Как найти высоту двери теплицы

Задача решается последовательно.

Что нам нужно?

Узнать сначала ширину входа.

Она равна половине от ширины самой теплицы.

Как понятно из чертежа, ширина таплицы — это диаметр окружности. В окружности нам известна длина ее половины. По условию задачи — это 5,2 (условно метра)

Значит длина полной окружности будет 10,4.

Зная длину окружности по формуле вычислим ее диаметр.

10,4 : 3,14 = 3,31, округляем = 3,3

Теперь рассмотрим прямоугольный треугольник ОDВ.

Почему он прямоугольный?

Да потому что при постройке таких дверей вертикаль по отношению к земле всегда находится под углом 90 градусов. Перекосы недопустимы.

Гипотенуза треугольника нам известна — это по сути радиус окружности, то есть — половина от диаметра, мы его только что вычислили.

Один из катетов ОВ тоже известен — это 14 диаметра окружности (по условию).

Остается применить теорему Пифагора и вычислить другой катет прямоугольного треугольника — DВ. Который и представляет собой высоту входа.

ОВ = 3,3 : 4 = 0,825

OD = 3,3 : 2 = 1,65

Применим формулу

Произведем вычисления (которые я опускаю)

Результат будет 1.4 (условных метров).

Низковато для человека среднего роста, придется при входе наклонять голову.

Прочитайте внимательно текст и выполните залдания 1 — 5.

Сергей Петрович решил построить на дачном участке теплицу длиной 4 м. Для этого он сделал прямоугольный фундамент.

Сергей Петрович решил построить на дачном участке теплицу

Задание 1 (ОГЭ 2020)

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение:   Длина теплицы составляет 4 м = 400 см. Рассчитаем количество дуг для теплицы, соблюдая условие: расстояние между соседними дугами меньше или равно 60 см. Разделим 400 на 60. Получится 6 дуг и в остатке 40 см. Учитывая две крайние дуги, получается:6 + 2 = 8 (дуг).

Ответ: 8.

Задание 2 (ОГЭ 2020)

Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продается в упаковках по 6 штук?

Решение: Из условия задачи имеем, что грядок в теплице планируется 3. Дорожек будет 2. Длина дорожки совпадает с длиной теплицы, то есть 4 м = 400 см. Ширина дорожки — 40 см. Найдем площадь двух дорожек. 2 * 40 * 400 = 32000 (кв. см).

Площадь одной плитки: 20 * 20 = 400 (кв. см).

32000 : 400 = 80 (штук) плиток нужно купить для двух дорожек.

80 : 6 = 13 (остаток 2).

Понадобится 13 + 1 = 14 упаковок плитки.

Ответ: 14.

Задание 3 (ОГЭ 2020)

Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

Решение:

Найдите ширину теплицы

Дуги для теплицы имеют форму полуокружности. Чтобы найти ширину теплицы, нужно достроить окружность и найти радиус окружности OD.

Ширина теплицы AD является диаметром окружности. AD = 2 * OD.

Длина дуги теплицы равна 5 м и вычисляется по формуле П * OD (это длина полуокружности).

OD = 5 : 3,14 = 1,6 (м).

AD = 2 * OD = 2 * 1,6 = 3,2 (м).

Ответ: 3,2.

Задание 4 (ОГЭ 2020)

Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятых.

Решение: Ширина теплицы 3,2 м = 320 см. В теплице есть 2 дорожки по 40 см и три грядки. Пусть ширина узкой грядки х см, тогда широкой грядки — 2х см.

Составим уравнение 2х + х + х + 2 * 40 = 320 и решим его.

4х + 80 = 320,

4х = 320 — 80,

4х = 240,

х = 60 (см) — ширина узкой грядки.

Найдем ширину центральной грядки (широкой). 2х = 2 * 60 = 120 (см).

Ответ: 120.

Задание 5 (ОГЭ 2020)

Найдите высоту входа в теплицу. Ответ дайте в сантиметрах.

Найдите высоту входа в теплицу

Чтобы найти высоту входа в теплицу,нужно рассмотреть прямоуголный треугольник OC1A. Применив теорему Пифагора, вычислим высоту CC1 теплицы.

По условию AB = BO = OC = CD = 320 см : 4 = 80 см.

ОС1 = OD = 160 см — радиусы.

По теореме Пифагора имеем: СС1 = 80√3 см = 136 см.

Ответ: 136.

Подробный  ОГЭ 2020 — земледелец устраивает на склонах гор терассы — задания 1 — 5.

В 2022 учебном году выпускники 9 классов будут сдавать ОГЭ по обновлённым заданиям. Представляем вам вариант тренировочной работы по математике в формате ОГЭ от СтатГрада. Обычно статградовские задания, используемые на пробных тестированиях в школах, максимально приближены к реальным экзаменационным вариантам. Рассказываем, как работать с новыми заданиями про теплицу.

Хотите БЕСПЛАТНО разобрать  с опытным преподавателем все детали новых усложнённых вариантов ОГЭ по математике 2023 года — приходите на пробное занятие в Lancman School.  Решите продолжить готовиться к ОГЭ вместе с нами весь год — дадим скидку после бесплатного пробного занятия. 

Любой вопрос смело пишите сюда. Мы 13 лет готовим к ОГЭ на высокие баллы. Прокачиваем знания даже самых слабых учеников. Гаранитруем получение оценки «5» на ОГЭ. Офисы Курсов ОГЭ Lancman School есть на каждой ветке московского метро. 

Если хотите сэкономить, но получить при этом качественную подготовку, записывайтесь на наши онлайн-курсы ОГЭ-2023 по русскому языку, математике, обществознанию и английскому языку.

ОГЭ математика теплица

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B — середины отрезков MO и ON соответственно.

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение:

Решать подобные задания лучше наглядным способом, то есть нарисовать предварительно дугу и делать на ней необходимые пометки.

ОГЭ математика теплица

Ответ: 9.

2. Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

Решение:

Длину МN необходимо искать, исходя из дуги, используя формулу длины окружности. Поскольку MN — это полуокружность, то ее длина равна πR.

πR=5,2

3,14R=5,2

R=5,2/3,14

MN=2 × 520/314=520/157

MN=3,31

Ответ: 3,3

3. Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Решение:

Площадь участка внутри теплицы представляет собой прямоугольник, и его площадь равна MN × NP.

S=520/157 × 4,5= 2340/157=14,9… При округлению получаем 15.

Можно взять ответ в 3,3 из предыдущего задания для решения.

S=3,3 × 4,5=14,85. При округлении тоже получаем 15.

Ответ: 15.

4. Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Решение:

Для начала необходимо посчитать площадь крыши теплицы. Она представляет собой прямоугольник со сторонами, равными 4,5 и 5,2.

S крыши=5,2 × 4,5=23,4

Остаётся посчитать площадь двух полуокружностей (перед и задняя часть теплицы). Вместе это одна окружность — значит, можно не считать площадь 2 раза.

S стенок=3,14 × (260/157)в квадрате=314/100 × 260/157 × 260/157=1352/157

К данной площади необходимо добавить 10%, поскольку плёнки надо купить с запасом. Прибавляем по 10% к уже имеющимся цифрам.

S крыши=25,74

S стенок=9,47…

Складываем и округляем. Получаем примерно 35 метров плёнки.

Ответ: 35.

5. Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Решение:

Задача геометрическая: нам надо представить, что перед нами равносторонний треугольник.

ОГЭ математика теплица

Итак, перед нами равносторонний треугольник СOD. Найдя его высоту, мы найдём высоту входа в теплицу. Будем использовать формулу высоты равностороннего треугольника. Сторона треугольника COD равна радиусу окружности, которую мы уже знаем (260/157).

h=1,40… Округляем до 1,4.

Ответ: 1,4.


Ваш ребёнок — школьник 1-11 класса? Вы учитель? Отлично! Мы пишем для вас. Узнавайте от нас первыми новости образования, актуальную информацию об экзаменах и просто полезные советы. Кнопка подписки прямо под постом!

Фото: pixabay.com

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Длина теплицы 4 м = 400 см.

Чтобы узнать наименьшее количество дуг найдем количество секторов, которые получатся при установке дуг на расстояние 60 см. Для этого разделим длину теплицы на максимальное расстояние между дугами.

400 : 60 ≈ 6,6, т.е. 7 секторов.

Если вы схематично нарисуете 7 секторов и отметите дуги, то заметите, что дуг будет на одну больше.

Ответ: 8.

2. Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продаётся в упаковках по 6 штук?

Длина дорожек соответствует длине теплицы и равна 400 см. Ширина дорожек равна 40 см.

Площадь одной дорожки равна 400 · 40 = 16 000 см2, а площадь одной плитки равна 202 = 400 см2

На одну дорожку потребуется 16 000 : 400 = 40 плиток, следовательно, на две дорожки потребуется 80 плиток.

Т.к. плитка продается в упаковках по 6 штук, то упаковок надо закупить 80 : 6 = 14 штук.

Ответ: 14.

3. Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

Шириной теплицы будет диаметр окружности с центром в точке О. Из условия задачи нам известно, что длина металлической дуги равна 5 м. А металлическая дуга является полуокружностью, значит, длина всей окружности с центром в точке О равна 10.

Длина окружности находится по формуле L = πd, где d = AD — диаметр.

Найдем АD.

АD = 10 : 3,14 ≈ 3,2 м.

Ответ: 3,2.

4. Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятков.

Пусть ширина узкой грядки равна х, тогда ширина центральной грядки — 2х. Т.к. общая ширина двух дорожек равна 80 см = 0,8 м и ширина теплицы равна 3,2 м, то составим и решим уравнение:

х + х + 2х + 0,8 = 3,2;

4х = 2,4;

х = 0,6  м — ширина узкой грядки.

0,6 · 2 = 1,2 м = 120 см- ширина центральной грядки.

Ответ: 120.

5. Найдите высоту входа в теплицу. Ответ дайте в сантиметрах.

ВО = ОС = ¼АD = ¼ · 3,2 = 0,8 м, значит, ВС = В1С1 = 0,8 ·2 = 1,6 м (из условия задачи).

ОВ1 — радиус, который равен половине диаметра AD, т.е. ОВ1 = 3,2 : 2 = 1,6 м.

Пусть точка О1 — середина В1С1, тогда треугольник ОВ1О1 — прямоугольный и имеет гипотенузу ОВ1 = 1,6 м и катет В1О1 = 1,6 : 2 = 0,8 м.

По теореме Пифагора найдем второй катет, и по совместительству, высоту входа теплицы ОО1, предварительно переведя метры в сантиметры.

ОО12 = ОВ12 — В1О12 = 1602 — 802 = 19 200

ОО1 = √19200. Корень не извлекаемый.

Возведем в квадрат число 140: 1402 = 19 600 — многовато.

1392 = 19 321

1382 = 19 044

Вообще, если у вас есть книжечка с этой задачей, то вы можете увидеть в ответах некоторый промежуток. Любое число из этого промежутка будет являться правильным ответом. Я возьму число 139, т.к. его квадрат находится  ближе к 19 200.

Ответ: 139.

Не можешь найти нужную задачу? Предложи свою! Наша группа в VK.

Сергей Петрович решил построить на дачном участке теплицу длиной 4 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Сергей Петрович заказал металлические дуги в форме полуокружностей длиной 5 м каждая и покрытие для обтяжки.

Как найти высоту входа в теплицу огэ по математике 2022

Отдельно требуется купить плёнку для передней и задней стенок теплицы. В передней стенке планируется вход, показанный на рисунке прямоугольником BCC1B1, где точки B, O и C делят отрезок AD на четыре равные части. Внутри теплицы Сергей Петрович планирует сделать три грядки по длине теплицы — одну центральную широкую грядку и две узкие грядки по краям. Между грядками будут дорожки шириной 40 см, для которых необходимо купить тротуарную плитку размером 20 см х 20 см.

Задание 1.

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Задание 2.

Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продаётся в упаковках по 6 штук?

Задание 3.

Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

Задание 4.

Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятков.

Задание 5.

Найдите высоту входа в теплицу. Ответ дайте в сантиметрах.

Рассмотрим первые пять задач Варианта 16 из ОГЭ. Математика: типовые экзаменационные варианты:36 вариантов /под ред . И.В. Ященко на нахождение неизвестных величин теплицы.

Сергей Петрович решил построить на дачном участке теплицу длиной 6 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Сергей Петрович заказал металлические дуги в форме полуокружностей длиной 5 м каждая и покрытие для обтяжки.

Отдельно требуется купить плёнку для передней и задней стенок теплицы. В передней стенке планируется вход, показанный на рисунке прямоугольником , где точки B, O и C делят отрезок AD на четыре равные части. Внутри теплицы Сергей Петрович планирует сделать три грядки по длине теплицы — одну центральную широкую грядку и две узкие грядки по краям. Между грядками будут дорожки шириной 50 см, для которых необходимо купить тротуарную плитку размером 25 см х 25 см.

Задание 1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 80 см?

Решение.

Длина теплицы 6 м = 600 см. Разделим эту длину на 80 см и округлим результат до ближайшего наибольшего целого, получим:

то есть, нужно заказать 8 дуг + 1 первая дуга = 9 дуг.

Ответ: 9.

Задание 2. Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продаётся в упаковках по 10 штук?

Решение.

В теплице 3 грядки, между которыми будут две дорожки. Длина каждой дорожки равна длине теплицы – 600 см, а ширина – 50 см.

Площадь одной дорожки 600∙50 = 30 000 ,

тогда площадь двух дорожек 2∙30 000 = 60 000 .

Тротуарная плитка имеет размеры 25х25 см площадь одной плитки 625 Найдем сколько плиток необходимо для дорожек

площадь двух дорожек : площадь одной плитки

60 000:625 = 96 плиток

Так как плитки продаются в упаковках по 10 штук, то необходимо купить

 упаковок

Ответ: 10.

Задание 3. Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

Решение.

Ширина теплицы определяется диаметром полуокружности длиной 5 метров. Для вычисления радиуса такой полуокружности можно воспользоваться формулой длины окружности L=2  . Нам дана длина полуокружности =5м, следовательно

полная длина окружности будет 10м. Подставим

2*3,14R=10

R= ширина теплицы равна диаметру , поэтому 2*1,592=3,184.

Ответ дать в метрах с точностью до десятых 3,2 м.

Ответ: 3,2.

Задание 4. Найдите ширину узкой грядки, если ширина центральной грядки относится к ширине узкой грядки как 5:3. Ответ дайте в сантиметрах с точностью до десятков.

Решение.

Условно представим теплицу с грядками: две по краям с шириной 3x см и одна центральная с шириной в 5х см. Между ними дорожки шириной 50 см.

Учитывая, что вся ширина теплицы примерно 3,2 м = 320 см, получаем уравнение:

3х+50+5х+50+3х=320,

11х=320-50-50,

Х=220/11

Х=20. Найдите ширину узкой грядки 3х=3*20=60 см.

Ответ: 60.

Задание 5. Сколько квадратных метров пленки необходимо купить дл передней и задней стенок, если с учетом крепежа ее нужно брать с запасом 15% ? Ответ округлите до десятых.

Решение. Ширина теплицы 3,2 м , а радиус 1,6 м

Так как передние и задние части стенок теплицы являются полуокружностями ,то вместе они образуют круг. Площадь круга S= = 3,14* = 8,0384

С учетом крепежа ее нужно брать с запасом 15%

8,0384+0,15*8,0384=9,24416 Ответ округлите до десятых 9,2

Ответ: 9,2

Полное условие в текстовом виде на странице: https://mat-ege.ru/uncategorized/razbor-zadanij-1-5-o-stroitelstve-tepliczy-novyj-format-oge-2020/

Мы в ВК: https://vk.com/onlinemath

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 6,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 6,1 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B — середины отрезков MO и ON соответственно.

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 75 см?

2. Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

3. Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

4. Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

5. Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Помощь сайту/каналу: https://mat-ege.ru/pomoshh-sajtu-mat-ege-ru/

Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B — середины отрезков MO и ON соответственно.

1

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?


2

Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.


3

Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.


4

Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Спрятать решение

Решение.

Треугольник COD — равносторонний. Высота треугольника COD является высотой входа. Воспользуемся формулой высоты равностороннего треугольника: h= дробь: числитель: корень из 3, знаменатель: 2 конец дроби a, где a — это сторона треугольника. Таким образом, высота равна:

h= дробь: числитель: корень из 3, знаменатель: 2 конец дроби умножить на дробь: числитель: 260, знаменатель: 157 конец дроби approx 1,4.

Ответ: 1,4.

ПОДЕЛИТЬСЯ

Готовая рабочая тетрадь ОГЭ 2022 по математике 9 класс на задачи  с ответами №1-5 про зонты, теплицы, план местности, лист бумаги, шины для подготовки, с подсказками как решать данные задания.

Скачать рабочую тетрадь

Рабочая тетрадь ОГЭ 2022 по математике задачи №1-5

Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника, площадь которого равна 1 м2. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получается два равных листа формата А1. Если лист А1 разрезать пополам таким же образом, получается два листа формата А2.

И так далее. Отношение длины большей стороны к длине меньшей стороны для листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это сделано специально для того, чтобы пропорции текста и его расположение на листе сохранялись при уменьшении или увеличении шрифта и при изменении формата листа. В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А2, А3, А5 и А6.

1)Установите соответствие между форматами и номерами листов. Заполните таблицу, в бланк ответов перенесите последовательность четырёх цифр, соответствующих номерам листов, без пробелов, запятых и дополнительных символов.

2)Сколько листов формата А6 получится из одного листа формата А2?

3)Найдите длину листа бумаги формата А1. Ответ дайте в миллиметрах с округлением до ближайщего целого числа, кратного 10.

4)Найдите ширину листа бумаги формата А1. Ответ дайте в миллиметрах с округлением до ближайшего целого числа, кратного 10.

5)Найдите отношение длины большей стороны листа формата А1 к меньшей. Ответ округлите до десятых.

6)Найдите площадь листа формата А1. Ответ дайте в квадратных сантиметрах.

7)Размер (высота) типографского шрифта измеряется в пунктах. Один пункт равен 1/72 дюйма, то есть 0,3528 мм. Какой высоты нужен шрифт (в пунктах), чтобы текст был расположен на листе формата А4 так же, как этот же текст, напечатанный шрифтом высотой 15 пунктов, на листе формата А5? Размер шрифта округлите до целого.

8)Бумагу формата А3 упаковали в пачки по 120 листов. Найдите массу пачки, если масса бумаги площади 1 м2 равна 96 г. Ответ дайте в граммах.

Сергей Петрович решил построить на дачном участке теплицу длиной 4 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Сергей Петрович заказал металлические дуги в форме полуокружностей длиной 5 м каждая и покрытие для обтяжки. Отдельно требуется купить плёнку для передней и задней стенок теплицы.

В передней стенке планируется вход, показанный на рисунке прямоугольником BCC1B1, где точки B, O и C делят отрезок AD на четыре равные части. Внутри теплицы Сергей Петрович планирует сделать три грядки по длине теплицы — одну центральную широкую грядку и две узкие грядки по краям. Между грядками будут дорожки шириной 40 см, для которых необходимо купить тротуарную плитку размером 20 см х 20 см.

1)Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

2)Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продаётся в упаковках по 6 штук?

3)Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

4)Найдите ширину входа в теплицу. Ответ дайте в метрах с точностью до десятых.

5)Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятков.

6)Найдите высоту входа в теплицу. Ответ дайте в сантиметрах с точностью до десятых.

7)Сколько процентов составляет площадь, отведённая под грядки, от площади всего участка, отведённого под теплицу? Ответ округлите до целых.

Другие тренировочные варианты ОГЭ 2022 по математике 9 класс

Понравилась статья? Поделить с друзьями:
  • Как найти установщик модулей windows
  • Как найти уравнение плоскости abc
  • Как найти ходы в печке
  • Как найти новорожденного ребенка для усыновления
  • Как найти твинк в вк