Как найти вторую производную функции от первой

Вторая производная

Всё
очень просто. Вторая производная –
это производная
от первой производной

Стандартные
обозначения второй производной:
 

 или 
 (дробь
читается так: «дэ два игрек по дэ икс
квадрат»). Чаще всего вторую производную
обозначают первыми двумя вариантами.
Но третий вариант тоже встречается,
причем, его очень любят включать в
условия контрольных заданий, например:
«Найдите 
 функции…».
А студент сидит и битый час чешет репу,
что это вообще такое.

Рассмотрим
простейший пример. Найдем вторую
производную от функции 
.

Для того чтобы
найти вторую производную, как многие
догадались, нужно сначала найти первую
производную:

Теперь находим
вторую производную:

Готово.

Рассмотрим более
содержательные примеры.

Пример 11

Найти
вторую производную функции 

Найдем
первую производную:

На
каждом шаге всегда смотрим, нельзя ли
что-нибудь упростить? Сейчас нам предстоит
дифференцировать произведение двух
функций, и мы избавимся от этой
неприятности, применив
известную тригонометрическую
формулу
 
.
Точнее говоря, использовать формулу
будем в обратном направлении: 
:

Находим
вторую производную:

Готово.

Можно
было пойти другим путём – понизить
степень функции еще перед дифференцированием,
используя формулу 
:

Если интересно,
возьмите первую и вторую производные
снова. Результаты, естественно, совпадут.

Отмечу,
что понижение степени бывает очень
выгодно при нахождении частных
производных функции
.
Здесь же оба способа решения будут
примерно одинаковой длины и сложности.

Как и
для первой производной, можно
рассмотреть задачу
нахождения второй производной в точке
.

Например:
Вычислим значение найденной второй
производной в точке 
:

Необходимость
находить вторую производную и вторую
производную в точке возникает при
исследовании графика функции на
выпуклость/вогнутость и перегибы.

Пример 12

Найти
вторую производную функции 
.
Найти 

Это пример для
самостоятельного решения.

Аналогично можно
найти третью производную, а также
производные более высоких порядков.
Такие задания встречаются, но встречаются
значительно реже.

Решения
и ответы:

Пример
2: Найдем производную:


Вычислим
значение функции в точке
 
:


Пример
4: Найдем производную:


Вычислим
производную в заданной точке:


Пример
6: Уравнение касательной составим по
формуле
 

1)
Вычислим значение функции в точке
 
:


2)
Найдем производную. Перед дифференцированием
функцию выгодно упростить:


3)
Вычислим значение производной в
точке
 
:


4)
Подставим значения
 
, 
 и 
 в
формулу
 
:



Пример
8: Преобразуем функцию:


Найдем
производную:


Запишем
дифференциал:


Пример
10: Найдем производную:


Запишем
дифференциал:


Вычислим
дифференциал в точке
 
:


Пример
12: Найдем первую производную:


Найдем
вторую производную:


Вычислим: 

4. 2.Частные производные. Примеры решений

На
данном уроке мы познакомимся с понятием
функции двух переменных, а также подробно
рассмотрим наиболее распространенное
задание – нахождение частных
производных
первого
и второго порядка, полного дифференциала
функции. Студенты-заочники, как правило,
сталкиваются с частными производными
на 1 курсе во 2 семестре. Причем, по моим
наблюдениям, задание на нахождение
частных производных практически всегда
встречается на экзамене.

Для
эффективного изучения нижеизложенного
материала Вам необходимо уметь
более или менее уверенно находить
«обычные» производные функции одной
переменной. Научиться правильно
обращаться с производными можно на
уроках Как
найти производную?
 иПроизводная
сложной функции
.
Также нам потребуется таблица производных
элементарных функций и правил
дифференцирования, удобнее всего, если
она будет под рукой в распечатанном
виде. Раздобыть справочный материал
можно на страницеМатематические
формулы и таблицы
.

Начнем
с самого понятия функции двух переменных,
я постараюсь ограничиться минимумом
теории, так как сайт имеет практическую
направленность. Функция двух переменных
обычно записывается как 
,
при этом переменные 

 называются независимыми
переменными
 или аргументами.

Пример: 
 –
функция двух переменных.

Иногда
используют запись 
.
Также встречаются задания, где вместо
буквы 
 используется
буква 
.

Полезно
знать геометрический смысл функций.
Функции одной переменной 
 соответствует
определенная линия на плоскости,
например, 
  –
всем знакомая школьная парабола. Любая
функция двух переменных 
 с
геометрической точки зрения представляет
собой поверхность в трехмерном
пространстве (плоскости, цилиндры, шары,
параболоиды и т.д.). Но, собственно, это
уже аналитическая геометрия, а у нас на
повестке дня математический анализ.

Переходим
к вопросу нахождения частных производных
первого и второго порядков. Должен
сообщить хорошую новость для тех, кто
выпил несколько чашек кофе и настроился
на невообразимо трудный материал: частные
производные – это почти то же самое,
что и «обычные» производные функции
одной переменной.
 

Для
частных производных справедливы все
правила дифференцирования и таблица
производных элементарных функций.
 Есть
только пара небольших отличий, с которыми
мы познакомимся прямо сейчас.

Пример 1

Найти
частные производные первого и второго
порядка функции 

Сначала найдем
частные производные первого порядка.
Их две.

Обозначения:


 или 
 –
частная производная по «икс»


 или 
 –
частная производная по «игрек»

Начнем
с 
Когда
мы находим частную производную по «икс»,
то переменная
 
 считается
константой (постоянным числом).

Решаем. На данном
уроке я буду приводить полное решение
сразу, а комментарии давать ниже.

Комментарии к
выполненным действиям:

(1)
Первое, что мы делаем при нахождении
частной производной – заключаем всю функцию
в скобки под штрих с
подстрочным индексом
.

Внимание,
важно!
 Подстрочные
индексы НЕ ТЕРЯЕМ по ходу решения. В
данном случае, если Вы где-нибудь
нарисуете «штрих» без 
,
то преподаватель, как минимум, может
поставить рядом с заданием 
 (сразу
откусить часть балла за невнимательность).

Далее данный шаг
комментироваться не будет, все сделанные
замечания справедливы для любого примера
по рассматриваемой теме.

(2)
Используем правила дифференцирования 

.
Для простого примера, как этот, оба
правила вполне можно применить на одном
шаге. Обратите внимание на первое
слагаемое: так как 
 считается
константой, а любую константу можно
вынести за знак производной
,
то 
 мы
выносим за скобки. То есть в данной
ситуации
 ничем
не лучше обычного числа. Теперь посмотрим
на третье слагаемое 
:
здесь, наоборот, выносить нечего. Так
как 
 константа,
то 
 –
тоже константа, и в этом смысле она ничем
не лучше последнего слагаемого –
«семерки».

(3)
Используем табличные производные 
 и 
.

(4) Упрощаем, или,
как я люблю говорить, «причесываем»
ответ.

Теперь 
Когда
мы находим частную производную по
«игрек», то переменная
 
 считается
константой (постоянным числом).

(1)
Используем те же правила дифференцирования 

.
В первом слагаемом выносим константу 
 за
знак производной, во втором слагаемом
ничего вынести нельзя поскольку 
 –
уже константа.

(2)
Используем таблицу производным
элементарных функций. Мысленно
поменяем в таблице все «иксы» на «игреки».
То есть данная таблица рАвно справедлива
и для

 (да
и вообще почти для любой буквы).
 В
частности, используемые нами формулы
выглядят так: 
 и 
.

Итак, частные
производные первого порядка найдены

Подведем итог, чем
же отличается нахождение частных
производных от нахождения «обычных»
производных функции одной переменной:

1)
Когда мы находим частную
производную
 
, переменная 
 считается
константой.

2)
Когда мы находим частную
производную
 
, переменная 
 считается
константой.

3)
Правила и таблица производных элементарных
функций справедливы и применимы для
любой переменной (

, 
 либо
какой-нибудь другой), по которой ведется
дифференцирование.

Шаг второй. Находим
частные производные второго порядка.
Их четыре.

Обозначения:


 или 
 –
вторая производная по «икс»


 или 
 –
вторая производная по
«игрек»


 или 
 – смешанная производная
«икс по игрек»


 или 
 – смешанная производная
«игрек по икс»

В
понятии второй производной нет ничего
сложного. Говоря простым языком, вторая
производная – это производная от первой
производной.

Для
наглядности я перепишу уже найденные
частные производные первого порядка:

Сначала
найдем смешанные производные:

Как
видите, всё просто: берем частную
производную 
 и
дифференцируем ее еще раз, но в данном
случае – уже по «игрек».

Аналогично:

Для
практических примеров справедливо
следующее равенство:
 


Таким образом,
через смешанные производные второго
порядка очень удобно проверить, а
правильно ли мы нашли частные производные
первого порядка.

Находим
вторую производную по «икс».

Никаких
изобретений, берем 
 и
дифференцируем её по «икс» еще раз:

Аналогично:

Следует
отметить, что при нахождении 

 нужно
проявить повышенное
внимание
, так как
никаких чудесных равенств для проверки
не существует.

Пример 2

Найти
частные производные первого и второго
порядка функции 

Это
пример для самостоятельного решения
(ответ в конце урока). Если возникли
трудности с дифференцированием корней,
рекомендую ознакомиться уроком Как
найти производную?

При определенном
опыте частные производные из примеров
№№1,2 будут решаться Вами устно.

Переходим к более
сложным примерам.

Пример 3

Найти
частные производные первого порядка
функции 
.
Проверить, что 
.
Записать полный дифференциал первого
порядка 
.

Решение:
Находим частные производные первого
порядка:

Обратите
внимание на подстрочный индекс: 
,
рядом с «иксом» не возбраняется в скобках
записывать, что 
 –
константа. Данная пометка может быть
очень полезна для начинающих, чтобы
легче было ориентироваться в решении.

Дальнейшие
комментарии:

(1)
Выносим все константы за знак производной.
В данном случае 
 и 
,
а, значит, и их произведение 
 считается
постоянным числом.

(2) Не забываем, как
правильно дифференцировать корни.

(1)
Выносим все константы за знак производной,
в данной случае константой является


.

(2) Под
штрихом у нас осталось произведение
двух функций, следовательно, нужно
использовать правило дифференцирования
произведения 
.

(3) Не
забываем, что

– это сложная функция (хотя и простейшая
из сложных). Используем соответствующее
правило:

.

Теперь находим
смешанные производные второго порядка:

,
значит, все вычисления выполнены верно.

Запишем
полный дифференциал 
.
В контексте рассматриваемого задания
не имеет смысла рассказывать, что такое
полный дифференциал функции двух
переменных. Важно, что этот самый
дифференциал очень часто требуется
записать в практических задачах.

Полный
дифференциал первого порядка функции
двух переменных имеет вид:

В данном случае:

То
есть, в формулу нужно просто подставить
уже найденные частные производные
первого порядка. Значки дифференциалов 
 и 
 в
этой и похожих ситуациях по возможности
лучше записывать в числителях:

Пример 4

Найти
частные производные первого порядка
функции 
.
Проверить, что 
.
Записать полный дифференциал первого
порядка 
.

Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.

Рассмотрим серию
примеров, включающих в себя сложные
функции.

Пример 5

Найти
частные производные первого порядка
функции

.

Записать
полный дифференциал 
.

Решение:

(1)
Применяем правило дифференцирования
сложной функции 
.
С урока Производная
сложной функции

следует помнить
очень важный момент: когда мы по таблице
превращаем синус (внешнюю функцию) в
косинус, то вложение

 (внутренняя
функция) у нас не
меняется
.

(2)
Здесь используем свойство корней:

,
выносим константу

за знак производной, а корень

представляем в нужном для дифференцирования
виде.

Аналогично:

Запишем
полный дифференциал первого порядка:

Пример 6

Найти
частные производные первого порядка
функции 
.

Записать
полный дифференциал 
.

Это пример для
самостоятельного решения (ответ в конце
урока). Полное решение не привожу, так
как оно достаточно простое

Довольно часто
все вышерассмотренные правила применяются
в комбинации.

Пример 7

Найти
частные производные первого порядка
функции 
.

(1) Используем
правило дифференцирования суммы

(2)
Первое слагаемое  в данном случае
считается константой, поскольку в
выражении

нет ничего, зависящего от «икс» – только
«игреки».

(Знаете,
всегда приятно, когда дробь удается
превратить в ноль).

Для
второго слагаемого применяем правило
дифференцирования произведения. Кстати,
в этом смысле ничего бы не изменилось,
если бы вместо

была дана функция

– важно, что здесь произведение
двух функций,
КАЖДАЯ
из которых зависит от

«икс»,
а поэтому, нужно использовать правило
дифференцирования произведения. Для
третьего слагаемого применяем правило
дифференцирования сложной функции.

(1) В
первом слагаемом и в числителе и в
знаменателе содержится «игрек»,
следовательно, нужно использовать
правило дифференцирования частного: 

Второе слагаемое зависит ТОЛЬКО от
«икс», значит, 
 считается
константой и превращается в ноль. Для
третьего слагаемого используем правило
дифференцирования сложной функции.

Для тех читателей,
которые мужественно добрались почти
до конца урока, расскажу старый
мехматовский анекдот для разрядки:

Однажды
в пространстве функций появилась злобная
производная и как пошла всех
дифференцировать. Все функции разбегаются
кто куда, никому не хочется превращаться!
И только одна функция никуда не убегает.
Подходит к ней производная и спрашивает:

– А
почему это ты от меня никуда не убегаешь?

– Ха.
А мне всё равно, ведь я «е в степени икс»,
и ты со мной ничего не сделаешь!

На
что злобная производная с коварной
улыбкой отвечает:

– Вот
здесь ты ошибаешься, я тебя продифференцирую
по «игрек», так что быть тебе нулем.

(Кто
понял анекдот, тот освоил производные,
минимум, на «тройку»).

Пример 8

Найти
частные производные первого порядка
функции

.

Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.

Ну вот почти и всё.
Напоследок не могу не обрадовать
любителей математики еще одним примером.
Дело даже не в любителях, у всех разный
уровень математической подготовки –
встречаются люди (и не так уж редко),
которые любят потягаться с заданиями
посложнее. Хотя, последний на данном
уроке пример не столько сложный, сколько
громоздкий с точки зрения вычислений.

Пример 9

Дана
функция двух переменных 
.
Найти все частные производные первого
и второго порядков.

Это пример для
самостоятельного решения. Полное решение
и образец оформления где-то рядом.

Ответы:

Пример
2:


,


,


,





Пример
4: Ссылка для просмотра ниже.

Пример
6:


,


,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #

    08.02.20157.31 Mб91.rtf

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Производные различных порядков от неявных функций

Автор статьи

Щебетун Виктор

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Как найти первую и вторую производные параметрической функции

Параметрическое представление функциональной зависимости y от x для функции y = f(x) имеет вид:

Пусть функции x = x(t) и y = y(t) определены и непрерывны на интервале изменения параметра t. Продифференцируем данные функции.

Для нахождения первой производной необходимо разделить второе уравнение на первое:

Для нахождения второй производной:

Пример 1

Найти вторую производную параметрической функции

[left{begin{array}{l} {x=ln t} \ {y=3t^{2} } end{array}right. ]

Решение.

  1. Найдем первую производную по формуле:
  2. [y’_{x} =frac{y’_{t} }{x’_{t} } ]

    [y’_{t} =left(t^{3} right)^{{‘} } =6t x’_{t} =left(ln tright)^{{‘} } =frac{1}{t} ]

    [y’_{x} =frac{6t}{frac{1}{t} } =6t^{2} ]

  3. Найдем вторую производную
  4. [y»_{xx} =left(6t^{2} right)^{{‘} } =12t]

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Что такое неявно заданная функция, и как ее найти

Определение

Если функция вида y=y(x) задана уравнением F(x;y(x)) = 0, то функция является неявно заданной.

Для нахождения дифференциала неявной функции необходимо выполнить следующие действия:

  1. Продифференцировать обе части уравнения по х.
  2. Поскольку у — дифференцируемая функция, для ее нахождения используется правило вычисления производной сложной функции.
  3. В правой части уравнения должно получится значение 0.

Примечание

Это значит перенести все слева направо и привести к уравнению вида F(x;y(x)) = 0

  1. Решить полученное уравнение относительно y`(x)

Пусть неявная функция у от x определяется равенством:

[frac{x^{2} }{a^{2} } +frac{y^{2} }{b^{2} } -1=0]

Дифференцируем по x все члены этого равенства:

[frac{2x}{a^{2} } +frac{2ydy}{b^{2} dx} =0]

[frac{dy}{dx} =-frac{b^{2} x}{a^{2} y} ]

Последнее равенство снова дифференцируем по х:

[frac{d^{2} y}{dx^{2} } =-frac{b^{2} (y-x)frac{dy}{dx} }{a^{2} y} ]

Заменим производную dy/dx ее выражением:

[frac{d^{2} y}{dx^{2} } =-frac{b^{2} (y+x)frac{b^{2} }{a^{2} } frac{x}{y} }{a^{2} y} ]

[frac{d^{2} y}{dx^{2} } =-frac{b^{2} left(a^{2} y^{2} +b^{2} x^{2} right)}{a^{4} y^{3} } ]

Поскольку $a^2y^2 + b^2x^2 = a^2b^2$, вторую производную можно представить в виде

[frac{d^{2} y}{dx^{2} } =frac{b^{4} }{a^{2} y^{3} } ]

Дифференцируя по х последнее равенство, найдем $frac{d^{3} y}{dx^{3} } $ и т. д.

«Производные различных порядков от неявных функций» 👇

Пример 2

Найти вторую производную неявно заданной функции

[2x^{3} -xy^{2} =4]

Решение.

  1. Перенесем все части выражения в левую часть, приравняем к нулю и продифференцируем:
  2. [left(2x^{3} -xy^{2} -4right)^{{‘} } =0]

    [left(2x^{3} right)^{{‘} } -left(xy^{2} right)^{{‘} } -left(4right)^{{‘} } =0]

    [6x^{2} -left(x’y^{2} +xleft(y^{2} right)^{{‘} } right)=0]

    [6x^{2} -y^{2} -2xyy’=0]

  3. Выразим y`
  4. [y’=frac{6x^{2} -y^{2} }{2xy} ]

  5. Повторно дифференцируем равенство
  6. [left(6x^{2} -y^{2} -2xyy’right)^{{‘} } =12x-2y-2left(xyright)^{{‘} } y’-2xyy’]

    [12x-2y-2left(xyright)^{{‘} } y-2xyy’=12x-2y-2x’y’-2xy’-2xyy»]

    [12x-2y-2x’y’-2xy’-2xyy»=12x-2y-2y’-2xy’-2xyy»]

  7. Выполним замену y`
  8. [12x-2y-2frac{6x^{2} -y^{2} }{2xy} -2xfrac{6x^{2} -y^{2} }{2xy} -2xyy»=0]

  9. Упростим
  10. [frac{12x^{2} y-2xy^{2} }{xy} -frac{6x^{2} -y^{2} }{xy} -frac{6x^{3} -y^{2} }{xy} -2xyy»=0]

    [frac{12x^{2} y-2xy^{2} -6x^{2} +2y^{2} -6x^{3} }{xy} -2xyy»=0]

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 15.12.2022

Чтобы понять частные производные, сначала нужно разобраться с обычными. И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.

Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.

Функция двух и более переменных

Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной: 

Функция двух и более переменных

Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.

А что, если добавить еще одну переменную? Получится такая функция:

Функция двух и более переменных

Это – функция двух независимых переменных x и y. График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:

Функция двух и более переменных

Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.

Частная производная первого порядка

Запоминаем главное правило:

При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.

То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных. Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:

Частная производная первого порядка

Сначала возьмем частную производную по иксу, считая игрек обычным числом:

Частная производная первого порядка

Теперь считаем частную производную по игреку, принимая икс за константу:

Частная производная первого порядка

Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.

Частная производная второго порядка

Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.

По иксу:

Частная производная второго порядка

По игреку:

Частная производная второго порядка

Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:

  1. При дифференцировании по одной независимой переменной, вторая принимается за константу.
  2. Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.

Частные производные и полный дифференциал функции

Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.

Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:

Частные производные и полный дифференциал функции

Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.

Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.

Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Видеоурок: Вторая производная. Производные высших порядков

Лекция: Вторая производная и её физический смысл

От каждой имеющейся функции можно находить бесконечное количество последовательных производных. В школьном курсе математике мы учимся находить две последовательные производные. 

То есть вторая производная – это производная, которую необходимо найти от функции, которая является первой производной первоначальной функции.

Например, мы имеем функцию у = 2х3 + 4х2.

Найдем две последовательных производных данной функции: у/ = 6х2 + 8х.

Найдя первую производную, мы можем найти вторую производную данной функции: у// = 12х+8

А теперь давайте вспомним физический смысл производной:

Производная от перемещения – это скорость. 

Но если же мы найдем вторую производную данной функции, то мы можем получить значение ускорения:

Лекция 6. Вторая производная, её геометрический и
физический смысл. Применение производной к исследованию функций и построению
графиков. Нахождение скорости для процесса, заданного формулой и графиком.

План

1. Производная
второго порядка.

2. Физический смысл
второй производной.

3. Геометрический
смысл второй производной. Точки перегиба.

4. Исследование функции на экстремум с помощью
второй производной.

5. Решение задач

(Учебник: Ш.А.
Алимов Алгебра и начала математического анализа 10-11 класс глава
IX §53 стр. 283-286)

1. Производная
второго порядка.

Пусть функция y = f(x) определена на
интервале (
a; b), и пусть в каждой
точке этого интервала она имеет производную
,   тогда  можно назвать первой
производной
(или производной первого порядка) данной функции.

Рассмотрим функцию . Если   имеет производную в точке , то эту производную
называют второй производной (или производной второго порядка) данной
функции
f(x) в точке  и обозначают .

Короче, вторая производная – это
производная от первой производной, т.е.
.

Производная от , т.е. , называется третьей
производной (или производной третьего порядка) данной функции
f(x) и т.д.

Определение. Вообще
n-й производной (или производного n-го
порядка) функции
y = f(x) в точке x (или
на некотором интервале (
a;b))
называется производная от производной (
n-1)-го порядка в
этой точке
x (или на этом интервале (a;b)). Она обозначается

Или .

Примеры

а) Если , то
 

 

 

 

б) если , то
 

 

 

 

 

 

и вообще

 если .

2. Физический
смысл второй производной.

Пусть
материальная точка движется прямолинейно и
 
, — закон движения. Тогда
скорость
 в данный момент времени  есть производная от пути  по времени , вычисленная для
момента
.

 (1)

Ускорение  в данный момент времени есть производная от
скорости
 по времени, вычисленная для момента .

. (2)

С другой стороны: .

. (3)

Физический смысл второй производной:

Ускорение  движения в данный
момент времени
 есть вторая
производная от пути по времени.

Пример 1

Точка движется прямолинейно по закону . Найти величину скорости и
ускорения в момент времени
.

Решение

Ответ:  м/с, .

3.
Геометрический смысл второй производной. Точки перегиба.

Условия выпуклости
и точки перегиба графика функции

График функции  имеет на интервале  выпуклость, направленную вниз, если он расположен не ниже любых
касательных, проведенных к графику функции (рис. 2.14а).

Выпуклость,
направленная вверх, будет, если график функции
 на этом интервале расположен не выше любых касательных (рис. 2.14б).

Теорема. Если функция  имеет на интервале   вторую производную и она положительна , то функция выпукла вниз на этом интервале.

Если же , на интервале , то она выпукла вверх на этом интервале.

Точка
перегиба
графика непрерывной функции  — это точка, при переходе через которую функция меняет направление
выпуклости.

Геометрическая
интерпретация:
в точке перегиба касательная пересекает
график функции, так как он переходит с одной стороны касательной на другую,
«перегибаясь» через неё (рис. 2.15).

Точка x = 0 – точка перегиба кубической параболы

Теорема (необходимое
условие существования точки перегиба).
Если  является точкой перегиба функции , то вторая производная, если она существует, должна обратиться в нуль:
.

Критические
точки
– это точки графика, для которых .

Теорема
(достаточное условие существования точки перегиба)
.
Пусть функция
 имеет вторую производную в окрестности точки . Эта точка  является точкой перегиба функции, если при переходе через неё вторая
производная
 меняет знак.

Пример 2

Найти интервалы
выпуклости и точки перегиба функции
.

Решение

Найдём ,

.

На интервале  , следовательно, функция  выпукла вниз на этом интервале.

На интервале   , следовательно, и на этом интервале функция  выпукла вниз.

На интервале   и, следовательно, функция  выпукла вверх.

Рассмотрим точку x = -1. При переходе через неё  меняет знак. Следовательно, x = -1 – это точка
перегиба данной функции.

Рассмотрим точку x = 1. Вторая производная   так же меняет знак. Точка x = 1 – точка перегиба
данной функции.

4. Исследование функции на экстремум с
помощью второй производной.

Часто бывает
рациональнее исследовать функцию на экстремум с помощью второй производной.

Правило
исследования функции на экстремум с помощью второй производной:

1. Находят первую
производную
.

2. Приравняв к нулю
первую производную, находят действительные корни полученного уравнения (т.е.
критические значения).

3. Находят вторую
производную
.

4. Во вторую
производную подставляют поочередно все критические значения; если при этой
подстановке вторая производная окажется положительной, то в этой точке функция
имеет минимум; если же вторая производная окажется отрицательной, то функция
имеет максимум.

5. Вычисляют
значения функции в точках максимума и минимума.

Замечание. Если при подстановке критического значения во вторую производную она
обратится в нуль, то ничего определенного относительно существования экстремума
сказать нельзя, а исследование нужно продолжить с помощью первой производной.

Пример 3

Исследовать на
экстремум с помощью второй производной функцию
 
.

Решение

1. Находим
производную
.

2. Из уравнения  находим критические значения.

.

3. Находим вторую
производную
.

4. Знаки второй
производной в критических точках:

;

.

5. Вычислим
значения функции в точках минимума и максимума:

,

.

Ответ: функция имеет максимум в точке  и минимум в точке .

5. Задания для
самостоятельного решения

Задача 1. (1 балл) Найти производную третьего порядка функции  .      

Задача 2. (2 балла) Найдите точки перегиба кривой .

Задача 3. (2 балла) Найдите интервалы выпуклости вверх и интервалы выпуклости
вниз функции
.

Задача 4. (3 балла) Исследовать на экстремум с помощью второй производной
функцию
 
.

Задача 5. (2 балла) В момент времени t тело находится на
расстоянии
 км от места отправления. Найти его ускорение через 2ч.

Понравилась статья? Поделить с друзьями:
  • Как найти часы по номеру на корпусе
  • Как найти частоту световой волны формула
  • Как найти купленный отчет автотеки
  • Как найти состав пара по диаграмме
  • Как составить смету на материалы для строительства дома что это