Как найти высоту конуса зная диаметр

Задание.
Как найти высоту конуса, если диаметр его основания равен 10 см, а образующая равна 13 см.

Решение.
Для решения задачи выполним схематический рисунок, на котором обозначим все необходимые измерения конуса, т.е. его высоту, радиус основания и образующую. Поскольку образующая соединяет две точки конуса — его вершину и любую из точек окружности основания, то проведем образующую так, как показано на рисунке. Радиус также соединяет две точки — центр окружности и любую из точек окружности основания, следовательно, радиус также изобразим так, как будет удобно для решения задачи, т.е. его конец будет совпадать с концом образующей.

Такие построения были выполнены для того, чтобы получить прямоугольный треугольник, который образовался между высотой, радиусом и образующей конуса. Для такого треугольника можно использовать теорему Пифагора, из которой несложно будет вычислить искомую длину высоты:

    [{obrazuyuschaya}^2={visota}^2+{radius}^2]

Выразим высоту из данного уравнения:

    [{visota}^2={obrazuyuschaya}^2-{radius}^2]

По условию известен размер диаметра. Из следующего уравнения найдем необходимый нам размер радиуса и подставим в формулу:
radius=frac{diametr}{2}=frac{10}{2}=5 (см).
Теперь достаточно подставить известные значения в выше записанное уравнение:

    [{visota}^2={obrazuyuschaya}^2-{radius}^2]

    [{visota}^2={13}^2-5^2]

    [{visota}^2=169-25]

    [{visota}^2=144]

visota=12 (см).

Ответ. 12 см.

Высота конуса опускается из его вершины ровно в середину основания, являющуюся по совместительству центром окружности, представляющей основание конуса. Для того чтобы найти высоту конуса, необходимо соединить центр окружности с апофемой конуса. Проведенный радиус создаст прямоугольный треугольник внутри конуса, в котором высота и радиус основания будут катетами, а апофема конуса – гипотенузой. Из теоремы Пифагора, высота конуса может быть найдена как квадратный корень из разности квадрата радиуса от квадрата апофемы:

Прочитав данную статью, вы узнаете, как найти высоту конуса. Приведенный в ней материал поможет глубже разобраться в вопросе, а формулы окажутся весьма полезными в решении задач. В тексте разобраны все необходимые базовые понятия и свойства, которые обязательно пригодятся на практике.

Фундаментальная теория

Перед тем, как найти высоту конуса, необходимо разобраться с теорией.

Конус — фигура, которая плавно сужается от плоского основания (часто, хотя и необязательно, кругового) до точки, называемой вершиной.

Конус формируется набором отрезков, лучей или прямых, соединяющих общую точку с основанием. Последнее может ограничиваться не только окружностью, но и эллипсом, параболой или гиперболой.

Высота и радиус

Ось — это прямая (если таковая имеется), вокруг которой фигура имеет круговую симметрию. Если угол между осью и основой составляет девяносто градусов, то конус принято называть прямым. Именно такая вариация чаще всего встречается в задачах.

Если в основе лежит многоугольник, то объект является пирамидой.

Отрезок, соединяющий вершину и линию, ограничивающую основание, называют образующей.

Как найти высоту конуса

Подойдем к вопросу с другой стороны. Для начала используем объем конуса. Чтобы его найти нужно вычислить произведение высоты с третьей частью площади.

V = 1/3 × S × h.

Очевидно, что из этого можно получить формулу высоты конуса. Достаточно лишь сделать правильные алгебраические преобразования. Разделим обе части равенства на S и умножим на тройку. Получим:

h = 3 × V × 1/S.

Теперь вы знаете, как найти высоту конуса. Однако для решения задач вам могут понадобиться и другие знания.

Важные формулы и свойства

Приведенный ниже материал однозначно поможет вам в решении конкретных задач.

Центр массы тела находится на четвертой части оси, начиная от основы.

В проективной геометрии цилиндр — это просто конус, вершина которого находится на бесконечности.

Конус и цилиндр

Следующие свойства работают только для прямого кругового конуса.

  • Даны радиус основания r и высота h, тогда формула для площади будет выглядеть так: П × r2. Соответственно изменится и окончательное уравнение. V = 1/3 × П × r2 × h.
  • Вычислить площадь боковой поверхности можно перемножив число «пи», радиус и длину образующей. S = П × r × l.
  • Пересечение произвольной плоскости с фигурой является одним из конических сечений.

Часто встречаются задачи, где необходимо использовать формулу для объема усеченного конуса. Она выводится из обычной и имеет такой вид:

V = 1/3 × П × h × (R2 + Rr + r2), где: r -радиус нижнего основания, R — верхнего.

Всего этого будет вполне достаточно для решения разнообразнейших примеров. Разве что могут понадобиться знания, не связанные с этой темой, например, свойства углов, теорема Пифагора и другое.

Длина отрезка линии опушенной перпендикулярно плоскости основания из вершины конуса является его высотой. Найти не сложно. Для этого нужно знать величину конуса. Если конус велик и внутри его полость, то достаточно опустить из вершины нитку с грузом до основания и измерить длину нитки. Если конус мал и умещается в руках, то достаточно измерить боковую сторону и ширину основания. Половина основания — это один катет. Боковая сторона гипотенуза. А высотой окажется другой катет воображаемого прямоугольного треугольника. К сожалению тут нарисовать не где. Далее, зная значения катета и гипотенузы по теореме Пифагора находим другой катет — высоту конуса. Если конус не симметричный и вершина сдвинута относительно середины, то для расчетов нужно знать угол между плоскостью основания и боковой стороной в месте их измерения. Далее геометрия… Формулы есть в любом справочнике.

автор вопроса выбрал этот ответ лучшим

Ксарф­акс
[156K]

5 лет назад 

Высота конуса

Это перпендикуляр, который опущен из вершины конуса на основание. Чтобы найти высоту конуса можно воспользоваться несколькими способами.

1) Если известно, чему равен объём конуса, то высоту можно вычислить по формуле:

V = 1/3 Sосн * h ->

h = 3V / Sосн.

При этом для нахождения площади основания (площади круга) нам нужно знать радиус.

2) Образующая конуса, высота и радиус основания образуют прямоугольный треугольник.

Поэтому если известна образующая (гипотенуза) и радиус (катет), то высоту можно выразить с помощью теоремы Пифагора.

a² = c² — b², a = √(c² — b²).

a — высота, b — радиус, c — образующая.

Например:

Радиус основания = 15 см, длина образующей — 17 см.

Высота конуса будет равна √(17² — 15²) = √64 = 8 см.

-Irink­a-
[282K]

4 года назад 

Для того, чтобы найти высоту конуса, необходимо иметь для решения какие-то вводные.

Допустим, что мы знаем длина образующей конуса, она равна 10 см. и диаметр его основания равный 12 см.

Находим радиус конуса R=D/2= 6 см.

Вот наш конус, чертим нужные нам линии.

Используем теорему Пифагора,

получаем h²=a²-R², где а — длина образующей конуса (10 см), h искомая высота.

h² = 100 — 36 = 64

h = √64 = 8 сантиметров

Alexg­roovy
[14.6K]

5 лет назад 

Для поиска высоты конуса нужны входные данные. В качестве таких данных выступает радиус (или диаметр основания) и длина образующей конуса.

На рисунке длина образующей обозначена буквой l, а диаметр основания как d.

Например, по условию задачи l = 100, d = 56. Решение задачи будет следующим:

88Sky­Walke­r88
[429K]

5 лет назад 

Начертим конус, проведем его высоту и основание:

Нам известна величина l — это образующая. Она равна 16.

Угол между основанием и образующий будет равняться 30 градусам.

У нас получился прямоугольный треугольник, в котором образующая (l) — это гипотенуза, а высота (h), которую нам необходимо найти, это катет.

Так как нам известен угол, мы можем найти его синус. sin 30° = ½

Известно, что синус — это отношение противолежащего катета к гипотенузе.

Следовательно, можно составить такую формулу: sin 30° = h/l = ½

Из этой формулы мы выводим h, высоту конуса.

Получается формула и решение: h = sin 30°*l = ½ * 16 = 8.

Чосик
[208K]

более года назад 

Зависит от данных, которые мы получили изначально. Для того, чтобы узнать высоту, необходимо знать радиус и апофему. В таком случае мы получим прямоугольный треугольник, где высота и радиус играют роль катетов, а апофема — гипотенузы.

Если же мы знает площадь основания и объем конуса, то высота равна h = 3V/S.

владс­андро­вич
[766K]

более года назад 

Высоту конуса можно найти разными формулами, тут все зависит от того, что вам известно. В частности если известны площадь его основания и объем самого конуса, то тогда все просто, так как данные значения надо подставить под формулу h = 3V/S и просто посчитать.

JuliG­or
[3.2K]

9 лет назад 

Если известны объем и площадь конуса, то высоту легко найти, так как объем конуса равен одной трети площади основания умноженная на высоту конуса. Также высоту конуса можно найти по теореме Пифагора, но это по-моему гораздо сложнее)

morel­juba
[62.5K]

5 лет назад 

Высоту конуса мы можем выразить из формулы, по которой мы определяем объём конуса:

Так вот высота конуса из данной формулы будет равна:

Высота конуса = 3 * объём конуса / пи * радиус основания в квадрате.

Знаете ответ?

Skip to content

Диаметр основания конуса равен 42, а длина образующей равна 75. Найдите высоту конуса.

Диаметр основания конуса равен .Найдите высоту конуса.

Решение:

Обозначим высоту за ОВ
АС=42 диаметр
АО=ОС это радиусы, поэтому АО=АС:2=42:2=21
АВ=75 образующая конуса
(Отрезок, соединяющий вершину конуса с точкой окружности основания, называются образующей, конуса.)

Диаметр основания конуса равен 42, а длина образующей равна 75. Найдите высоту конуса.

Из прямоугольного треугольника АВО, найдем ОВ по теореме Пифагора:
(В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов)

АВ2=АО2+ОВ2
752=212+ОВ2
5625=441+ОВ2
ОВ2=5625-441
ОВ2=5184
ОВ2=722
ОВ=72

Диаметр основания конуса равен 42, а длина образующей равна 75. Найдите высоту конуса.

Ответ: 72

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Понравилась статья? Поделить с друзьями:
  • Как найти скрытую коробку в стене
  • Состояние 0xc0000225 как исправить виндовс 7
  • Как составить баланс предприятия бухучет
  • Как найти количество сторон через угол
  • Как найти место для копа по спутнику