Как найти высоту правильной усеченной четырехугольной пирамиды

Основания правильной усеченной пирамиды представляют собой правильные многоугольники, зная стороны которых можно найти все остальные параметры, такие как внутренний угол, периметр, площадь, радиусы вписанной и описанной окружностей.
γ=180°(n-2)/n
P=n(a+b+d)
S_a=(na^2)/(4 tan⁡〖(180°)/n〗 )
S_b=(nb^2)/(4 tan⁡〖(180°)/n〗 )
r_a=a/(2 tan⁡〖(180°)/n〗 )
r_b=b/(2 tan⁡〖(180°)/n〗 )
R_a=a/(2 sin⁡〖(180°)/n〗 )
R_b=a/(2 sin⁡〖(180°)/n〗 )

Зная высоту усеченной пирамиды, можно найти ее боковое ребро и апофему, рассмотрев прямоугольные трапеции, соединяющие их через радиусы вписанной и описанной окружностей в основаниях. Из прямоугольных трапеций построив дополнительный прямоугольный треугольник, легко вычислить боковое ребро или апофему как гипотенузу, а также найти углы при основаниях. (рис. 50.3, 50.4)
f=√(h^2+(b/2-a/2)^2 )=√(h^2+(b-a)^2/4)
cos⁡β=(r_b-r_a)/f
α=180°-β

d=√(h^2+(R_b-R_a )^2 )
cos⁡δ=(R_b-R_a)/d
ε=180°-δ

Чтобы найти площадь боковой поверхности, нужно вычислить площадь каждой грани усеченной пирамиды, а затем умножить полученное значение на количество сторон в основаниях. Вычислить площадь полной поверхности усеченной пирамиды, зная стороны и высоту, нужно, преобразовав высоту в апофему по приведенным выше формулам, и сложив площадь боковой поверхности с площадями оснований.
S_(б.п.)=nf (a+b)/2
S_(п.п.)=S_(б.п.)+S_(осн.1,2)=n(f (a+b)/2+a^2/(4 tan⁡〖(180°)/n〗 )+b^2/(4 tan⁡〖(180°)/n〗 ))

Объем усеченной пирамиды, зная стороны и высоту, равен одной трети высоты умноженной на сумму площадей оснований с радикалом из их произведения.
V=1/3 h(S_осн1+S_осн2+√(S_осн1 S_осн2 ))

Боковые грани усеченной пирамиды — трапеции. Т.к. данная усеченная пирамида получена из правильной  4-угольной пирамиды,  то  ее боковые грани — равные равнобедренные трапеции.
Построим OM┴BC, M1M1┴B1C1, и отрезок M1M. По теореме о 3-х перпендикулярах имеем: M1M┴BC (M1M┴B1C1), т.е. M1M — апофема усеченной пирамиды, M1M=4 дм.
Δ SB1C1  ~ Δ SBC , и Δ SO1M1  ~ Δ SOM, т.к. они — прямоугольные и имеют общий острый угол при вершине S, тогда имеем:


Построим M1M2┴OM; OM2=O1M1.
Пусть высота усеченной пирамиды OO1=h. Тогда из ΔМ1М2М по т. Пифагора имеем:

ВИДЕОУРОК

Усечённой пирамидой  ABCDA1B1C1D1  называется часть пирамиды  SABCD, заключённая между её основанием и секущей плоскостью, параллельной основанию.

Основаниями усечённой пирамиды называются параллельные грани  ABCD  и  A1B1C1D1  (ABCD – нижнее основание, A1B1C1D1 – верхнее основание).

Высотой усечённой пирамиды называется отрезок прямой, перпендикулярный её основаниям и заключённый между их плоскостями.



Усечённая пирамида называется правильной, если её основания – правильные многоугольники и прямая, соединяющая центры оснований, перпендикулярна плоскости оснований.



Апофемою правильной усечённой пирамиды называют высоту её боковой грани.



Свойства  усечённой пирамиды.



Основания – подобные многоугольники.



Боковые грани – трапеции.



Отношение высоты к высоте пирамиды, из которой она получена, равно отношению разности сторон одной грани к длине нижнего основания этой самой грани.



Поверхность усечённой пирамиды.



Площадь боковой поверхности усечённой пирамиды равна сумме площадей её боковых граней.

Полная поверхность усечённой пирамиды равна сумме площади боковой поверхности и площадей оснований.



Боковая поверхность правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему.

где  Р  и  Р1 –  периметры оснований, m – апофема усечённой пирамиды.



Правильная четырёхугольная усечённая пирамида.

Правильная треугольная усечённая пирамида.


Правильная шестиугольная усечённая пирамида.


ЗАДАЧА:



В правильной четырёхугольной усечённой пирамиде стороны оснований равны  5  и  11 дм, а диагональ пирамиды – 12 дм. Определите боковую поверхность пирамиды.



РЕШЕНИЕ:


В усечённой пирамиде  АС1  имеем  
А1В1 = В1С1 = С1D1 = D1А1 = 5 дм,  
АВ = ВС = СD = DА = 11 дм  и  
А1С = 12 дм. 
Найти  боковую поверхность.

Из вершины  А1  проведём  А1 AB  и  А1 AC, тогда  А1N – апофема пирамиды.

Боковая поверхность


Sбок = 1/2 (P + P1) × A1N.

где  P = 4AB = 44
дм, а 

P1 = 4A1B1 = 20
дм.

В квадратах  АВСD  и  А1В1С1D1  по иіх сторонам определяем диагонали

АС = 11√͞͞͞͞͞2  (дм),  
A1С1 = 5√͞͞͞͞͞5  (дм).

Рассмотрев равнобедренную трапецию  АА1С1Снаходим

и  соответственно


Тогда из прямоугольного  ∆ А1MC  находим высоту пирамиды


Из равнобедренного прямоугольного  ∆ AMN (∠ ANM = 90°), гипотенуза которого  AM = 3√͞͞͞͞͞2  (дм), находим сторону


Апофему данной пирамиды найдём из прямоугольного


Подставляя найденные значения  PP1  и  A1N  в формулу боковой поверхности пирамиды, получим:



Sбок = 1/2 (44 + 20)×5 = 160 (дм2).



ОТВЕТ:



S = 160 дм2 = 1,6 м2. 

ЗАДАЧА:

Высота правильной четырёхугольной усечённой пирамиды
равна 
4
см. Стороны оснований равны 
2
см  и 
8 см. Найдите площадь диагональных сечений.

РЕШЕНИЕ:

Начертим чертёж.

Диагональные сечения 
AA1C1D  и  BB1D1D– равные равнобедренные трапеции с высотой  ОО1 = h = 4 см  и с основаниями
– диагоналями оснований 
АС  и  А1С1  та  ВD  и  В1D1  соответственно. ABCD – квадрат, а поэтому

AC2 = AD2 + CD2 =

82 + 82 = 128,

AC = √͞͞͞͞͞128 = 8√͞͞͞͞͞2 ().

A1B1C1D1 – квадрат, а поэтому

A1C12 = A1D12 + C1D12 = 22 + 22 = 8,

A1C1 = √͞͞͞͞͞8 = 2√͞͞͞͞͞2 (cм).

ОТВЕТ:  20√͞͞͞͞͞2 (2)

ЗАДАЧА:

В правильной четырёхугольной усечённой пирамиде высота
равна 
2
см, а стороны оснований –
3 см  и  5
см. Найдите диагональ этой пирамиды.

РЕШЕНИЕ:

Начертим чертёж.

Диагональным сечением данной пирамиды
является равнобедренная трапеция 
АА1С1С.

Так как 
А1С1  и  АС –
диагонали квадратов,
А1В1С1D1  и  ABCD, то 

А1С1 = А1В1 √͞͞͞͞͞2 = 3√͞͞͞͞͞2 (см)  и  

АС = АВ √͞͞͞͞͞2 = 5√͞͞͞͞͞2 (см).

Проведём 
А1К
АС
 
и 
С1Н АС. Тогда  А1С1НК – прямоугольник
и 
А1С1 =
КН
. Так что, прямоугольные треугольники  АА1К  и  СС1Н  равны по гипотенузе и катету.

Тогда,

АК = СН = 1/2 (АС – А1С1) =

1/2 (5√͞͞͞͞͞2 – 3√͞͞͞͞͞2) = √͞͞͞͞͞(см).

Тогда,

СК = АС – АК = 5√͞͞͞͞͞2√͞͞͞͞͞2 =
4√͞͞͞͞͞(см),

и по
теореме Пифагора в 
∆ А
1СК:

ОТВЕТ:  6 см

ЗАДАЧА:

В правильной четырёхугольной пирамиде плоскость, проведённая
параллельно основанию, делит высоту пирамиды пополам. Найдите сторону основания,
если площадь сечения равна
  36 см2.

РЕШЕНИЕ:

Пусть  SABCD – данная правильная пирамида,

основание – квадрат 
ABCD, SO – высота, O
точка пресечения диагоналей квадрата,
φ – плоскость сечения, О1
точка пересечения 
φ  и  SO, φ (ABC), S = 36 2.

Поскольку  φ (ABC),
то прямые пересечения 
𝜑  и боковых граней параллельны соответственно рёбрам
основания
:

A1B1 AB, B1C1 BC, C1D1 CD,

A1D1 AD, 𝜑 SO,

можно рассмотреть гомотетию с центром  S  и коэффициентом 

которая преобразует квадрат  ABCD  в квадрат 
А1В1С1D1, стороны которого в два раза меньше, а

SABCD = 4SА1В1С1D1 = 4 36 (см2).

SABCD = a2 = 4
36,

a = 2 6
= 12
(см).

ОТВЕТ:  12 см


Задания к уроку 10

  • Задание 1
  • Задание 2
  • Задание 3

Другие уроки:

  • Урок 1. Прямые и плоскости в пространстве
  • Урок 2. Прямая призма
  • Урок 3. Наклонная призма
  • Урок 4. Правильная призма
  • Урок 5. Параллелепипед
  • Урок 6. Прямругольный параллелепипед
  • Урок 7. Куб
  • Урок 8. Пирамида
  • Урок 9. Правильная пирамида
  • Урок 11. Цилиндр
  • Урок 12. Вписанная и описанная призмы
  • Урок 13. Конус
  • Урок 14. Усечённый конус
  • Урок 15. Вписанная и описанная пирамиды
  • Урок 16. Сфера и шар
  • Урок 17. Комбинация тел

Данный сайт находится в режиме тестирования, обо всех выявленных проблемах Вы можете сообщить на почту

Формулы усеченной пирамиды

Для расчёта всех основных параметров усеченной пирамиды воспользуйтесь калькулятором.

Площадь верхнего основания правильной усеченной пирамиды

$$
S_{верх.основ} = {N * CD^2 over 4 * tan(180/N)}
$$

Площадь нижнего основания правильной усеченной пирамиды

$$
S_{нижн.основ} = {N * AB^2 over 4 * tan(180/N)}
$$

Объём усеченной пирамиды

$$
V = {1 over 3} * OE * (S_{верх.основ} + sqrt{S_{верх.основ} * S_{нижн.основ}} + S_{нижн.основ})
$$

Апофема усеченной пирамиды

Так как боковая сторона усеченной пирамиды – это трапеция, то высота этой трапеции и будет апофемой усеченной пирамиды
$$
SK = sqrt{AC^2 — ({(AB — CD)^2 + AC^2 — BD^2 over 2 * (AB — CD)})^2}
$$

Площадь боковой поверхности

Площадью боковой поверхности усеченной пирамиды является сумма всех боковых сторон, каждая боковая сторона является трапецией
$$
S_{Бок.стороны} = {1 over 2} * SK * (CD + AB)
$$

Пирамида — это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение «высота пирамиды» очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

высота пирамиды

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды – это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание – это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

высота треугольной пирамиды

Через формулу объема пирамиды V = (S*h)/3 (в формуле V — объем, S – площадь основания, h — высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной пирамиде площадь основания равна 50 см2, тогда как ее объем составляет 125 см3. Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют прямоугольный треугольник. Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а – гипотенуза, а в нашем случае ребро пирамиды; b – первый катет или половина диагонали и с – соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² — b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра – 30 см. Необходимо найти высоту. Решаем: c² = 30² — 20² = 900-400 = 500.  Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды – это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания – d2, а ребро имеет длину – l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды. 

высота усеченной пирамиды

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего – 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза – 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.

Понравилась статья? Поделить с друзьями:
  • Как найти участника вов в белоруссии
  • Как найти степень многочлена калькулятор
  • Как найти хорошего работника для ремонта
  • Как найти часы huawei band
  • Как составить план новости