Как вычислить высоту цилиндра
У цилиндра имеется высота, которая перпендикулярна двум его основаниям. Способ определения ее длины зависит от набора исходных данных. Таковыми могут быть, в частности, диаметр, площадь, диагональ сечения.
Инструкция
Для любых фигур существует такой термин, как высота. Высотой обычно называется измеряемая величина какой -либо фигуры в вертикальном положении. У цилиндра высота -это линия, перпендикулярная двум его параллельным основаниям. Также у него есть образующая. Образующая цилиндра -это линия, вращением которой получается цилиндр. Она, в отличие от образующей других фигур, например конуса, совпадает с высотой.
Рассмотрим формулу, с помощью которой можно найти высоту:
V=πR^2*H, где R — радиус основания цилиндра, H — искомая высота.
Если вместо радиуса дан диаметр, данная формула видоизменяется следующим образом:
V=πR^2*H=1/4πD^2*H
Соответственно, высота цилиндра равна:
H=V/πR^2=4V/D^2
Также высоту можно определить, исходя из диаметра и площади цилиндра. Существует площадь боковой и площадь полной поверхности цилиндра. Часть поверхности цилиндра, ограниченная цилиндрической поверхностью, называют боковой поверхностью цилиндра. Площадь полной поверхности цилиндра включает в себя и площадь его оснований.
Площадь боковой поверхности цилиндра вычисляется по следующей формуле:
S=2πRH
Преобразовав данное выражение, найдите высоту:
H=S/2πR
Если дана площадь полной поверхности цилиндра, вычисляйте высоту несколько иным способом. Площадь полной поверхности цилиндра равна:
S=2πR(H+R)
Вначале преобразуйте данную формулу как показано ниже:
S=2πRH+2πR
Затем найдите высоту:
H=S-2πR/2πR
Через цилиндр можно провести прямоугольное сечение. Ширина этого сечения будет совпадать с диаметрами оснований, а длина — с образующими фигуры, которые равны высоте. Если провести через это сечение диагональ, то можно легко заметить, что образуется прямоугольный треугольник. В данном случае диагональ является гипотенузой треугольника, катет -диаметром, а второй катет- высотой и образующей цилиндра. Тогда высоту можно найти по теореме Пифагора:
b^2 =sqrt (c^2 -a^2)
Источники:
- Как вычислить объем цилиндра?
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Призма — это многогранник, который состоит из двух одинаковых многоугольников. Они расположены в
разных плоскостях. Призмы различаются по количеству углов в основании. К примеру, если в основании
находится треугольник ,то призма называется треугольной. Если в основании лежит четырехугольник, то
рассматриваемая фигура четырехугольная. Таким образом, фигура, состоящая из 2 равносторонних
треугольников, которые соединены между собой и лежат параллельно друг другу и называется правильная
треугольная призма.
Чтобы было проще понять, рекомендуется начертить на листе бумаге объект 2 равных
параллельных треугольника. Далее соединить их тремя вертикальными чертами. Все стороны у фигуры
обозначаются латинскими буквами, например, «А» «B» «C». Для второго треугольника в призме буквы
дублируются с индексом 1. В результате получается фигура, у которой стороны А₁В₁=В₁С₁=А₁С₁. Призма
АBCА₁В₁С₁ имеет грани в виде параллелограммов. Сторона АА₁ называется боковым ребром. Стороны в
основании геометрической фигуры называются ребрами основания. Высотой в призме называется расстояние
между разными плоскостями.
- Высота правильной треугольной призмы через обьём и ребро
основания - Высота правильной треугольной призмы через площадь боковой
поверхности и ребро основания - Высота правильной треугольной призмы через площадь боковой
поверхности и периметр основания - Высота правильной треугольной призмы через площадь боковой
поверхности и площадь основания - Высота правильной треугольной призмы через площадь грани и
ребро основания - Высота правильной треугольной призмы через диагональ грани
и ребро основания
Через объем и ребро основания
У этой фигуры есть два основания в виде треугольников. Шесть отрезков, которые образуют треугольник в
призме и называют ребрами основания. Длина ребра в правильной призме будет одинаковой, поскольку все
стороны и углы в равностороннем треугольнике равны между собой. Зная это и объем искомого
многоугольника, можно применить эту формулу для осуществления расчетов:
H = 4V / a²√3
где V — объем фигуры измеряется в кубических единицах, а — ребро основания.
Цифр после
запятой:
Результат в:
Длина любой стороны в основании правильной призмы и будет ребром.
Пример.
Если V = 6 мм³, а = 6 мм то расчет неизвестной величины по формуле будет производиться следующим
образом: H = 46 / 6²√3= 24 / 6² * 1.732 = 0,38 мм. Таким образом, применив
формулу, можно узнать высоту через ребро основания и объем.
Через площадь боковой поверхности и ребро основания
Для вычисления потребуется знать площадь боковой поверхности, а также ребро основания. Чтобы
рассчитать площадь боковой поверхности, необходимо умножить периметр фигуры на длину бокового ребра.
Она рассчитывается по данной формуле: Sбок = P * I, где P — периметр, I — длина бокового ребра. Зная
площадь основания боковой поверхности и размеры отрезка, можно использовать формулу:
H = Sбок / 3a
где Sбок — площадь боковой поверхности, а — ребро основания.
Цифр после
запятой:
Результат в:
Пример. Для лучшего понимания можно продемонстрировать на конкретной задаче. Если =
7 мм², а = 8 мм то расчет неизвестной величины будет происходить следующим образом: H = 7 / 3 * 8 = 0,29 мм. Используя такой способ, можно узнать H
правильной треугольной призмы.
Через площадь боковой поверхности и периметр основания
Под периметром равностороннего треугольника, который является основанием рассматриваемой фигуры,
понимается сумма всех его длин, а также сторон. Зная, размер одной стороны легко рассчитать
периметр. Найти площадь боковой поверхности можно по формуле рассмотренной выше. После того как
периметр и боковая площадь известны, то необходимо подставить найденное значение в следующую
формулу:
H = Sбок / P
где S — площадь боковой поверхности, P — периметр основания.
Цифр после
запятой:
Результат в:
Пример. Если P = 2 мм, а Sбок = 16 мм² то расчет размеров будет производиться
следующим образом: H = 16 / 2 = 8 м². С помощью такого простого расчета
можно вычислить H искомой фигуры.
Через площадь боковой поверхности и площадь основания
Площадь основания рассчитывается также, как при нахождении S равностороннего треугольника S = 1/2 * ah, но высота в этом случае неизвестна, поэтому придется
воспользоваться другой формулой S = 1/2 * sin α. Как было сказано ранее,
площадь боковой поверхности считается произведением периметра и длины бокового ребра. Найдя искомые
площади, можно работать со следующей формулой для нахождения высоты призмы:
H = Sбок / (3 √(4 * (Sосн /√3)))
где Sбок — площадь боковой поверхности, Sосн — площадь основания геометрической фигуры.
Цифр после
запятой:
Результат в:
Пример. Если Sбок = 10 мм², а Sосн = 15 мм² то расчет размеров проводится следующим
образом: H = 10 / 3√4 * 15 / √3 = 0.5 мм. Таким образом, используя этот
метод расчета, можно найти H.
Через диагональ грани и ребро основания
Под диагональю грани понимается луч, которые проходит между двумя вершинами, которые находятся на
разных основаниях треугольной призмы. Когда известна диагональ грани, а также размер ребра в
основании, можно решить задачу по этой формуле:
H = √(d² — a²)
где d — диагональ грани, а — ребро основания.
Цифр после
запятой:
Результат в:
Пример. Если d=9 мм², а = 5 мм то расчет искомого параметра по формуле будет
выглядеть следующим образом: H = √(9² — 5²) = 7.4 мм. Таким образом,
используя эту формулу, можно вычислить H.
Через площадь грани и ребро основания
Ребро основания равняется длине любого отрезка в равностороннем треугольнике внутри призмы. Граней у
призмы 3. Две боковые и одна задняя. Они изображены в виде параллелограммов. Зная длину и площадь
грани у призмы, можно воспользоваться следующую формулу для расчета высоты правильной треугольной
призмы:
H = S / a
где S — площадь грани, a — ребро основания.
Цифр после
запятой:
Результат в:
Пример. Если S = 5 мм², а = 8 мм² то вычисления H будут производиться следующим
способом: H = 5 / 8 = 0,62 мм. С помощью этой формулы можно найти искомую
величину.
Умение рассчитать высоту треугольного многогранника пригодится при решении геометрических задач.
Знания могут потребоваться в школе, в университете, но иногда такая необходимость может возникнуть в
реальной жизни. Например, как строитель сможет посчитать площадь дома в виде призмы, если не знает
расчетной формулы. Важно понимать, как найти неизвестные переменные, когда известно лишь несколько
параметров.
Формулы для нахождения высоты треугольника
В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.
Нахождение высоты треугольника
Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.
Высота в разностороннем треугольнике
Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:
1. Через площадь и длину стороны
где S – площадь треугольника.
2. Через длины всех сторон
где p – это полупериметр треугольника, который рассчитывается так:
3. Через длину прилежащей стороны и синус угла
4. Через стороны и радиус описанной окружности
где R – радиус описанной окружности.
Высота в равнобедренном треугольнике
Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:
Высота в прямоугольном треугольнике
Высота, проведенная к гипотенузе, может быть найдена:
1. Через длины отрезков, образованных на гипотенузе
2. Через стороны треугольника
Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.
Высота в равностороннем треугольнике
Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:
Примеры задач
Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.
Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:
Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.
Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:
Высота треугольника онлайн
С помощю этого онлайн калькулятора можно найти высоту треугольника. Для нахождения высоты треугольника введите известные элементы треугольника и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.
Открыть онлайн калькулятор
Высота треугольника. Определение
Определение 1. Отрезок, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.
Высота треугольника может содержаться внутри треугольника (Рис.1), совпадать со стороной треугольника (при прямоугольном треугольнике высота совпадает с катетом (Рис.2) ), проходить вне треугольника (при тупоугольном треугольнике(Рис.3)).
Теорема о пересечении высот треугольника
Теорема 1. Все три высоты треугольника (или их продолжения) пересекаются в одной точке.
Доказательство. Рассмотрим произвольный треугольник ABC (Рис.4). Докажем, что высоты ( small AA_1 ,) ( small BB_1 ,) ( small CC_1 ) пересекаются в одной точке. Из каждой вершины треугольника проведем прямую, параллельно противоположной стороне. Получим треугольник ( small A_2B_2C_2. ) Покажем, что точки ( small A, B, C ) являются серединами сторон треугольника ( small A_2B_2C_2. ) ( small AB=A_2C ) так как они являются противоположными сторонами параллелограмма ( small ABA_2C. ) ( small AB=CB_2 ) так как они являются противоположными сторонами параллелограмма ( small ABCB_2. ) Тогда ( small CB_2=CA_2, ) то есть точка ( small C ) является серединой стороны ( small A_2B_2 ) треугольника ( small A_2B_2C_2. ) Аналогично доказывается, что точки ( small A ) и ( small B ) являются серединами сторон ( small B_2C_2 ) и ( small A_2C_2, ) соответственно.
Далее из ( small AA_1⊥BC ) следует, что ( small AA_1⊥B_2C_2 ) поскольку ( small BC ǁ B_2C_2 ). Аналогично, ( small BB_1⊥A_2C_2, ) ( small CC_1⊥A_2B_2. ) Получили, что ( small AA_1,) ( small BB_1, ) ( small CC_1) являются серединными перпендикулярами сторон ( small B_2C_2, ) ( small A_2C_2, ) ( small A_2B_2, ) соответственно. Но серединные перпендикуляры треугольника пересекаются в одной точке (см. статью Серединные перпендикуляры к сторонам треугольника). Следовательно высоты треугольника или их продолжения пересекаются в одной точке.
Точка пересечения высот треугольника называется ортоцентром.
Высота треугольника по основанию и площади
Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).
Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:
Пример 1. Сторона треугольника равна ( small a=5 ) а площадь ( small S=7. ) Найти высоту треугольника.
Применим формулу (1). Подставляя значения ( small a ) и ( small S ) в (1), получим:
Ответ:
Высота треугольника по трем сторонам
Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):
где ( small a, b, c ) стороны треугольника а полупериод ( small p ) вычисляется из формулы:
Высота треугольника, отпущенная на сторону ( small a) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:
Пример 2. Известны стороны треугольника: ( small a=5, ) ( small b= 4, ) ( small c=7. ) Найти высоту треугольника, отпущенная на сторону ( small a. )
Решение: Найдем, сначала полупериод ( small p ) треугольника из формулы (3):
Подставляя значения ( small a , b, c ) и ( small p ) в (4), получим:
Ответ:
Высота треугольника по двум сторонам и радиусу описанной окружности
Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:
Далее, из теоремы синусов имеем:
Подставляя (6) в (7), получим:
Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:
(small max (b,c) ≤2R Пример 3. Известны стороны треугольника: ( small b=7, ) ( small c= 3 ) и радиус описанной окружности ( small R=4. ) Найти высоту треугольника, отпущенная на сторону ( small a. )
Решение: Проверим сначала условие (9):
(small max (7,3) ≤2 cdot 4 Ответ: ( small 2frac<5><8>. )
Высота треугольника по стороне и прилежащему к ней углу
Найдем высоту ( small h_a ) треугольника на рисунке 7. Из теоремы синусов имеем:
( small frac<large h_a><large sin angle B>=frac<large c><large sin 90°>, )
( small h_a=c cdot sin angle B. ) | (11) |
Пример 4. Известны сторона ( small c=12 ) треугольника и прилежащий угол ( small angle B=30°. ) Найти высоту треугольника, отпущенная на сторону ( small a. )
Решение: Для нахождения высоты треугольника подставим значения ( small c=12 ) и ( small angle B=30° ) в (11). Имеем:
Высота треугольника
В произвольном треугольнике (у которого все стороны разной длины), высоты, проведенные к сторонам , медианы и биссектрисы представляют собой совершенно разные линии. Чтобы найти длину высоты в треугольнике, нельзя будет использовать свойства медианы или биссектрисы, как для равнобедренных или равносторонних треугольников, поэтому придется использовать другие методы.
Один из подобных методов заключается в использовании общего параметра треугольника — площади. Алгоритм вычислений строится на том, что площадь разностороннего треугольника можно найти несколькими способами, в том числе и через высоту. Зная три стороны треугольника, можно найти его площадь по формуле Герона, а затем используя другую формулу площади, выразить через нее высоту.
Чтобы вычислить площадь треугольника по формуле Герона, нужно сначала рассчитать полупериметр треугольника. Как следует из названия, полупериметр — это периметр, то есть сумма длин всех трех сторон, деленный на два.
Сама формула площади представляет собой произведение полупериметра на его разности с каждой стороной, все это выражение будучи заключенным под квадратным корнем.
С другой стороны та же площадь треугольника через высоту равна половине произведения стороны треугольника на высоту, на нее опущенную. Отсюда высота будет равна отношению удвоенной площади к стороне треугольника. Из предыдущей формулы можно выразить площадь через три стороны треугольника и заменить ее в формуле высоты.
Данная формула высоты через стороны треугольника применима для любых треугольников, произвольных, равнобедренных или равносторонних за отсутствием других.
Вычисляя высоту треугольника, зная три стороны, приходится идти длинным путем, используя формулы площади. Высота треугольника, выраженная через площадь, связана только с той стороной, на которую она опущена, поэтому чрезвычайно важно правильно указать для калькулятора порядок сторон и в ручном расчете подставить соответствующую сторону в формулу высоты.
Формула высоты произвольного треугольника через площадь
http://matworld.ru/geometry/vysota-treugolnika.php
http://allcalc.ru/node/992
Найдите правильный ответ на вопрос ✅ «Как найти высоту в правильной четырехугольной призме, если известны только площадь боковой поверхности (23104 кв. см) и площадь полной …» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Главная » Математика » Как найти высоту в правильной четырехугольной призме, если известны только площадь боковой поверхности (23104 кв. см) и площадь полной поверхности (36100 кв. см) ?
Содержание
- — Как найти объем по площади и высоте?
- — Как вычислить объем куба?
- — Как найти площадь грани куба?
- — Как найти объём куба с ребром?
- — Как найти объем зная площадь поверхности?
- — Как найти объем через площадь физика?
- — Как вычислить объем прямоугольника?
- — Как найти объем прямоугольного параллелепипеда формула 5 класс?
- — Где находится грань кубика?
- — Чему равны стороны куба?
- — Как найти объем куба если известна сторона?
- — Как найти площадь куба если известна длина ребра?
Как найти объем по площади и высоте?
площадь (S) — это произведение длинны и ширины (S= l*b), а объем – произведение длины, ширины и высоты. Подставьте в формулу вычисления объема вместо l*b площадь. Вы получите выражение V=S*h. Пример: Площадь одной из сторон параллелепипеда — 36 см², высота – 10 см.
Как вычислить объем куба?
Куб – это геометрическая фигура, которая представляет собой правильный многогранник, где каждая его грань является квадратом. Объем куба можно вычислить, зная только значение длины его ребра. Так как все его ребра между собой равны. Говоря проще объем куба приравнивается кубу длины его ребра.
Как найти площадь грани куба?
Площадь поверхности куба через сторону
Формула для нахождения площади поверхности куба через его сторону: S = 6 a 2 {S = 6 a^2} S=6a2, где a — сторона куба.
Как найти объём куба с ребром?
Объем = длина*ширина*высота. Ребро куба — это и есть его сторона, а все стороны в кубе равны. Следовательно, V= 1*1*1 = 1 кубический см.
Как найти объем зная площадь поверхности?
Выразите длину ребра через площадь поверхности (a = ³√V) и подставьте в формулу расчета объема: V = 6*(³√V)². Объем сферы (V) можно вычислить и по площади не полной поверхности, а лишь отдельного сегмента (s), высота которого (h) тоже известна.
Как найти объем через площадь физика?
По какой формуле можно найти объем?
- Зная массу и плотность V = m/ρ, где m — масса, а ρ — плотность
- Для геометрических фигур, например куб V = a^3 перемножить три стороны, а для цилиндра V = S*H площадь основания помножить на высоту
Как вычислить объем прямоугольника?
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Как найти объем прямоугольного параллелепипеда формула 5 класс?
Решение: чтобы ответить на вопрос, нужно воспользоваться формулой для вычисления объёма прямоугольного параллелепипеда. V = а · b · c, где а – длина прямоугольного параллелепипеда. Ответ: объём увеличится в три раза.
Где находится грань кубика?
Глоссарий по теме: Куб — это многогранник, поверхность которого состоит из шести квадратов. Грани куба – это стороны куба, которые представляют собой квадрат. Ребра куба – это стороны граней куба.
Чему равны стороны куба?
Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.
Как найти объем куба если известна сторона?
Каждая сторона куба: длина, ширина и высота — равны между собой. Для вычисления объема куба необходимо длину его стороны возвести в третью степень. Найдите объем куба, если его сторона равна 2 см.
Как найти площадь куба если известна длина ребра?
Все ребра и грани куба равны. Площадь поверхности куба равна квадрату длины его грани умноженному на шесть. Формула для вычисления площади куба S = 6 a2 где S — площадь куба, a — длина грани куба.
Интересные материалы:
Чем подкормить морковь плохо растет?
Чем подкормить морковь во время роста?
Чем подкормить морковку для быстрого роста?
Чем подкормить огурцы чтобы они быстрее росли?
Чем подкормить огурцы чтобы пошли в рост?
Чем подкормить огурцы чтобы росли плоды?
Чем подкормить огурцы чтобы росли завязи?
Чем подкормить огурцы для роста плодов?
Чем подкормить огурцы для улучшения роста?
Чем подкормить огурцы в период роста?