных справедливы все
правила дифференцирования и таблица
производных элементарных функций. Есть
только пара небольших отличий, с которыми
мы познакомимся прямо сейчас.
Пример 1
Найти
частные производные первого и второго
порядка функции
Сначала найдем
частные производные первого порядка.
Их две.
Обозначения:
или
–
частная производная по «икс»
или
–
частная производная по «игрек»
Начнем
с
. Когда
мы находим частную производную по «икс»,
то переменная
считается
константой (постоянным числом).
Решаем. На данном
уроке я буду приводить полное решение
сразу, а комментарии давать ниже.
Комментарии к
выполненным действиям:
(1)
Первое, что мы делаем при нахождении
частной производной – заключаем всю функцию
в скобки под штрих с
подстрочным индексом.
Внимание,
важно! Подстрочные
индексы НЕ ТЕРЯЕМ по ходу решения. В
данном случае, если Вы где-нибудь
нарисуете «штрих» без
,
то преподаватель, как минимум, может
поставить рядом с заданием
(сразу
откусить часть балла за невнимательность).
Далее данный шаг
комментироваться не будет, все сделанные
замечания справедливы для любого примера
по рассматриваемой теме.
(2)
Используем правила дифференцирования
,
.
Для простого примера, как этот, оба
правила вполне можно применить на одном
шаге. Обратите внимание на первое
слагаемое: так как
считается
константой, а любую константу можно
вынести за знак производной,
то
мы
выносим за скобки. То есть в данной
ситуации
ничем
не лучше обычного числа. Теперь посмотрим
на третье слагаемое
:
здесь, наоборот, выносить нечего. Так
как
константа,
то
–
тоже константа, и в этом смысле она ничем
не лучше последнего слагаемого –
«семерки».
(3)
Используем табличные производные
и
.
(4) Упрощаем, или,
как я люблю говорить, «причесываем»
ответ.
Теперь
. Когда
мы находим частную производную по
«игрек», то переменная
считается
константой (постоянным числом).
(1)
Используем те же правила дифференцирования
,
.
В первом слагаемом выносим константу
за
знак производной, во втором слагаемом
ничего вынести нельзя поскольку
–
уже константа.
(2)
Используем таблицу производным
элементарных функций. Мысленно
поменяем в таблице все «иксы» на «игреки».
То есть данная таблица рАвно справедлива
и для
(да
и вообще почти для любой буквы). В
частности, используемые нами формулы
выглядят так:
и
.
Итак, частные
производные первого порядка найдены
Подведем итог, чем
же отличается нахождение частных
производных от нахождения «обычных»
производных функции одной переменной:
1)
Когда мы находим частную
производную
, переменная
считается
константой.
2)
Когда мы находим частную
производную
, переменная
считается
константой.
3)
Правила и таблица производных элементарных
функций справедливы и применимы для
любой переменной (
,
либо
какой-нибудь другой), по которой ведется
дифференцирование.
Шаг второй. Находим
частные производные второго порядка.
Их четыре.
Обозначения:
или
–
вторая производная по «икс»
или
–
вторая производная по
«игрек»
или
– смешанная производная
«икс по игрек»
или
– смешанная производная
«игрек по икс»
В
понятии второй производной нет ничего
сложного. Говоря простым языком, вторая
производная – это производная от первой
производной.
Для
наглядности я перепишу уже найденные
частные производные первого порядка:
Сначала
найдем смешанные производные:
Как
видите, всё просто: берем частную
производную
и
дифференцируем ее еще раз, но в данном
случае – уже по «игрек».
Аналогично:
Для
практических примеров справедливо
следующее равенство:
Таким образом,
через смешанные производные второго
порядка очень удобно проверить, а
правильно ли мы нашли частные производные
первого порядка.
Находим
вторую производную по «икс».
Никаких
изобретений, берем
и
дифференцируем её по «икс» еще раз:
Аналогично:
Следует
отметить, что при нахождении
,
нужно
проявить повышенное
внимание, так как
никаких чудесных равенств для проверки
не существует.
Пример 2
Найти
частные производные первого и второго
порядка функции
Это
пример для самостоятельного решения
(ответ в конце урока). Если возникли
трудности с дифференцированием корней,
рекомендую ознакомиться уроком Как
найти производную?
При определенном
опыте частные производные из примеров
№№1,2 будут решаться Вами устно.
Переходим к более
сложным примерам.
Пример 3
Найти
частные производные первого порядка
функции
.
Проверить, что
.
Записать полный дифференциал первого
порядка
.
Решение:
Находим частные производные первого
порядка:
Обратите
внимание на подстрочный индекс:
,
рядом с «иксом» не возбраняется в скобках
записывать, что
–
константа. Данная пометка может быть
очень полезна для начинающих, чтобы
легче было ориентироваться в решении.
Дальнейшие
комментарии:
(1)
Выносим все константы за знак производной.
В данном случае
и
,
а, значит, и их произведение
считается
постоянным числом.
(2) Не забываем, как
правильно дифференцировать корни.
(1)
Выносим все константы за знак производной,
в данной случае константой является
.
(2) Под
штрихом у нас осталось произведение
двух функций, следовательно, нужно
использовать правило дифференцирования
произведения
.
(3) Не
забываем, что
– это сложная функция (хотя и простейшая
из сложных). Используем соответствующее
правило:
.
Теперь находим
смешанные производные второго порядка:
,
значит, все вычисления выполнены верно.
Запишем
полный дифференциал
.
В контексте рассматриваемого задания
не имеет смысла рассказывать, что такое
полный дифференциал функции двух
переменных. Важно, что этот самый
дифференциал очень часто требуется
записать в практических задачах.
Полный
дифференциал первого порядка функции
двух переменных имеет вид:
В данном случае:
То
есть, в формулу нужно просто подставить
уже найденные частные производные
первого порядка. Значки дифференциалов
и
в
этой и похожих ситуациях по возможности
лучше записывать в числителях:
Пример 4
Найти
частные производные первого порядка
функции
.
Проверить, что
.
Записать полный дифференциал первого
порядка
.
Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.
Рассмотрим серию
примеров, включающих в себя сложные
функции.
Пример 5
Найти
частные производные первого порядка
функции
.
Записать
полный дифференциал
.
Решение:
(1)
Применяем правило дифференцирования
сложной функции
.
С урока Производная
сложной функции
следует помнить
очень важный момент: когда мы по таблице
превращаем синус (внешнюю функцию) в
косинус, то вложение
(внутренняя
функция) у нас не
меняется.
(2)
Здесь используем свойство корней:
,
выносим константу
за знак производной, а корень
представляем в нужном для дифференцирования
виде.
Аналогично:
Запишем
полный дифференциал первого порядка:
Пример 6
Найти
частные производные первого порядка
функции
.
Записать
полный дифференциал
.
Это пример для
самостоятельного решения (ответ в конце
урока). Полное решение не привожу, так
как оно достаточно простое
Довольно часто
все вышерассмотренные правила применяются
в комбинации.
Пример 7
Найти
частные производные первого порядка
функции
.
(1) Используем
правило дифференцирования суммы
(2)
Первое слагаемое в данном случае
считается константой, поскольку в
выражении
нет ничего, зависящего от «икс» – только
«игреки».
(Знаете,
всегда приятно, когда дробь удается
превратить в ноль).
Для
второго слагаемого применяем правило
дифференцирования произведения. Кстати,
в этом смысле ничего бы не изменилось,
если бы вместо
была дана функция
– важно, что здесь произведение
двух функций, КАЖДАЯ
из которых зависит от
«икс»,
а поэтому, нужно использовать правило
дифференцирования произведения. Для
третьего слагаемого применяем правило
дифференцирования сложной функции.
(1) В
первом слагаемом и в числителе и в
знаменателе содержится «игрек»,
следовательно, нужно использовать
правило дифференцирования частного:
.
Второе слагаемое зависит ТОЛЬКО от
«икс», значит,
считается
константой и превращается в ноль. Для
третьего слагаемого используем правило
дифференцирования сложной функции.
Для тех читателей,
которые мужественно добрались почти
до конца урока, расскажу старый
мехматовский анекдот для разрядки:
Однажды
в пространстве функций появилась злобная
производная и как пошла всех
дифференцировать. Все функции разбегаются
кто куда, никому не хочется превращаться!
И только одна функция никуда не убегает.
Подходит к ней производная и спрашивает:
– А
почему это ты от меня никуда не убегаешь?
– Ха.
А мне всё равно, ведь я «е в степени икс»,
и ты со мной ничего не сделаешь!
На
что злобная производная с коварной
улыбкой отвечает:
– Вот
здесь ты ошибаешься, я тебя продифференцирую
по «игрек», так что быть тебе нулем.
(Кто
понял анекдот, тот освоил производные,
минимум, на «тройку»).
Пример 8
Найти
частные производные первого порядка
функции
.
Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.
Ну вот почти и всё.
Напоследок не могу не обрадовать
любителей математики еще одним примером.
Дело даже не в любителях, у всех разный
уровень математической подготовки –
встречаются люди (и не так уж редко),
которые любят потягаться с заданиями
посложнее. Хотя, последний на данном
уроке пример не столько сложный, сколько
громоздкий с точки зрения вычислений.
Пример 9
Дана
функция двух переменных
.
Найти все частные производные первого
и второго порядков.
Это пример для
самостоятельного решения. Полное решение
и образец оформления где-то рядом.
Ответы:
Пример
2:
,
,
,
Пример
4: Ссылка для просмотра ниже.
Пример
6:
,
,
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
08.02.20157.31 Mб91.rtf
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Решение:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Решение:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Пример:
Решение:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.
Производная функции
Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.
Как найти?
Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:
- Вынос константы за знак производной: $$ (Cu)’ = C(u)’ $$
- Производная суммы/разности функций: $$ (u pm v)’ = (u)’ pm (v)’ $$
- Производная произведения двух функций: $$ (u cdot v)’ = u’v + uv’ $$
- Производная дроби: $$ bigg (frac{u}{v} bigg )’ = frac{u’v — uv’}{v^2} $$
- Производная сложной функции: $$ ( f(g(x)) )’ = f'(g(x)) cdot g'(x) $$
Примеры решения
Пример 1 |
Найти производную функции $ y = x^3 — 2x^2 + 7x — 1 $ |
Решение |
Производная суммы/разности функций равна сумме/разности производных: $$ y’ = (x^3 — 2x^2 + 7x — 1)’ = (x^3)’ — (2x^2)’ + (7x)’ — (1)’ = $$ Используя правило производной степенной функции $ (x^p)’ = px^{p-1} $ имеем: $$ y’ = 3x^{3-1} — 2 cdot 2 x^{2-1} + 7 — 0 = 3x^2 — 4x + 7 $$ Так же было учтено, что производная от константы равна нулю. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’ = 3x^2 — 4x + 7 $$ |
Пример 2 |
Найти производную функции $ y = sin x — ln 3x $ |
Решение |
По правилу производной разности: $$ y’ = (sin x — ln 3x)’ = (sin x)’ — (ln 3x)’ = $$ По таблице интегрирования находим: $$ (sin x)’ = cos x $$ $$ (ln x)’ = frac{1}{x} $$ С учетом того, что аргумент натурального логарифма отличен от $ x $, то нужно домножить ещё на производную самого аргумента: $$ y’ = (sin x)’ — (ln 3x)’ = cos x — frac{1}{3x} cdot (3x)’ = $$ После упрощения получаем: $$ = cos x — frac{1}{3x} cdot 3 = cos x — frac{1}{x} $$ |
Ответ |
$$ y’ = cos x — frac{1}{x} $$ |
Пример 3 |
Найти производную функции $ y = (3x-1) cdot 5^x $ |
Решение |
В данном примере стоит произведение двух функций, а производная произведения находится по формуле номер 3: $$ (u cdot v)’ = u’v + uv’ $$ $$ y’ = ( (3x-1) cdot 5^x )’ = (3x-1)’ 5^x + (3x-1) (5^x)’ = $$ Производная первой функции вычисляется как разность фунций: $$ (3x-1)’ = (3x)’ — (1)’ = 3(x)’ — (1)’ = 3 $$ Вторая функция является показательной, производная которой находится по формуле: $ (a^x)’ = a^x ln a $: $$ (5^x)’ = 5^x ln 5 $$ Продолжаем решение с учетом найденных производных: $$ y’ = (3x-1)’ 5^x + (3x-1) (5^x)’ = 3 cdot 5^x + (3x-1) 5^x ln 5 $$ |
Ответ |
$$ y’ = 3cdot 5^x + (3x-1) 5^x ln 5 $$ |
Пример 4 |
Найти производную функции $ y = frac{ln x}{sqrt{x}} $ |
Решение |
Производную дроби найдем по четвертой формуле. Положим $ u = ln x $ и $ v = sqrt{x} $. Тогда их производные по таблице основных элементарных функций равны: $$ u’ = (ln x)’ = frac{1}{x} $$ $$ v’ = (sqrt{x})’ = frac{1}{2sqrt{x}} $$ Используя формулу №4 получаем: $$ y’ = bigg ( frac{ln x}{sqrt{x}} bigg )’ = frac{ frac{1}{x} cdot sqrt{x} — ln x cdot frac{1}{2sqrt{x}} }{x} = $$ Выносим множитель $ frac{1}{2sqrt{x}} $ в числителе за скобку: $$ y’ = frac{2-ln x}{2xsqrt{x}} $$ |
Ответ |
$$ y’ = frac{2-ln x}{2xsqrt{x}} $$ |
Пример 5 |
Найти производную функции $ y = ln sin 3x $ |
Решение |
Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение. $$ y’ = (ln sin 3x )’ = frac{1}{sin 3x} cdot (sin 3x)’ = $$ Заметим, что аргумент синуса отличен от $ x $, поэтому тоже является сложной функцией: $$ = frac{1}{sin 3x} cdot cos 3x cdot (3x)’ = frac{1}{sin 3x} cdot cos 3x cdot 3 $$ Учитывая определение котангенса $ ctg x = frac{cos 3x}{sin 3x} $ перепишем полученную производную в удобном компактном виде: $$ y’ = 3ctg 3x $$ |
Ответ |
$$ y’ = 3ctg 3x $$ |
Производные различных порядков
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Производные различных порядков — производные первого и высших порядков.
Дифференцируя производную первого порядка f`(x) мы получим производную от производной — производную второго порядка.
Определение
Производная от производной второго порядка называется производной третьего порядка, а производная n-го порядка называется производной от производной n-1го порядка.
Производная второго порядка обозначается y» или f»(x). Таким образом, дифференцируя функцию, n-раз получим производную вида f n(x).
Формула дифференцирования второго порядка
Формула дифференцирования второго порядка имеет вид:
[f»(x)=frac{d^{2} y}{dx^{2} } =mathop{lim }limits_{xto x0} frac{f'(x)-f'(x_{0} )}{x-x_{0} } =left(f'(x)right){{‘} } ]
Производная n-го порядка равна нулю, если степень меньше порядка производной. Например, пятая производная функции y = 5×2 равна нулю
Таблица производных высших порядков
Пример 1
- Найдем производную первого порядка сложной функции по формуле произведения:
- Найдем производную второго порядка для выражения
- Упростим выражение
[left[f(x)cdot g(x)right]{{‘} } =f(x)’cdot g(x)+f(x)cdot g(x)’]
[y’=left[xcdot ln (2x+1)right]{{‘} } =x’cdot ln (2x+1)+xcdot left(ln (2x+1)right){{‘} } =1cdot ln (2x+1)+xcdot left(ln (2x+1)right){{‘} } =]
[y’=ln (2x+1)+xcdot left(ln (2x+1)right){{‘} } =ln (2x+1)+xcdot frac{1}{2x+1} cdot (2x+1)’=]
[=ln (2x+1)+2xcdot frac{1}{2x+1} =ln (2x+1)+frac{2x}{2x+1} ]
[y»=left(ln (2x+1)+frac{2x}{2x+1} right){{‘} } =ln (2x+1)’+left(frac{2x}{2x+1} right){{‘} } =frac{1}{2x+1} cdot (2x+1)’+frac{2x’cdot (2x+1)-2xcdot (2x+1)’}{left(2x+1right)^{2} } =]
[y»=frac{2}{2x+1} +frac{2(2x+1)-2xcdot 2}{left(2x+1right)^{2} } =frac{2}{2x+1} +frac{2((2x+1)-2x)}{left(2x+1right)^{2} } =frac{2}{2x+1} +frac{2}{left(2x+1right)^{2} } =]
[y»=frac{2left(2x+1right)}{left(2x+1right)^{2} } +frac{2}{left(2x+1right)^{2} } =frac{2left(2x+1right)+2}{left(2x+1right)^{2} } =frac{4x+4}{left(2x+1right)^{2} } ]
«Производные различных порядков» 👇
Пример 2
Найти производную четвертого порядка
[y=x^{5} -x^{4} +3x^{3} ]
Решение.
- Найдем производную первого порядка
- Найдем производную второго порядка
- Найдем производную третьего порядка
- Найдем производную четвертого порядка
[y’=left(x^{5} -x^{4} +3x^{3} right){{‘} } =5x^{4} -4x^{3} +3cdot 3x^{2} =5x^{4} -4x^{3} +9x^{2} ]
[y»=left(5x^{4} -4x^{3} +9x^{2} right){{‘} } =20x^{3} -12x^{2} +18x]
[y»’=left(20x^{3} -12x^{2} +18xright){{‘} } =60x^{2} -24x+18]
[y»»=left(60x^{2} -24x+18right){{‘} } =120x-24]
Пример 3
Найти производную четвертого порядка функции
[y=frac{x^{2} +5x^{3} }{18} ]
Решение: Самая большая степень составного неизвестного равна 3, что меньше степени производной, а значит производная четвертого порядка равна 0.
Пример 4
Найти производную 13 порядка функции
[y=sin x]
Решение.
- Найдем производную первого порядка
- Найдем производную второго порядка
- Найдем производную третьего порядка
- Найдем производную четвертого порядка
- Найдем производную 13 порядка:
[y’=sin’x=cos x=sin (x+frac{pi }{2} )]
[y»=cos’x=-sin x=sin (x+2frac{pi }{2} )]
[y»’=-sin’x=-cos x=sin (x+3frac{pi }{2} )]
[y^{(4)} =-cos x’=sin x=sin (x+4frac{pi }{2} )]
Таким образом:
[y^{(n)} =sin (x+frac{ncdot pi }{2} ),nin N]
[y^{(13)} =sin (x+frac{13cdot pi }{2} )=cos x]
Пример 5
Вычислить производную четвертой степени функции $x^{8}$
Решение.
Вычисления производим по формуле нахождения производной высшего порядка
[left(x^{p} right)^{(n)} =p(p-1)(p-2)…(p-n+1)x^{p-n} ]
где p = 8, n = 4
[left(x^{8} right)^{(4)} =8(8-1)(8-2)(8-4+1)x^{8-4} =8cdot 7cdot 6cdot 5cdot x^{4} =1680x^{4} ]
[left(x^{8} right)^{(4)} =1680x^{4} ]
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 15.12.2022
Под понятием производные различных порядков обычно понимаются производные первого или высших порядков.
Дифференцирование производной первого порядка [F^{prime}(x)] позволит вычислить производную от производной — именуемую производной второго порядка. Далее назовем определение производной.
Производная производной второго порядка именуется производной третьего порядка, в этой связи производная n-го
порядка определяется как производная от производной n-1го порядка.
Производная функции второго порядка обозначается записью [y^{prime prime}] или [F^{prime prime}(x)]. Дифференцировка функции [n] раз приводит к получению производной вида [f n(x)].
Дифференцирование второго порядка
Производные в математике всегда находятся по определенной формуле. Итак, формула дифференцирования второго порядка записывается следующим образом:
[f^{prime prime}(x)=frac{d^{2} y}{d x^{2}}=lim _{x rightarrow x_{0}}=frac{f^{prime}(x)-f^{prime}left(x_{0}right)}{x-x_{0}}=left(f^{prime}(x)right)^{prime}]
В случае, если степень меньше, чем порядок производной, производная n-го порядка будет равна нулю.
Таблица с формулами производных высших порядков
Формулы для нахождения производных высших порядков наиболее удобно представить в виде таблицы формул производных:
Функция | Формула нахождения |
[left(x^{p}right)^{(n)}] | [left(x^{p}right)^{(n)}=p(p-1)(p-1) ldots(p-n+1) x^{p-n}] |
[left(a^{k x+b}right)^{(n)}] | [left(a^{k x+b}right)^{(n)}=k^{n} a^{k x+b} 1 n^{n} a] |
[left(e^{k x+b}right)^{(n)}] | [left(e^{k x+b}right)^{(n)}=k^{n} e^{k x+b}] |
[(sin a x)^{(n)}] | [(sin a x)^{(n)}=a^{n} sin left(a x+frac{п n}{2}right)] |
[(cos a x)^{(n)}] | [(sin a x)^{(n)}=a^{n} cos left(a x+frac{п n}{2}right)] |
[left((a x+b)^{p}right)^{n}] | [left((a x+b)^{p}right)^{n}=a^{n} p(p-1)(p-2) ldots(p-n+1)(a x+b)^{n-1}] |
[left(log _{a}|x|right)^{(n)}] | [left(log _{a}|x|right)^{(n)}=frac{(-1)^{n-1}(n-1) !}{x^{n} ln a}] |
[(ln |x|)^{n}] | [left(log _{a}|x|right)^{(n)}=frac{(-1)^{n-1}(n-1) !}{x^{n}}] |
[(a u(x)+beta gamma(x))^{n}] | [(a u(x)+beta gamma(x))^{n}=a u^{n}(x)+beta^{n} gamma(x)] |
Нет времени решать самому?
Наши эксперты помогут!
Примеры нахождения производных
Примеры
Пример 1
Как найти производную первого порядка функции по формуле произведения:
[|f(x) cdot g(x)|^{prime}=f(x)^{prime} cdot g(x)+f(x) cdot g(x)^{prime}\y^{prime}=[x cdot ln (2
x+1)]^{prime}=x^{prime} cdot ln (2 x+1)+x cdot(ln (2 x+1))^{prime}\=1 cdot ln (2 x+1)+x cdot(ln
(2 x+1))^{prime}=y^{prime}\=ln (2 x+1)+x cdot(ln (2 x+1))^{prime}\=ln (2 x+1)+x frac{1}{2 x+1}
cdot(2 x+1)^{prime}=ln (2 x+1)+2 x cdot frac{1}{2 x+1}\=ln (2 x+1)+frac{2 x}{2 x+1}]
Как найти производную второго порядка в данном выражении:
[y^{prime prime}=left(ln (2 x+1)+frac{2 x}{2 x+1}right)^{prime}=ln (2 x+1)^{prime}+left(frac{2
x}{2 x+1}right)^{prime}\=left(frac{1}{2 x+1}right) cdot(2 x+1)^{prime}+frac{2 x^{prime} cdot(2
x+1)-2 x cdot(2 x+1)^{prime}}{(2 x+1)^{2}}\=y^{prime prime}=frac{2}{2 x+1}+frac{2(2 x+1)-2 x cdot
2}{(2 x+1)^{2}}=frac{2}{2 x+1}+frac{2((2 x+1)-2 x)}{(2 x+1)^{2}}\=frac{2}{2 x+1}+frac{2}{(2
x+1)^{2}}]
Упростим полученное решение:
[y^{prime prime}=frac{2(2 x+1)}{(2 x+1)^{2}}+frac{2}{(2 x+1)^{2}}=frac{2(2 x+1)+2}{(2 x+1)^{2}}=frac{4
x+4}{(2 x+1)^{2}}]
Пример 2
Задача на нахождение производной различных порядков на примере производной четвертого порядка:
[y=x^{5}-x^{4}+3 x^{3}]
Решение:
[y^{prime}=left(x^{5}-x^{4}+3 x^{3}right)^{prime}=5 x^{4}-4 x^{3}+3 cdot 3 x^{2}=5 x^{4}-4 x^{3}+9
x^{2}\y^{prime prime}=left(5 x^{4}-4 x^{3}+9 x^{2}right)^{prime}=20 x^{3}-12 x^{2}+18 x\y^{prime
prime prime}=left(20 x^{3}-12 x^{2}+18 xright)^{prime}=60 x^{2}-24 x+18\y^{4}=left(60 x^{2}-24
x+18right)^{prime}=120 x-24]
Пример 3
Нахождение производной различных порядков от функций на следующем частном примере:
[y=frac{x^{2}+5 x^{3}}{18}]
Ответ: решение не является сложным и не потребует онлайн-калькулятора. Наибольшая степень одной из переменных
равна 3, что меньше степени производной. Следовательно, производная четвертого порядка равна 0.
Пример 4
Необходимо найти производную 13 порядка для [y=sin x]
Решение: найдем производную первого порядка (и затем 2-4 порядков)
[y^{prime}=sin ^{prime} x=cos x=sin left(x+frac{pi}{2}right)\y^{prime prime}=cos ^{prime}
x=-sin x=sin left(x+2 frac{pi}{2}right)\y^{prime prime prime}=-sin ^{prime} x=-cos x=sin
left(x+3 frac{pi}{2}right)\y^{(4)}=-cos ^{prime} x=sin x=sin left(x+4 frac{pi}{2}right)]
Следовательно:
[y^{(n)} sin left(x+frac{n cdot pi}{2}right), n in N]
Итоговый результат:
[y^{(13)}=sin left(x+frac{13 cdot pi}{2}right)=cos x]
Пример 5
Подсчитайте производную четвертой степени функции [x^{8}]
Решение:
Используем формулу нахождения производной высшего порядка
[left(x^{p}right)^{(n)}=p(p-1)(p-1) ldots(p-n+1) x^{p-n}]
Учтем, что p=8, n=4
[left(x^{8}right)^{(4)}=8(8-1)(8-2)(8-4+1) x^{8-4}=8 cdot 7 cdot 6 cdot 5 cdot x^{4}=1680 x^{4}\left(x^{8}right)^{(4)}=1680 x^{4}]
Пример 6
Подсчитайте производную функции [y=2^{x}-operatorname{arctg} x].
Решение:
[y^{prime}=left(2^{x}-operatorname{arctg} xright)^{prime}=left(2^{x}right)^{prime}-(operatorname{arctg} x)^{prime}]
Используем формулы для обратной и тригонометрической функции [y^{prime}=2^{x} ln 2-frac{1}{1+x^{2}}]
Ответ: [y^{prime}=2^{x} ln 2-frac{1}{1+x^{2}}]